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Introduction

One of the fundamental properties of automorphic forms is that their periods – integrals

against certain distinguished cycles or distributions – give special values of L-functions. The

Langlands program posits that automorphic forms for a reductive group G correspond to

Galois representations into its Langlands dual group Ǧ, and period formulas can be expressed

as a commutative diagram:

(1) automorphic forms oo //

period **

Galois representations

L-functiontt
complex numbers.

That is to say, “periods” and “L-functions” are specific ways to extract numerical invariants

from the two sides of the Langlands program; and in interesting cases, they match with one

another.

Relative Langlands Duality is the systematic study of the manifestations of this matching

at all “tiers” of the Langlands program (global, local, geometric, arithmetic, etc.). A key

point is a symmetric conceptualization of both sides: periods arise from suitable Hamiltonian

G-actions G �M and L-functions from suitable Hamiltonian Ǧ-actions Ǧ � M̌ . Thus, (1)

suggests a correspondence between such actions.

In this workshop we will explore the relative form of the Langlands correspondence following

the recent manuscript [3]. We will discuss a special class of Hamiltonian actions of reductive

groups called hyperspherical varieties, including the cotangent bundles of suitable spherical

varieties, and describe a duality

G �M ←→ M̌ 	 Ǧ

between hyperspherical varieties for Langlands dual groups. The relative Langlands duality

will have a manifestation in each tier of the Langlands program, which all have the general

form of Diagram 1: a measurement of automorphic objects for G associated to M matches a

measurement of spectral objects for Ǧ associated to M̌ .

In order to organize all the different structures of the relative Langlands program in

each tier and their interrelations we will use the general metaphor provided by Topological

Quantum Field Theory (TQFT). A TQFT is a collection of linear invariants attached to

manifolds of different dimensions satisfying strong algebraic interrelations which encode

in particular symmetries of these invariants. A key structure in TQFT is the notion of a
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boundary theory for a TQFT Z, meaning a theory defined relative to Z, and thus producing

functionals on the invariants defined by Z. The Langlands correspondence can be thought of

as an equivalence of two TQFTs, one describing the theory of automorphic forms associated

to G and one describing the theory of Langlands parameters into Ǧ. In this language the

relative Langlands program concerns the matching of boundary theories for the dual TQFTs,

a highly structured form of the matching of functionals such as periods and L-functions.

1. Day 1: Langlands Duality and TQFTs

1.1. Lecture 1.1: TQFTs. An informal introduction to the language of TQFTs. An n-

dimensional TQFT attaches linear invariants (numbers, vector spaces, categories) to manifolds

of decreasing dimension (n, n− 1, n− 2) together with operations defined by bordisms. In

our examples, the TQFT will be defined using “spaces of fields”: we pass first from categories

of manifolds and bordisms to categories of stacks and correspondences (by considering maps

from manifolds to some fixed target). We then linearize the stacks by passing to vector spaces

of functions (or sheaves) and integral transforms (push-pull along correspondences). These

constructions are illustrated by the examples of finite-group gauge theories of dimensions 2,3

and 4.

References: [3, D.1,D.2], [19, 4]. (Email organizers for an updated version of Appendix D.)

1.2. Lecture 1.2: Structures in TQFTs. We focus on two key features of TQFT. First,

we extract dimensions from products with a circle

Z(M × S1) = dim(Z(M))

and more generally traces of diffeomorphisms f : M →M from the mapping torus Mf :

Z(Mf ) = Tr(f,Z(M)).

If the field theory is described by functions on mapping spaces, these traces arise from fixed

points, since maps out of Mf are given by fixed points of f on maps out of M .

Second, this lecture should introduce the notion of a boundary theory for a TQFT Z, as

an extension of the functor Z to manifolds with a marked boundary. It is convenient to

think of this extension as providing a wider class of “closed” manifolds to evaluate Z on – in

particular, marking one component or the other of the boundary of M × [0, 1] endows the

invariant Z(M) with a distinguished object or linear functional. Discuss examples coming

from finite group gauge theory, where a boundary theory is given by a G-set X. Namely, we

now linearize spaces of G-bundles equipped with a section of the associated X-bundle on the

marked boundary (i.e., a twisted map from the boundary to X).

References: [3, D.1,D.2], [5].
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1.3. Lecture 1.3: Langlands duality. This lecture will provide a rough overview of the

Langlands correspondence with an emphasis on the global function field setting.

State the Satake isomorphism and its geometric analogue. Then formulate statements of

classical and geometric Langlands over a function field, ignoring all sheaf-theoretic technicali-

ties. Explain why the classical statement is valid for G = Gm, and if time permits discuss

the geometric version.

1.4. Lecture 1.4: Arithmetic topology and the Langlands program via TQFT.

Introduce the idea of rings of integers of global fields as arithmetic analogues of 3-manifolds

and local fields as arithmetic analogues of 2-manifolds; more generally, inverting some primes

in a global field gives a 3-manifold with boundary the associated local fields. (A reference is

[15, Chapter 3]).

Reformulate the Langlands program as an equivalence of “arithmetic TQFTs” as in [3,

§1.2, 1.3] (see also [3, §D.6]). E.g. on the automorphic side the automorphic TQFT AG
assigns

• to a curve over a finite field, considered as a “closed 3-manifold”, the vector space of

unramified automorphic forms;

• to a local field F , considered as a ‘closed 2-manifold,” the category of representations

of G(F );

• to an open curve over a finite field, considered as a “3-manifold with boundary”, objects

in the boundary category: the space of automorphic forms allowing ramification at

the missing points.

The spectral TQFT BǦ is given by linearizing the stacks LocǦ of Langlands parameters on

these arithmetic manifolds, obtaining vector spaces of functions for 3-manifolds, categories of

sheaves for 2-manifolds and, for 3-manifolds with boundary, objects in the category attached

to the boundary.

2. Day 2: Local arithmetic unramified duality

2.1. Lecture 2.1: Introduction to relative Langlands duality. The main goal of this

lecture will be to explain by means of one or two examples how a smooth affine G-variety X

(or rather, its cotangent bundle M = T ∗X) gives rise to “objects” in the various categories

associated to G on the “automorphic” (A-) side – which is analogous to enriching a TQFT

by boundary conditions. Another goal is to familiarize ourselves with the translations among

different languages – from classical analytic number theory to adeles to geometry (in the case

of function fields).

The examples to discuss are: Riemann’s integral representation of the zeta function,

(2)

∫ ∞
0

y−
s
2

∑
n>0

e−n
2πyd×y = π−

s
2 Γ(

s

2
)ζ(s),
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in its adelic (Iwasawa–Tate) and geometric (Riemann–Roch) reformulations; and the Gross–

Prasad period, as time permits. Note that some of the material will be covered again more

slowly in Lecture 4.4.

(1) Rewrite (2) as an adelic integral,∫
Q×\A×

∑
γ∈Q×

Φ(γa)|a|sd×a.

(2) When we replace Q by the function field F of a smooth projective curve Σ over Fq,
recall first how F×\A×/Ô× is identified with the groupoid of line bundles on Σ. Then,

taking Φ = 1Ô, explain why the theta series a 7→
∑

γ∈F Φ(γa) is counting the number

of sections of the line bundle parametrized by a.

(3) List the “objects” that this pair (G = Gm, X = A1) provides in the various “categories”

associated to G on the automorphic side of the Langlands program:

• 3-manifold: We associate to a curve Σ over Fq the theta series (a vector in the

vector space of automorphic functions).

• 2-manifold: For a curve Σ over Fq (or C), consider the Picard stack PicΣ and

the stack PicXΣ parametrizing pairs (L, σ), where L is a line bundle and σ is a

section. (For the purposes of this introductory talk, we can consider only nonzero

sections, in which case PicXΣ is the union of all symmetric powers of the curve.)

We associate to Σ the !-pushforward of the constant sheaf on PicXΣ (“period

sheaf”), whose Frobenius trace recovers the theta series on PicΣ(Fq).
• 2-manifold: We associate to X the space of functions on X(F ), considered as a

G(F )-representation.

• 3-manifold with boundary: We associate to X an intertwiner from the space of

functions on X(F ) to the space of ramified automorphic forms.

(4) Next, discuss the Gross–Prasad period for special orthogonal groups, following Ichino–

Ikeda [8]. Let X = H\G, where H = SO(V ), embedded diagonally in G = SO(V )×
SO(V ⊕ F ).

Construct the period integral, as an H(A)-invariant functional on a (cuspidal and

tempered, say) automorphic representation π of G. (Don’t pay too much attention

to choices of Haar measures.) For everywhere unramified data (over function fields),

rewrite the period integral as an integral against a theta series.

(5) Define the local Ichino–Ikeda periods (integrals of matrix coefficients over H), and

state the result on their evaluation for unramified data in terms of L-functions. (Ignore

Dirichlet L-factors that depend only on the choice of Haar measure, but not on the

representation.) If time permits, mention the relevance of the local periods to the

Plancherel formula, [18, Theorem 6.2.1].

(6) Formulate the conjecture of Ichino–Ikeda on the Euler factorization of the squared

absolute value of the period integral.
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2.2. Lecture 2.2: Cartan–Iwasawa decomposition for the group and for more

general spherical varieties. We introduce some basic properties of spherical varieties over

local fields, as a prelude to the next lectures.

Define spherical varieties (e.g. [2]). Give some examples, which should include the

horospherical variety U\G, the “group case” of G as a G×G varieties, as well as symmetric

varieties. Not all spherical varieties will fit cleanly into the current framework of relative

Langlands duality: state the conditions of [3, Proposition 3.7.4] which tells which ones do fit

there.

Define the weight lattice, valuation cone, and toroidal embeddings of a spherical variety, as

reviewed in [6, § 8.2.1] and [18, § 2.3]. The main reference is [9], but avoid talking about the

valuations of colors and more general, non-toroidal embeddings, which will be discussed in

Lecture 4.2.

Recall the Iwasawa decomposition G = N$ΛK, where Λ is the cocharacter lattice of

the universal Cartan A and the Cartan decomposition G = K$Λ−
K. State the common

generalization of these to homogeneous spherical varieties for F = C((t)): [6, Theorem 3.3.1].

Explain why this indeed generalizes these two cases.

2.3. Lecture 2.3: The notion of the unramified Plancherel formula and examples,

including the Macdonald formula. (This lecture can be coordinated with the next lecture;

material can be moved back and forth according to preferences of the lecturers.)

For X a spherical G-variety over a local nonarchimedean field F , we want to “spectrally

decompose” unramified functions on XF – which, ideally, will take the form of an isomorphism

(3) (Cc(XF )GO , 1XO
, 〈−,−〉) ' (C[Z], 1, 〈−,−〉µ)

for some variety Z over the invariant-theoretic quotient Ǧ � Ǧ and a measure µ on Z(C),

intertwining the action of Hecke operators with multiplication. In other words, the action of

the Hecke operator TV parameterized by a representation V of Ǧ should correspond, on the

right hand side, to multiplication by the character of V ; the characteristic function 1XO
should

correspond to the constant function, and the inner product on XF/GO should correspond to

the inner product
∫
fḡdµ on the right hand side.

Explain this in these examples: use the Cartan decomposition of XF/GO to explicate

Cc(XF )GO , and explain what (Z, µ) are.

(1) G = Gm, X = A1. The inner product should be taken with respect to additive Haar

measure here, and the action of the Hecke algebra normalized to be unitary. Here,

Z = Gm = the variety of characters of the group F×/O×; calculate the measure µ,

supported on the set S1 ⊂ C× of unitary characters.

(2) The horospherical case of G acting on X = G/U . Here, Z = the dual torus Ǎ, and

you should use the interpretation of the Satake isomorphism isomorphism (as in [7])
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in terms of the A×G-bimodule of functions on N\G, where A = B/U is the abstract

Cartan of G, as in [1, Tag 00IK].

(3) The group case of G×G acting on X = G: explain why Theorem 2 of Macdonald

[14] gives an answer.

References: Chapter 9 of [3], Macdonald’s survey [14]; organizers will provide notes for (a).

2.4. Lecture 2.4: Unramified Plancherel formula for spherical varieties. (This lec-

ture can be coordinated with the previous lecture; material can be moved back and forth

according to preferences of the lecturers.)

(1) Add the example of G = PGL2, X = PGL2 /Gm to the discussion of the previous

lecture. Describe the GO-orbits on XF explicitly, as well as the action of the stan-

dard generator T = 1
GO

(
$

1

)
GO

of the Hecke algebra on them, and the spectral

decomposition of this action. The organizers will provide notes on this example.

(2) Rormulate the statement of [3, Proposition 9.2.1] and [16, Theorem 1.4.1] as yielding

a spectral decomposition in the sense of the previous lecture:

Z = conjugacy classes for a dual group ǦX ,

µ =
Haar measure on the compact form of ǦX

det(1− q−1/2g|VX)

where VX is a certain graded representation of ǦX .

(3) Describe how this statement recover each example from the previous talk, as well as

the example of PGL2 /Gm above. In each example explain how Ǧ ×ǦX
VX has the

structure of Hamiltonian Ǧ-variety. (This will be the Hamiltonian Ǧ-space dual to

T ∗X.)

(4) Let V,W be representations of Ǧ with associated Hecke operators TV , TW . Compute

(as in the reasoning at the end of the proof of [3, Proposition 9.2.1]) the inner product

〈TV ? 1XO
, TW ? 1XO

〉 in L2(XF ) as a q-deformed multiplicity:

(4) 〈TV ? e, TW ? e〉 =
∑

miq
−i/2

where mi is the multiplicity of the weight i subspace of

HomC[VX ](C[VX ]⊗ V,C[VX ]⊗W )ǦX

Observe that this hints at an equivalence of categories.

3. Day 3: Local geometric duality

3.1. Lecture 3.1: Some sheaf theoretic background. Friendly review of sheaf theory

on derived schemes and stacks, along the lines of [3, Appendix B] (although there are many

other papers that cover the material in greater depth - this just gives an idea of the kind of

material you should aim to cover). The goal of this talk is not to give technical details, but
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to outline for a diverse audience how sheaf theory is extended to various exotic spaces, point

out to what the delicate issues are, and give references to where the audience can learn more.

3.2. Lecture 3.2: Derived Geometric Satake. Review the statement of geometric Satake.

Interpretation as geometric Langlands on “raviolo” (R = D
∐

D∗ D). Correct the automorphic

side: equivariant derived category, linear over the symmetric algebra H∗(BG). Correct

the spectral side: derived enhancement of LocǦ(R). Koszul dual description via ǧ∗[2]/Ǧ.

Statement of derived geometric Satake: equivalence of monoidal dg categories, compatible

with equivariant cohomology ↔ restriction to Kostant slice. If time: Frobenius action and

grading. [3, § 6.5-6.6]

4. Day 4: Spherical and hyperspherical varieties

4.1. Lecture 4.1: Local geometric conjecture. Return to the numerical computation

(4) and use it to motivate the local conjecture [3, Conjecture 7.5.1]; you can use [3, Remark

7.1.1] to rewrite one side in terms of VX/ǦX . Define the notion of shearing and explain why

it is necessary for the validity of the statement.

Do some examples:

• Explain how this generalizes derived geometric Satake – and how it is compatible

with it.

• Check by hand that Hom(δX , δX) is isomorphic to the ring of ǦX-invariants on VX in

the Examples from the prior lecture.

• Review some of the existing cases that are now known (see [3, §7.6.5]; this is already

quite out of date, and an updated version of [3] should have further references.)

Reference: [3, §7, 8].

4.2. Lecture 4.2: Spherical varieties. Continuation (from Lecture 2.2) of the theory of

spherical varieties, covering the following topics. Try to give examples as you go. Start with

a homogeneous spherical variety X.

(1) Recall the weight lattice of the spherical variety from Lecture 2.2. The torus AX with

this character group will be called the abstract Cartan of X, and the dual torus ǍX
will be the canonical Cartan ǍX of the dual group ǦX .

(2) Statement of the theorem on the existence of a distinguished map

ǦX × SL2 → Ǧ

as in [11].

(3) The next goal is to gain some insights into the nature of the little Weyl group

WX (which, together with the Cartan ǍX , determines ǦX as a subgroup of Ǧ).

One manifestation of it is the cone of invariant valuations encountered in Lecture

2.2. Another one comes from Knop’s structure theory of the cotangent bundle

M = T ∗X. The main reference is [10], but the speaker can use the summary provided
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in [17, § 2.1]. In particular, explain the isomorphism of invariant-theoretic quotients

M �G ' a∗X �WX .

(4) Definition of the coisotropic property of a Hamiltonian space (see [12], but restrict

your attention to symplectic varieties) and equivalence (for cotangent spaces) with

the spherical condition, as in [3, Proposition 3.7.4].

(5) The final goal is to introduce the colors of a spherical variety, which do not affect

the definition of the dual group, but will play a role in the definition of the dual

Hamiltonian space. Introduce colors and their valuations and calculate some examples,

e.g. for PGL2 /Gm, PGL3
2 /PGL2, the group case. References include [9, 13].

4.3. Lecture 4.3: Hyperspherical spaces. Definition and structure theory of hyperspher-

ical spaces, as in [3, § 3]. This includes the notion of Whittaker induction. (Give some

examples involving even and odd nilpotent orbits, including the Whittaker cotangent space.)

Then, describe, in terms of the structure theorem, the dual Hamiltonian space of a spherical

variety, as in [3, § 4]. (All data needed have already been introduced, except for the symplectic

representation SX .)

4.4. Lecture 4.4: Theta series (period functions) and automorphic L-functions:

warmup. This is a warm-up for Day 5, and partly repeats material covered rapidly in

Lecture 2.1.

• Introduce the theta series (period function) associated to a polarized Hamiltonian

space; prove, in the everywhere unramified function field case, the equivalence between

the definition in terms of counting sections and as a Θ-series. Compute explicitly the

period function in the case G = Gm, X = A1. ([3, §10.3, 10.6.2]).

• Recall the general definition of an automorphic L-function L(π, r, s) as an Euler

product. Discuss the role of s.

• Prove in the example of G = Gm, X = A1 that the integral of the period function

against a character recovers an L-function ([3, §14.5.1]). Also, explain that both the

period sheaf and L-function above have a symmetry if we replace X by the dual

representation of G, thus suggesting that it might be profitable to index the story by

T ∗X instead.

Note that [3] spends a lot of time with the “normalized” period; but for this lecture you

should downplay the distinction. If time permits you can either describe the period function

for a non-polarized Hamiltonian space, or describe the analogue of this story for the Riemann

ζ-function.

5. Day 5: Global duality

5.1. Lecture 5.1: Period and L-sheaves. Introduce the relative versions BunXG and LocX̌Ǧ
of stacks of bundles and local systems, respectively, and their projections to the absolute
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versions. Description of LocX̌Ǧ in terms of derived fixed points. Introduce period and L-sheaves

(in the polarized cases, suppressing normalization) as pushforwards along the projections

and discuss the geometry in some examples: point, group, homogeneous, Tate. Explain that

Frobenius trace on the period sheaf recovers the period funtion (the same discussion for

L-sheaves will be given in the final lecture). References: [3, §10, 11], especially §10.4, 11.3.

5.2. Lecture 5.2: Global geometric duality. The global geometric conjecture asserts

that the Geometric Langlands equivalence exchanges period and L-sheaves. (More precisely,

in the étale and Betti settings we only consider period sheaves via the functionals they

represent on automorphic sheaves. There are also various shifts and twists that should be

ignored here.)

This talk will introduce this conjecture, in the sheaf theoretic context of your choosing,

and discuss some of the examples from the previous lecture: the Tate case, the group case,

the GGP and Θ-correspondence cases, Eisenstein, as in [3, §12.2,12.3]. Mention the duality

of point and Whittaker and note some of the complications involved there [3, §11.6] without

going into details.

5.3. Lecture 5.3: Global arithmetic duality. Rough form: period of a [tempered] au-

tomorphic form is a sum of L-functions over fixed points, [3, Conjecture 14.2.1]. Explicate

the statement in some examples (e.g. [3, §14.5]). Mention the existence of a nontempered

statement (§14.3) but do not give details. Explain why this statement is compatible with

global geometric duality: the trace of Frobenius on the L-sheaf recovers the L-function, as

explained in [3, §11.8].
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	Introduction
	1. Day 1: Langlands Duality and TQFTs
	1.1. Lecture 1.1: TQFTs
	1.2. Lecture 1.2: Structures in TQFTs
	1.3. Lecture 1.3: Langlands duality
	1.4. Lecture 1.4: Arithmetic topology and the Langlands program via TQFT

	2. Day 2: Local arithmetic unramified duality
	2.1. Lecture 2.1: Introduction to relative Langlands duality
	2.2. Lecture 2.2: Cartan–Iwasawa decomposition for the group and for more general spherical varieties.
	2.3. Lecture 2.3: The notion of the unramified Plancherel formula and examples, including the Macdonald formula.
	2.4. Lecture 2.4: Unramified Plancherel formula for spherical varieties

	3. Day 3: Local geometric duality
	3.1. Lecture 3.1: Some sheaf theoretic background
	3.2. Lecture 3.2: Derived Geometric Satake

	4. Day 4: Spherical and hyperspherical varieties
	4.1. Lecture 4.1: Local geometric conjecture
	4.2. Lecture 4.2: Spherical varieties
	4.3. Lecture 4.3: Hyperspherical spaces
	4.4. Lecture 4.4: Theta series (period functions) and automorphic L-functions: warmup

	5. Day 5: Global duality
	5.1. Lecture 5.1: Period and L-sheaves
	5.2. Lecture 5.2: Global geometric duality
	5.3. Lecture 5.3: Global arithmetic duality.

	References

