
Oberwolfach Seminar 2524b

Modern Developments in Matroid Theory
8 June – 13 June 2025

Organizers:

Graham Denham
Department of Mathematics
University of Western Ontario
London, ON N6A 5B7
Canada
Email: gdenham@uwo.ca

Jacob Matherne
Department of Mathematics
North Carolina State University
Raleigh, NC 27695
USA
Email: jpmather@ncsu.edu

Gerhard Röhrle
Ruhr-Universität Bochum
Fakultät für Mathematik
D-44780 Bochum
Germany
Email: Gerhard.Roehrle@rub.de

Uli Walther
Department of Mathematics
Purdue University
West Lafayette, IN 47907
USA
Email: walther@math.purdue.edu

Overview. Recently, a number of long-standing conjectures in the field of matroid theory, and more generally in
combinatorics, have been resolved by the injection of algebraic geometry and Hodge theory into the subject. A
non-exhaustive list includes Adiprasito, Huh, and Katz’s [AHK18] resolution of the Heron–Rota–Welsh conjecture
[Her72, Rot71, Wel76], the proof of Dowling–Wilson’s top-heavy conjecture [DW74] by Braden, Huh, Proudfoot,
Wang, and the second organizer [BHM+], as well as the proof of Brylawski and Dawson’s conjectures [Bry82, Daw84]
by Ardila, Huh, and the first organizer [ADH23].

This seminar will present these (and related) novel developments in an approachable way to graduate students
and postdocs. Its occasion is especially timely due to the vibrant developments the theme is currently undergoing
ever since it took off in the wake of June Huh’s 2022 Fields Medal, which was awarded partly based on the
achievements noted above.

Preliminary schedule. In general, lectures will be given in the morning between breakfast and lunch, and
the afternoons will be dedicated to problem sessions and discussions. The courses will contain independent but
overlapping themes on very recent developments in matroid theory, given by the organizers. We describe each
course in detail in the subsections below.

The courses.

Course 1: Background and preliminaries. Let K be a field. A configuration (over K) is the choice of a
subspace W of rank r = rk(W ) inside an n-dimensional K-vector space V =

⊕
K · ei with basis E = {e1, . . . , en}.

Let x1, . . . , xn be coordinate functions on V relative to this basis and write K[E] for the polynomial ring they span.
Then a configuration determines a hyperplane arrangement AW in W by intersecting W with the hyperplanes
(xi = 0) ⊆ V .

Choosing a basis of W produces a rk(W ) × n matrix AW and, identifying V with Kn, W is then the row span
of A. This choice also induces a set of coordinate functions on W and, in these coordinates, the equations for AW

are the pullbacks of coordinates for V along the inclusion ι : W ↪→ V . A classical case arises when W is the row
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span of the incidence matrix of a graph G; the resulting arrangement is the graphical arrangement of G, the union
of hyperplanes zi − zj with (i, j) running through the edges of G.

Combinatorially, this situation is a realization of the matroid MW of columns of A, the bases of which are by
definition the maximal independent column sets of A. In such a situation, there are usually many other realizations
for MW (some of which might be obtainable by moving W slightly as an element of the appropriate Grassmannian
GrK(V, r)) but somewhat remarkably, one cannot start this way: most matroids have no realization at all.

Two very fruitful and related lines of inquiry have been: (1) to study constructions based on matroid realizations
and investigating to what extent they are independent of the choice of configuration (and thus only depend on the
underlying matroid) and (2) for those constructions that depend only on the underlying matroid, develop some
abstractions of them that still make sense for matroids without a realization. We will see these two themes explored
in each of the courses.

The first, and perhaps most famous of these, is the theorem of Brieskorn–Orlik–Solomon encoding the topology
of the complement W \ AW in terms of MW alone.

The setup above also induces a configuration polynomial ψA ∈ K[E]; up to a nonzero factor, it only depends
on W (and not on A) and its monomials label the bases of MA. In the classical case, when A is the (truncated)
incidence matrix of a graph G, this is the Kirchhoff polynomial ϕG of G. Configuration polynomials in general
were introduced in [BEK06] and placed in a matroidal context in [Pat10].

An alternative generalization of Kirchhoff polynomials to all (and not just realizable) matroids are the matroid
basis polynomials (or basis generating polynomial): the sum of those monomials (with coefficient 1) that encode the
bases of the matroid. These classes of polynomials have received much recent attention inspired by the work of Huh
and his collaborators [EH20]. Even for realizable matroids, matroid basis polynomials may not be configuration
polynomials [DSW21].

Course 2: Matroidal polynomials and their singularities. Typically, an element of chaos surrounds the
singularities arising out of geometric constructions involving all matroids. We cite three examples: a) Belkale and
Brosnan proved that the collection of all Kirchhoff hypersurface complements generates the ring of all geometric
motives; b) fixing a representable matroid M and the moduli space of all its representations in the appropriate
Grassmannian, Mnëv and Sturmfels showed that these moduli spaces can have arbitrarily complicated singularities
over Q if one varies M; c) even the size of the singular locus can vary wildly on the classes of configuration or
matroid basis polynomials on M, [DSW21]. In stark contrast, (flag) matroidal polynomials universally enjoy for
arbitrary matroids very mild singularities: if irreducible, they have rational singularities.

Such classes are rare, and usually have appeared in situations that are amenable to birational or characteristic
p methods: toric varieties and other quotients by linear transformation groups; generic determinantal varieties;
Hankel determinantal varieties; Schubert varieties; positroid varieties; theta divisors; moments maps of quivers with
at least one vertex and two loops. On the other hand, many “simple” varieties do not have rational singularities:
hyperplane arrangements; degree d ≥ n affine cones of smooth projective hypersurfaces; the common cusp x2 = y3.

We will discuss the concept of jet spaces, a theory that classically developed in the study of differential equations
but was transplanted into algebraic geometry. We focus particularly on Mustaţă’s results over the complex numbers,
characterizing rational singularities in terms of irreducibility of jet spaces. We use them to prove that under suitable
conditions on the matroid, any matroidal polynomial on M and in fact any flag matroidal polynomial have rational
singularities.

In finite characteristic, the Frobenius homomorphism allows one to define a number of singularity types, (based
on measuring how much the p-th power map fails to make the target free over the source—as it would for a
polynomial ring) that parallel notions in characteristic zero. For example, the notion of strong F -regularity is,
according to results of K. Smith, a positive-characteristic strengthening of the characteristic zero notion of a



3

rational singularity. We will discuss the concept of F -regularity and demonstrate that for connected matroids, the
matroid support polynomials are strongly F -regular.

Quantum Field Theory is concerned with the qualitative and quantitative properties of certain integrals arising
from a Feynman diagram, a graph G decorated with mass data (on the edges) and a momentum function (on the
vertices). These data combine for the formulation of the Feynman integral over an expression involving a Feynman
diagram polynomial, a slight generalization of the polynomials discussed above. The singularity behaviour of the
denominator throws interesting light on the convergence of the integral. In the last part of these lectures we discuss
Feynman diagram polynomials and their singularities.

Course 3: Intersection cohomology of matroids and Poincaré polynomials. The intersection cohomology
of a matroid was introduced in [BHM+], where it played a decisive role in the resolution of Dowling–Wilson’s top-
heavy conjecture [DW74] as well as the proof of the nonnegativity of the matroidal Kazhdan–Lusztig polynomials
that was conjectured in [EPW16].

In this course, we will define the intersection cohomology module of a matroid and explain its relevance in the
proofs of the above two theorems. Another substantial portion of the course will involve studying the Poincaré
polynomials of the (augmented) Chow ring and the (local) intersection cohomology module (the (augmented) Chow
polynomial and the (Kazhdan–Lusztig) Z-polynomial, respectively), as well as generalizations of them to arbitrary
graded, bounded posets. This portion of the course will follow [FMSV24], [FMV], [Sta92], and [Pro18].

Course 4: Hodge theory for matroids. A key part of the proof of the Heron–Rota–Welsh conjecture was
to show that the Chow ring of a matroid possesses the so-called “Kähler package” of properties from complex
geometry. Roughly, this says that an intersection product produces a Gorenstein ring with the extra structure of
a positive-definite bilinear form.

The course will look at various notions in intersection theory that turn out to be useful for matroid combinatorics.
We will start with polyhedral fans associated with a matroid, including the (augmented) Bergman fans. These
support matroidal Chern–Schwartz–MacPherson cycles, introduced in [LdMRS20].

We will look at the tropical geometry of matroid representations and the relationship between some algebras
derived from them: Orlik–Solomon algebras, the Chow ring of a matroid, and the Leray model of a matroid. We
will develop the Lefschetz properties of a fan, based mostly on material in [BDF21, PP23, AHK18], and we will
see how they are applied in the proofs of the various positivity conjectures mentioned in the introduction.
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