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Introduction by the Organisers

The conference was organized by László Lovász (Redmond) and Hans Jürgen
Prömel (Berlin). The programme consisted of 15 lectures, supplemented by 21
shorter contributions, and covered many areas in Combinatorics such as partition
theory, discrete geometry, homomorphisms and lattices, extremal combinatorics,
graph theory, random structures, and additive number theory. The aim of the
workshop was to emphasize the underlying methods that are common to many of
these combinatorial branches and that act as both driving forces and organizing
principles of the field. The diversity of the topics and participants stimulated
a lot of fruitful discussion between the different branches and gave rise to new
collaborations, in particular for the younger generation of researchers.

In total, 51 scientists participated in this meeting; almost 40 came from coun-
tries other than Germany. The organizers and participants thank the Mathema-
tisches Forschungsinstitut Oberwolfach for providing an inspiring setting for this
conference. In the following we include the abstracts in alphabetical order.
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Vojtěch Rödl (joint with Brendan Nagle, Mathias Schacht and Jozef Skokan)
The Regularity Method for k-uniform Hypergraphs . . . . . . . . . . . . . . . . . . . . . . . 76

Alexander Schrijver (joint with Michael H. Freedman and László Lovász)
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Abstracts

CutNorm, Grothendieck’s Inequality, and Approximation Algorithms
for Dense Graphs

Noga Alon

(joint work with Assaf Naor)

The cut-norm ||A||C of a real matrix A = (aij)i∈R,j∈S with a set of rows indexed
by R and a set of columns indexed by S is the maximum, over all I ⊂ R, J ⊂ S,
of the quantity |∑i∈I,j∈J aij |. This concept plays a major role in the work of
Frieze and Kannan on efficient approximation algorithms for dense graph and
matrix problems, [3] (see also [1] and its references). Although the techniques
in [3] enable the authors to approximate efficiently the cut-norm of an n by m
matrix with entries in [−1, 1] up to an additive error of εnm, there is no known
polynomial algorithm that approximates the cut-norm of a general real matrix up
to a constant multiplicative factor.

Let CUT NORM denote the computational problem of computing the cut-
norm of a given real matrix. Here we first observe that the CUT NORM problem
is MAX SNP hard, and then provide an efficient approximation algorithm for the
problem. This algorithm finds, for a given matrix A = (aij)i∈R,j∈S , two subsets
I ⊂ R and J ⊂ S, such that |∑i∈I,j∈J aij | ≥ ρ||A||C , where ρ > 0 is an absolute
constant. We first describe a deterministic algorithm that supplies a rather poor
value of ρ, and then describe a randomized algorithm that provides a solution of
expected value greater than 0.56 times the optimum.

The algorithm combines semidefinite programming with a novel rounding tech-
nique based on (the proofs of) Grothendieck’s Inequality. This inequality, first
proved in [6], is a fundamental tool in Functional Analysis, and has several in-
teresting applications in this area. We will actually use the matrix version of
Grothendieck’s inequality, formulated in [10]. In order to apply semidefinite pro-
gramming for studying the cut-norm of an n by m matrix A = (aij), it is convenient
to first study another norm,

||A||∞�→1 = max
n∑

i=1

m∑
j=1

aijxiyj,

where the maximum is taken over all xi, yj ∈ {−1, 1}.
It is not difficult to show, that for every matrix A,

4||A||C ≥ ||A||∞�→1 ≥ ||A||C ,
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and hence a constant approximation of any of these norms provides a constant
approximation of the other.

The value of ||A||∞�→1 is given by the following quadratic integer program

Maximize
∑
ij

aijxiyj (1)

subject to xi, yj ∈ {−1, 1} for all i, j.

The obvious semidefinite relaxation of this program is

Maximize
∑
ij

aijui · vj (2)

subject to ||ui|| = ||vj || = 1,

where here ui · vj denotes the inner product of ui and vj , which are now vectors of
(Euclidean) norm 1 that lie in an arbitrary Hilbert space. Clearly we may assume,
without loss of generality, that they lie in an n + m-dimensional space.

This semidefinite program can be solved, using well known techniques (see [5])
within an additive error of ε, in polynomial time (in the length of the input and in
the logarithm of 1/ε.) The main problem is the task of rounding this solution into
an integral one. A first possible attempt is to imitate the technique of Goemans
and Williamson in [7], that is, given a solution ui, vj to the above program, pick a
random vector z and define xi = sign(ui ·z) and yj = sign(vj ·z). It is easy to check
that the expected value of xiyj satisfies E(xiyj) = 2

π arcsin(ui ·vj), and as arcsin(t)
and t differ only in constant factors for all −1 ≤ t ≤ 1, one could hope that this will
provide an integral solution whose value is at least some absolute constant fraction
of the value of the optimal solution. This reasoning is, unfortunately, incorrect,
as some of the entries aij may be positive and some may be negative, (in fact, the
problem is interesting only if this is the case, since otherwise either xi = yj = 1 or
xi = −yj = 1 for all i, j supplies the required maximum). Therefore, even if each
single term aijui · vj is approximated well by its integral rounding aijxiyj , there
is no reason to expect the sum to be well-approximated, due to cancellations. We
thus have to compare the value of the rounded solution to that of the semidefinite
program on a global basis. Nesterov [11] obtained a result of this form for the
problem of approximating the maximum value of a quadratic form

∑
ij bijxixj ,

where xi ∈ {−1, 1}, but only for the special case in which the matrix B = (bij) is
positive semidefinite. While his estimate is global, his rounding is the same simple
rounding technique of [7] described above. As explained before, some new ideas
are required in our case in order to get any nontrivial result.

Luckily, there is a well known inequality of Grothendieck, which asserts that
the value of the semidefinite program (2) and that of the integer program (1)
can differ only by a constant factor. The precise value of this constant, called
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Grothendieck’s constant and denoted by KG, is not known, but it is known that
its value is at most π

2 ln(1+
√

2)
= 1.782... ([8]) and at least π

2 = 1.570... ([6]). Stated
in other words, the integrability gap of the problem is at most KG. (Krivine
mentions in [8] that he can improve the lower bound, but such an improvement
has never been published).

It follows that the value of the semidefinite program (2) provides an approxi-
mation of ||A||∞�→1 up to a constant factor. This, however, still does not tell us
how to round the solution of the semidefinite program into an integral one with a
comparable value. Indeed, this task requires more work, and is carried out in the
full paper a preliminary version of which will appear in the proceedings of STOC
2004.

We describe three rounding techniques. The first one is a deterministic proce-
dure, which combines Grothendieck’s Inequality with some facts about four-wise
independent random variables, in a manner that resembles the technique used in
[2] to approximate the second frequency moment of a stream of data under se-
vere space constraints. The second rounding method is based on Rietz’ proof of
Grothendieck’s Inequality [12]. This proof supplies a better approximation guar-
antee for the special case of positive semidefinite matrices A, where the integrality
gap can be shown to be precisely π/2, and implies that Nesterov’s analysis for the
problem he considers in [11] is tight.

The third technique, which supplies the best approximation guarantee, is based
on Krivine’s proof of Grothendieck’s Inequality. Here we use the vectors ui, vj

which form a solution of the semidefinite program (2) to construct some other
unit vectors u′

i, v
′
j , which are first shown to exist in an infinite dimensional Hilbert

space, and are then found, using another instance of semidefinite programming,
in an n + m-dimensional space. These vectors can now be rounded to {−1, 1} in
order to provide an integral solution for the original problem (1) in a rather simple
way. We note that there are several known techniques for modifying the solution
of a semidefinite program before rounding it, see [13], [9], [4]. Here, however, the
modification seems more substantial.

We believe that our techniques will have further applications, as they provide
a method for handling problems in which there is a possible cancellation between
positive and negative terms. It seems that there are additional interesting problems
of this type. Moreover, unlike the semidefinite based approximation algorithms
for MAX CUT, MAX 2SAT and related problems, suggested in the seminal paper
of [7] and further developed in many subsequent papers, the problem considered
here has no known constant approximation algorithm, and the semidefinite pro-
gramming and its rounding appear to be essential in order to obtain any constant
approximation guarantee, and not only in order to improve the constants ensured
by appropriate combinatorial algorithms.
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Blockers, Ideals and some Turán-type Questions
Anders Björner

(joint work with Axel Hultman, Irena Peeva and Jessica Sidman [1, 2])

The point of departure are the theorems of Li & Li and Kleitman & Lovász
(from 1981) describing generators for certain ideals, see [3]. The immediate combi-
natorial interest of these theorems is that they in a useful way describe ideals with
the property that (upper) bounded independence number and (lower) bounded
chromatic number of a given graph are equivalent to membership of the corre-
sponding graph polynomial in these ideals. But the theorems are also interesting
from a ring-theoretic point of view, since they suggest a combinatorial procedure
for constructing generators for vanishing ideals of subspace arrangements.

The work presented was:

(1) The blocker construction A �→ A∗ for antichains in finite posets, generalizing the
well-known concept in Boolean lattices (set clutters). Particularly how to compute
blockers for symmetric antichains in the partition lattice Πn. This procedure
involves both the refinement order and the dominance order on the set of all
number partitions of n.

(2) The construction of the blocker ideal BA, H for a subspace arrangement A
embedded in a hyperplane arrangement H. This ideal is contained in the vanishing
ideal IA for the union of the subspaces in A, and

BA,H = IA ⇒ A∗∗ = A,

where A∗ denotes the blocker of A w.r.t. the intersection lattice of H.

(3) The fact that BA,H = IA implies that a minimal blocking set for A has size
equal to the minimal size of a flat in the blocker A∗. Some extremal results (e.g.
Turán’s theorem) can be deduced this way.
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Random Geometric Graphs
Béla Bollobás

(joint work with Paul Balister, Amites Sarkar and Mark Walters)

Random geometric graphs were introduced by Gilbert [6] in 1961, and in the
past forty years many variants of them have been studied in great detail (see
Meester and Roy [7], Penrose [8]). The aim of the talk is to present a number of
recent results obtained jointly with Paul Balister, Amites Sarkar and Mark Walters
on a variety of geometric random graphs.

Gilbert’s disc model Gr is defined as follows. Place points {xi} in R2 according
to a Poisson process with intensity 1 and let Gr be the random graph with vertex
set {xi} and edges xixj whenever |xi −xj | ≤ r. Equivalently, let Dr be the disc of
radius r with centre the origin, and join each xi to every xj in the disc xi + Dr of
radius r centred at xi. There is a critical area ac such that if |Dr| = πr2 < ac then
a.s. Gr has no infinite component (Gr does not percolate), while if |Dr| > ac then
Gr percolates a.s. The proven bounds on ac are still rather weak, with almost a
factor 5 between the upper and lower bounds. In the talk we present the result
due to Balister, Bollobás and Walters [4] that 4.508 < ac < 4.515 with probability
99.99%. (The probability is due to the uncertainty of numerically evaluating a
large integral.) For the critical area sc of a square rather than a disc, defined
analogously, the corresponding bounds are 4.392 < sc < 4.398.

Problems concerning ad hoc networks of radio transceivers inspire the following
considerable extension of the disc model. Place points {xi} in Rd according to
a Poisson process with intensity 1. Then, independently for each xi, choose a
bounded region Axi from some fixed distribution and let G be the random directed
graph with vertex set {xi} and edges �xixj whenever xj ∈ xi+Axi . The main result
of Balister, Bollobás and Walters [3] states that for any η > 0, if the regions xi+Axi

do not overlap too much (i.e., satisfy a somewhat technical precise condition), then
G has an infinite directed path provided the expectation of the area |Axi | of the
domain Axi is at least 1 + η. (It is trivial that the area has to be at least 1.) One
example where these conditions hold, and we obtain percolation, is in dimension d
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with Axi a ball of volume 1+η, where η tends to zero as d tends to infinity. Another
example is in two dimensions, where the Axi are randomly oriented sectors of a
disk of angle 2πε and area 1+η. In this case we can let η tend to zero as ε tends to
zero. Yet another special case of this theorem is the result proved independently
in [2] and by Franceschetti et al [5] that, given η > 0, if ε > 0 is small enough, in
R2 we may take each Axi to be a ‘thin’ annulus A = {x ∈ R2 : r(1− ε) ≤ |x| ≤ r}
of area 1 + η.

In the talk we shall examine some finite geometric random graphs as well. Let
P be a Poisson process of intensity one in a square Sn of area n. We construct a
random geometric graph Gn,k by joining each point of P to its k nearest neighbors.
Recently, Xue and Kumar [9] proved that if k = 0.074 logn then the probability
that Gn,k is connected tends to zero as n → ∞, while if k = 5.1774 logn then the
probability that Gn,k is connected tends to one as n → ∞. They conjectured that
the threshold for connectivity is k = log n. Recently, Balister, Bollobás, Sarkar
and Walters [1] have improved these lower and upper bounds to k = 0.3043 logn
and k = 0.5139 logn, respectively, disproving this conjecture, and have proved
reasonably good bounds for some generalizations of this problem.
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The Number of Linear Extensions of the Boolean Lattice
Graham Brightwell

(joint work with Prasad Tetali [1])

Let L(P ) denote the number of linear extensions of a poset P . A natural prob-
lem is to estimate L(P ) when P is the Boolean lattice Qt, consisting of the subsets
of {1, 2, . . . , t}, ordered by inclusion. This problem was apparently first posed by
Richard Stanley, although it has also been raised by several others independently.

A trivial lower bound on L(Qt) is
∏t

j=0

(
t
j

)
!, and a simple upper bound is(

t
�t/2	

)2t

; these bounds can be written as

log
(

t

	t/2

)
− 3

2
log e + o(1) ≤ log(L(Qt))

2t
≤ log

(
t

	t/2

)

.

(All logarithms are base 2.)
The only previous improvement on these trivial bounds was made by Sha and

Kleitman [4], who improved the upper bound to

L(Qt) ≤
t∏
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(
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j

)(t
j)

≤
t∏
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(
t

j

)
! exp(2t),

yielding
log(L(Qt))
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≤ log

(
t

	t/2

)
− 1

2
log e + o(1).

In fact, the Sha-Kleitman bound can be generalised to any ranked poset satisfying
the LYM condition (see [1]).

We prove the following result, which shows that (as was generally expected) the
trivial lower bound gives the correct constant term in the asymptotic expansion:

log(L(Qt))
2t

= log
(

t

	t/2

)
− 3

2
log e + O

(
ln t

t

)
.

Our proof is based on what seems to be emerging as an “entropy method”
developed by Jeff Kahn [2], and used by him [3] to give a short and natural proof
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of the Kleitman-Markowsky bound for Dedekind’s problem concerning the number
of antichains in the Boolean lattice.

In the case where the poset P is bipartite, a small adaptation of Kahn’s proof
from [2] yields an extremal result. For P a bipartite poset on n elements, with
two ranks A and B, such that every element of A is below exactly u elements of
B, and every element of B is above exactly d elements of A, we have

L(P ) ≤ n!
(

d + u

u

)−n/(d+u)

.

This result is best possible for n a multiple of d + u.
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Coloring Claw-free Graphs

Maria Chudnovsky
(joint work with Paul Seymour)

A graph is called claw-free if it has no induced subgraph isomorphic to K1,3.
Line graphs are a well-known class of claw-free graphs, but there are others, such
as circular interval graphs and subgraphs of the Schläfli graph (a circular interval
graph is obtained from a collection of circular intervals and points on a circle by
making two points adjacent if they belong to the same interval). Recently we were
able to prove that all claw-free graphs in which every vertex is in a stable set of size
three, can be built from the classes mentioned above, together with some others,
by combining them in prescribed ways (this work is described in another paper in
this issue).
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Claw-free graphs being a generalization of line graphs, it is natural to ask what
properties of line graphs can be extended to all claw-free graphs. Vizing’s theorem
[1] gives a bound on the chromatic number, χ, of a line graph, in terms of the size
of a maximum clique, ω, namely χ ≤ ω + 1. Is there a similar bound for all claw-
free graphs? Does there exist a function f such that if G is a claw-free graph then
χ(G) ≤ f(ω(G))? It is easy to see that such f exists, in fact χ(G) ≤ ω(G)2 (the
neighborhood of a vertex in a clique of size ω is the union of at most ω cliques).

One might hope to get closer to Vizing’s bound, asking whether f is a linear
function. Unfortunately the answer to this question is negative. If G is the com-
plement of a triangle free graph, then χ(G) ≥ |V (G)|

2 , and yet ω(G) may be of order√
(|V (G)|). However, if we insist that G contains a stable set of size three, and

is connected (to prevent taking disjoin union with large complement triangle-free
graphs), then a much stronger result is true. We prove:

Theorem 1 Let G be a connected, claw-free graph and assume that G contains a
stable set of size three. Then χ(G) ≤ 2ω(G).

This bound is best possible. The proof of 1 uses the structure theorem men-
tioned above: first we verify the result for the basic classes of claw-free graphs,
and then prove that it is preserved under the operations. This proves the theorem
for those claw-free graphs that satisfy the hypotheses of the structure theorem,
namely claw-free graphs where every vertex is in a stable set of size three. But
it turns out that having proved the result for the part of the graph where every
vertex is in a stable set of size three, one can always figure out the “important”
information about vertices not in stable sets of size three, and finish the proof.

There is a slightly worse, but still linear bound on χ in terms of ω, that has a
short proof, without using the structure theorem, and we include it here.

Theorem 2 Let G be a connected, claw-free graph and assume that G contains a
stable set of size three. Then χ(G) ≤ 4ω(G).

In fact, we prove the following stronger statement that clearly implies 2. This
was conjectured by N. Linial during the Oberwolfach meeting.

Theorem 3 Let G be a connected, claw-free graph and assume that G contains a
stable set of size three. Then every vertex of G has degree at most 4ω(G).

Proof. We use induction on |V (G)|. Let v be a vertex of maximum degree in G
and let N be the set of neighbors of v. Since G is claw-free and contains a stable
set of size three, V (G) �= N ∪ {v} and there exists a vertex u ∈ V (G) \ (N ∪ {v})
such that the graph G \ u is connected. We may assume G \ u does not contain
a stable set of size three, for otherwise the result follows inductively. Let A be
the set of neighbors of u in G and B the set of non-neighbors. Since G contains
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a stable set of size three, and G \ u does not, it follows that there exist two non-
adjacent vertices b1, b2 in B. Since G is connected, A is non-empty. For i = 1, 2
let Nbi be the set of neighbors of bi in A. Since every vertex in Nb1 ∩ Nb2 would
be the center of a claw in G, Nb1 ∩ Nb2 = ∅. Since G \ u contains no stable set of
size three, A \ Nbi is a clique for i = 1, 2, and A is the union of two cliques. Also
since G \u contains no stable set of size three, Nb1 ∪Nb2 = A. So for every pair of
non-adjacent vertices in B, the sets of their neighbors in A partition A. It follows
that G|B does not contain the complement of an odd cycle, and so G|B is the
complement of a bipartite graph, in particular B is the union of two cliques. But
now G is the union of four cliques, so ω ≥ |V (G)|

4 , and the theorem holds. This
proves 3.
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The Homology of a Locally Finite Graph with Ends

Reinhard Diestel

When one studies the homology aspects of an infinite graph – in graph-theoretic
language, the properties of its cycle space – one can observe a curious phenomenon:
while all the basic properties of the cycle space of a finite graph remain true (and
trivial) also for infinite graphs, few of the less trivial theorems carry over.

Surprisingly, the situation can be remedied simultaneously for all those theo-
rems that fail in the infinite case by using a different homology for locally finite
graphs: not the simplicial homology of the graph itself, but a variant of the singular
homology of its Freudenthal compactification.

Our approach permits the extension to locally finite infinite graphs of the
following finite theorems, whose infinite analogues all fail with the usual simplicial
homology:

• Tutte’s theorem that the peripheral (ie., non-separating and induced) cycles
of a 3-connected graph generate its cycle space;

• Whitney’s theorem that a graph has a combinatorial dual if and only if it is
planar;
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• Euler’s theorem that a connected graph admits an Euler tour iff its edge set
lies in its cycle space (the infinite analogue of an Euler tour being a closed
topological curve in the compacification that traverses every edge exactly
once);

• Gallai’s theorem that the vertex set of a graph can be partitioned into two
sets each inducing an element of its cycle space;

• MacLane’s theorem that a graph is planar iff its cycle space has a set of
generators such that every edge lies in at most two of these;

• Tutte’s theorem that a 3-connected graph is planar iff every edge lies on at
most two peripheral cycles;

• the Tutte - Nash-Williams tree-packing theorem that a graph has k edge-
disjoint spanning trees iff every vertex partition, into 	 sets say, is crossed
by at least k(	 − 1) edges;

• the 4-colour-theorem (expressed dually in terms of 4-flows) that the edge set
of a planar bridgeless graph is a union of two elements of its cycle space (ie.,
has a 4-flow).

Furthermore, the following easy facts about the cycle space of a finite graph extend
to non-trivial theorems about locally finite graphs with this new cycle space:

• Every element of the cycle space is an edge-disjoint union (not just a sum)
of cycles.

• A non-empty set of edges lies in the cycle space iff it meets every finite cut
in an even number of edges, and it lies in the cocycle space (ie., is a cut) iff
it meets every finite element of the cycle space in an even number of edges.

• The fundamental cycles of any spanning tree generate the cycle space (the
generalization is based on topological spanning trees, path-connected sub-
spaces containing all the vertices and ends but no continuous 1–1 image
of S1; note that these ‘trees’ need not induce connected subgraphs, as their
path-connectedness can result from topological paths including ends).

• A set of edges lies in the cycle space iff in the subgraph it induces all vertex
degrees are even.

The generalization of the last statement involves the definition of ‘degrees’ also for
ends. An end has degree k if there are k but not k + 1 edge-disjoint infinite paths
converging to it. If there is no such k, it has infinite degree. Infinite end degrees
are also classified into ‘odd’ and ‘even’ in a more complicated way, which however
is essential for the generalization of the above statement.
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The new notion of end degrees motivated by these results seems to open up
new possibilities for an ‘extremal’ branch of infinite graph theory. For example, is
there a function f : N → N such that every locally finite graph whose vertices and
ends all have degree at least f(k) contains a k-connected subgraph? (Note that
since infinite trees can have large minimum degree, vertex degrees alone do not
force any dense substructures.)

Another natural area of application lies in Hamiltonicity problems. Define a
Hamilton circle in a graph G as a homeomorphic image of S1 in its Freudenthal
compactification that contains all its vertices. Does every 4-connected planar
locally finite graph have a Hamilton circle (extending Tutte’s theorem)? Does the
square of every 2-connected locally finite graph have a Hamilton circle (extending
Fleischner’s theorem)?

See [6] for an introductory overview of these results and numerous further
problems.
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Graph Products, Fourier Analysis and Spectral Techniques

Ehud Friedgut
(joint work with Noga Alon, Irit Dinur and Benny Sudakov)

We consider powers of regular graphs defined by the weak graph product and
give a characterization of maximum-size independent sets for a wide family of
base graphs which includes, among others, complete graphs, line graphs of regular
graphs which contain a perfect matching and Kneser graphs. In many cases this
also characterizes the optimal colorings of these products.

We show that the independent sets induced by the base graph are the only
maximum-size independent sets. Furthermore we give a qualitative stability state-
ment: any independent set of size close to the maximum is close to some indepen-
dent set of maximum size.

Our approach is based on Fourier analysis on Abelian groups and on Spectral
Techniques. To this end we develop some basic lemmas regarding the Fourier
transform of functions on {0 . . . r − 1}n, generalizing some useful results from the
{0, 1}n case.

Consider the following combinatorial problem:
Assume that at a given road junction there are n three-position switches that

control the red-yellow-green position of the traffic light. You are told that whenever
you change the position of all the switches then the color of the light changes. Prove
that in fact the light is controlled by only one of the switches.

The above problem is a special case of the problem we wish to tackle in this
paper, characterizing the optimal colorings and maximal independent sets of prod-
ucts of regular graphs. The configuration space of the switches described above
can be modeled by the n-fold product of K3. Let us begin by defining the weak
graph product of two graphs.

The weak product of G and H , denoted by G × H is defined as follows: the
vertex set of G × H is the Cartesian product of the vertex sets of G and H . Two
vertices (g1, h1) and (g2, h2) are adjacent in G × H if g1g2 is an edge of G and
h1h2 is an edge of H . The “times” symbol, ×, is supposed to be reminiscent of
the weak product of two edges: | × − = ×. In this paper “graph product” will
always mean the weak product.
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In the first part of the paper we consider the interesting special case of the
product of complete graphs on r > 2 vertices,

G = Kn
r = ×n

j=1Kr.

We then discuss a more general setting, considering other r-regular graphs as well.
When G = Kn

r , we identify the vertices of G in the obvious way with the
elements of Zn

r . Recalling the definition of the product, two vertices are adjacent
in G iff the corresponding vectors differ in every coordinate. Clearly one can color
G with r colors by choosing a coordinate i and coloring every vertex according
to its ith coordinate. The following theorem asserts that if r > 2 then these are
the only r-colorings. Here, and in what follows, we denote by |H | the number of
vertices of a graph H .

Theorem 1 Let G = Kn
r , and assume r ≥ 3. Let I be an independent set with

|I| = |G|/r. Then there exists a coordinate i ∈ {1 . . . n} and k ∈ {0 . . . r − 1} such
that

I = {v : vi = k}.
Consequently, the only colorings of G by r colors are those induced by colorings of
one of the factors Kr.

Greenwell and Lovász [2] proved the above theorem (and actually, a somewhat
stronger statement) more than a quarter of a century ago. The novelty in this
paper is the proof we supply that uses Fourier analysis on the group Zn

r . Our
approach also allows us to deduce a stability version of the above theorem:

Theorem 2 For every r ≥ 3 there exists a constant M = M(r) such that for
any ε > 0 the following is true. Let G = Kn

r . Let J be an independent set such
that |J|

|G| = 1
r − ε. Then there exists an independent set I with |I|

|G| = 1
r such that

|J
I|
|G| < Mε.

Here “�” denotes the symmetric difference. What the above theorem tells us is
(in conjunction with Theorem 1) that any independent set that is close to being
of maximum-size is close to being determined by one coordinate. We do not know
of any purely combinatorial proof of this result.

The results in both theorems above can be extended to other base graphs. Let
α(G) denote the maximum possible size of an independent set in a graph G. The
following observation determines α(Hn) for any vertex transitive base graph H ,
in terms of α(H) and |H |.
Proposition 3 For any vertex transitive graph H and for any integer n ≥ 1, if
G = Hn then

α(G)
|G| =

α(H)
|H | .
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After the simple proof of this proposition (some special cases of which are proved
in [1]), we will provide some examples showing that the above equality does not
necessarily hold without the transitivity assumption.

The relevance of graph eigenvalues to independent sets in graphs is well known
and can be traced back to the old result that the independence number of any
regular graph H on r vertices in which the eigenvalues of the adjacency matrix
are µ1 ≥ µ2 · · · ≥ µr, is at most −rµr/(µ1 − µr). A proof of this fact, as well as
of the related results on the connection between the Shannon capacity of a graph
and its eigenvalues, can be found in [3]. This bound is tight for many graphs H
including, for example, complete graphs and the Petersen graph. It turns out that
the results in Theorem 1 and in Theorem 2 can be extended to any connected
non-bipartite regular base graph H for which the above bound is tight.

Theorem 4 Let H be a connected d-regular graph on r vertices and let d = µ1 ≥
µ2 ≥ · · · ≥ µr be its eigenvalues. If

α(H)
r

=
−µr

d − µr
(1)

then for every integer n ≥ 1,

α(Hn)
rn

=
−µr

d − µr
.

Moreover, if H is also non-bipartite, and if I is an independent set of size −µr

d−µr
rn

in G = Hn, then there exists a coordinate i ∈ {1, 2, . . . , n} and a maximum inde-
pendent set J in H, such that

I = {v ∈ V (H)n : vi ∈ J}.
Remark: Note that for any H and n, χ(Hn) = χ(H). If H satisfies the
conditions of the last Theorem and if, in addition, χ(H) = r

α(H) then every optimal
coloring of Hn is induced by a coloring of one of the multiplicands, since it is a
partition of Hn into maximum-size independent sets. Such a partition can only be
consistent if each color class is induced by the same coordinate. The assumption
χ(H) = r

α(H) holds for many of the interesting classes of graphs to which Theorem
4 applies.

Theorem 5 Let H be a d-regular, connected, non-bipartite graph on r vertices,
let d = µ1 ≥ µ2 ≥ · · · ≥ µr be its eigenvalues and suppose its independence
number satisfies (1). Then, there exists a constant M = M(H) such that for any
ε > 0 the following holds. Let G = Hn and let I be an independent set such that
|I|
|G| = α(H)

|H| − ε. Then there exists an independent set I ′ with |I′|
|G| = α(H)

|H| such that
|I′
I|
|G| < Mε.
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Triple Systems Not Containing a Fano Configuration and other
Turán-type Problems

Zoltán Füredi

Given a 3-uniform hypergraph F , let ex3(n,F) denote the maximum possible
size of a 3-uniform hypergraph of order n that does not contain any subhypergraph
isomorphic to F . The Fano configuration F (or Fano plane, or finite projective
plane of order 2, or Steiner triple system, STS(7), or blockdesign S2(7, 3, 2)) is
a hypergraph on 7 elements, say {x1, x2, x3, a, b, c, d}, with 7 edges {x1, x2, x3},
{x1, a, b}, {x1, c, d}, {x2, a, c}, {x2, b, d}, {x3, a, d}, {x3, b, c}. D. de Caen and
Z. Füredi [2] proved a conjecture of Vera T. Sós [11] that

Theorem 1

ex3(n, F) =
3
4

(
n

3

)
+ O(n2).

The tetrahedron, K
(3)
4 , i.e., a complete 3-uniform hypergraph on four ver-

tices, has four triples {x1, x2, x3}, {x1, x2, x4}, {x1, x3, x4}, {x2, x3, x4}. An aver-
aging argument shows [7] that the ratio ex3(n,F)/

(
n
3

)
is a non-increasing sequence.

Therefore
π(F) := lim

n→∞ex3(n,F)/
(
n
3

)
exists. The determination of π(K(3)

4 ) is one of the oldest problems of this field,
due to Turán [12], who published a conjecture in 1961 that this limit value is 5/9,
and Erdős [4] offered $1000 for a proof. The best upper bound, .5935 . . . , is due to
Fan Chung and Linyuan Lu [3]. The limit π(H) is known only for very few cases
when it is non-zero.
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The Complete 4-graph, the Fano hypergraph, and the Octahedron

|X | =
⌈

n
2

⌉

|X| =
⌊

n
2

⌋

T. Sós also conjectured that the
following hypergraph, Hn, gives the
exact value of ex3(n, F). Let H(X, X)
be the hypergraph obtained by tak-
ing the union of two disjoint sets
X and X as the set of vertices
and define the edge set as the set
of all triples meeting both X and
X . For Hn we take |X | = �n/2�
and |X| = 	n/2
, (i.e., they have
nearly equal sizes). Then

e(Hn) =
(

n

3

)
−
(	n/2


3

)
−
(�n/2�

3

)
.

The chromatic number of a hypergraph H is the minimum p such that its
vertex set can be decomposed into p parts with no edge contained entirely in a
single part. It is well known and easy to check that the Fano plane is not two-
colorable, its chromatic number is 3. Therefore F �⊆ H(X, X). Thus Hn supplies
the lower bound for ex3(n, F) in Theorem 1, implying that π(F) ≥ 3

4 .

Theorem 2 (Füredi and Simonovits [6]) There exist a γ2 > 0 and an n2 such
that the following holds. If H is a triple system on n > n2 vertices not containing
the Fano configuration F and

deg(x) >

(
3
4
− γ2

)(
n

2

)

holds for every x ∈ V (H), then H is bipartite, H ⊆ H(X, X) for some X ⊆ V (H).

This result is a distant relative of the following classical theorem of Andrásfai,
Erdős and T. Sós [1]. Let G be a triangle-free graph on n vertices with minimum
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degree δ(G). If δ(G) > 2
5n, then G is bipartite. The blow up of a five-cycle C5

shows that this bound is the best possible.
Using the method of [2] Mubayi and Rödl [9] determined the limit π for a few

more 3-uniform hypergraphs, for all of them π = 3/4. It is very likely that the
extremal hypergraphs are 2-colorable in those cases, too.

Turán [12] also conjectured that the 2-colorable triple system Hn is the largest
K

(3)
5 -free hypergraph. Sidorenko [10] disproved this conjecture, in this sharp form,

for odd values n ≥ 9. But it is still conjectured that it is true for all even values
and it seems that π(K(3)

5 ) = 3/4 holds as well. However this question seems to be
extremely difficult.

De Caen and Füredi [2] applied some multigraph extremal results of Füredi and
Kündgen [5]. To prove Theorem 2 we use colored multigraph extremal results.

A corollary of Theorem 2, namely that H(X, X) is extremal, was proved inde-
pendently and in a fairly similar way by Keevash and Sudakov [8]. Our Theorem 2
is stronger.
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Entropy and Graph Homomorphisms
David Galvin

(joint work with Prasad Tetali [3])

Let G be an n-regular, N -vertex bipartite graph on vertex set V (G), and let
H be a fixed graph on vertex set V (H) (perhaps with loops). Set

Hom(G, H) = {f : V (G) → V (H) : u ∼ v ⇒ f(u) ∼ f(v)}.

That is, Hom(G, H) is the set of graph homomorphisms from G to H .
When H = Hind consists of one looped and one unlooped vertex connected

by an edge, an element of Hom(G, Hind) can be thought of as a specification
of an independent set (a set of vertices spanning no edges) in G. Our point of
departure is the following result of Kahn [4], bounding the size of I(G), the set of
independent sets of G.

Theorem 1 For any n-regular, N -vertex bipartite graph G,

|I(G)| ≤ (2n+1 − 1)N/2n.

Note that |Hom(Kn,n, Hind)| = 2n+1 − 1 (where Kn,n is the complete bipartite
graph with n vertices on each side), so we may paraphrase Theorem 1 by saying
that |Hom(G, Hind)| is maximum when G is a disjoint union of Kn,n’s. Our main
result is a generalization of this statement (and our proof is a generalization of
Kahn’s).

Proposition 2 For any n-regular, N -vertex bipartite G, and any H,

|Hom(G, H)| ≤ |Hom(Kn,n, H)|N/2n.
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We also consider a weighted version of Proposition 2. Following [1], we put a
measure on Hom(G, H) as follows. To each i ∈ V (H) assign a positive “activity”
λi, and write Λ for the set of activities. Give each f ∈ Hom(G, H) weight wΛ(f) =∏

v∈V (G) λf(v). The constant that turns this assignment of weights on Hom(G, H)
into a probability distribution is

ZΛ(G, H) =
∑

f∈Hom(G,H)

wΛ(f).

When all activities are 1, we have ZΛ(G, H) = |Hom(G, H)|, and so the following
is a generalization of Proposition 2.

Proposition 3 For any n-regular, N -vertex bipartite G, any H, and any system
Λ of positive activities on V (H),

ZΛ(G, H) ≤ (ZΛ(Kn,n, H)
)N/2n

.

We may put this result in the framework of a well-known mathematical model
of physical systems with “hard constraints” (see [1]). We think of the vertices of
G as particles and the edges as bonds between pairs of particles, and we think
of the vertices of H as possible “spins” that particles may take. Pairs of bonded
vertices of G may have spins i and j only when i and j are adjacent in H . Thus
the legal spin configurations on the vertices of G are precisely the homomorphisms
from G to H . We think of the activities on the vertices of H as a measure of
the likelihood of seeing the different spins; the probability of a particular spin
configuration is proportional to the product over the vertices of G of the activities
of the spins. Proposition 3 concerns the “partition function” of this model — the
normalizing constant that turns the above-described system of weights on the set
of legal configurations into a probability measure.

Our proofs are based on entropy considerations, and in particular on a lemma
of Shearer (see [2, p. 33]) bounding the entropy of a random vector.
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Random Planar Graphs
Stefanie Gerke

(joint work with Colin McDiarmid [3])

Given 0 < p < 1 and a positive integer n, let Gn,p denote the random graph
with nodes v1, . . . , vn in which the

(
n
2

)
possible edges appear independently with

probability p. We denote by Rn,p the random graph Gn,p conditioned on it being
planar. (We may think of repeatedly sampling a graph Gn,p until we find one that
is planar.) Also, let us denote Rn, 1

2
by Rn. Thus Rn is uniformly distributed over

all labelled planar graphs on n nodes.
Rather little is known about random planar graphs, even about the number of

edges in such graphs, which is our focus here. Let us denote the number of edges
in a (simple) graph G by m(G). Thus we are interested in the random variable
m(Rn) and more generally in m(Rn,p). Of course m(G) ≤ 3n − 6 for any planar
graph G on n nodes. The expected value E[m(Rn)] is at least (3n− 6)/2 – see [2].
It is shown in [1] that m(Rn) ≤ 2.54n asymptotically almost surely (aas), that is
with probability tending to 1 as n → ∞. This result slightly improves the upper
bound of 2.56 in [6]. We will show here in particular that m(Rn) ≥ 13

7 n + o(n)
aas, thereby improving on the result from [2] mentioned above.

We now introduce two functions f(α) and g(p) which are needed to state our
two main results – see also Figure 1.

Given 1 < α ≤ 3, let k = k(α) = 	 2α
α−1
, and let

f(α) =
1
4
(
k2 + k + 6 − (k2 − 3k + 6)α

)
.

It is not hard to verify that f(α) is continuous and decreasing on 1 < α ≤ 3, and
satisfies f(α) → ∞ as α → 1 and f(3) = 0, see also the end of Section 4. (The
function f is also piecewise-linear and convex.) For 0 < p < 1 we may define g(p)
to be the unique value ρ ∈ (1, 3) such that f(ρ)/ρ = (1 − p)/p. The function g is
continuous and increasing on 0 < p < 1, and satisfies g(p) → 1 as p → 0, g(1

2 ) = 13
7

and g(p) → 3 as p → 1. We are now able to state our theorem concerning the
number of edges of random planar graphs.

Theorem 1 Let 0 < p < 1. Then as n → ∞,

E[m(Rn,p)] ≥ g(p)n + o(n);
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Figure 1: The functions f and g

and indeed for any ε > 0 there exists a δ > 0 such that

Pr(m(Rn,p) < (g(p) − ε)n) = o(e−δn).

In particular, since g(1
2 ) = 13

7 , this theorem shows that the expected number
of edges in a planar graph sampled uniformly at random from all labelled planar
graphs on n nodes is at least about 13

7 n.
To prove this result we will consider the number of edges that can be added to

a planar graph of n nodes and m edges while keeping the graph planar. Given a
planar graph G, we call a non-edge f addable in G if the graph G + f obtained by
adding f as an edge is still planar; and we let add(G) denote the set of addable
non-edges of G. Let P(n) denote the set of all (simple) planar graphs with n nodes
v1, . . . , vn; let P(n, m) denote the set of all graphs G ∈ P(n) with m edges; and
let add(n, m) denote the minimum value of |add(G)| over all graphs G ∈ P(n, m).
Observe that by Kuratowski’s theorem, if m ≤ 7 then add(n, m) =

(
n
2

) − m, and
if n ≥ 6 and m ≥ 8 then add(n, m) <

(
n
2

)−m. Also, add(n, m) > 0 if m < 3n− 6
and add(n, 3n − 6) = 0.

Theorem 2 Let 1 < α ≤ 3, and suppose that m = m(n) = αn + O(1) as n → ∞.
Then add(n, m) = f(α)n + O(1).

It was shown in [5] that a.a.s. the random planar graph contains any fixed
connected planar graph. If one chooses a graph uniformly at random from P(n, m)
with m = 	qn
 1 < q < 3 then the same statements holds:
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Theorem 3 (G., McDiarmid, Steger, Weißl [4]) Let 1 < q < 3. Then a.a.s.
the random planar graph on n nodes and 	qn
 edges contains any fixed connected
planar graph.
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Low-dimensional Faces of Random 0/1-Polytopes
Volker Kaibel

Investigations of special classes of 0/1-polytopes (convex hulls of subsets of
{0, 1}d) have not only lead to beautiful insights into combinatorial (optimization)
problems during the last decades, but also powerful algorithms have emerged from
them. Consequently, there has been some desire to learn more about the geomet-
rical and combinatorial structure of 0/1-polytopes in general. Here, the study of
random 0/1-polytopes has turned out to be particularly fruitful,

A quite fascinating result in this direction has been obtained by Dyer, Füredi,
and McDiarmid in 1992, who proved in [2] that the expected volume E [Vol P ]
of a d-dimensional random 0/1-polytope P with n vertices has a threshold at
2(1−(log e)/2)d (i.e., for each ε > 0, Vol P = o(1) if n ≤ 2(1−(log e)/2−ε)d and Vol P =
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1 − o(1) if n ≥ 2(1−(log e)/2+ε)d). Building on the methods developed in Dyer,
Füredi, and McDiarmid’ work, Bárány and Pór proved in 2000 that a random
0/1-polytope (within a certain range of vertex numbers) has a super-exponential
(in the dimension) number of facets [1].

While Bárány and Pór’s work sheds some light on the highest dimensional
faces of 0/1-polytopes, in my recent work (partly together with Anja Remshagen)
I have investigated the lowest dimensional faces of random 0/1-polytopes. In [4] we
proved that the expected graph density of a d-dimensional random 0/1-polytope P
with n vertices has a threshold at 2(1/2)d. In [3] this result has been extended to
the density of arbitrary (fixed) dimensional faces in the following way.

Denote by νr(P ) the quotient of the number of faces of P with exactly r vertices
and

(
n
r

)
(the r-density of P ). In [3], for each r ≥ 3, we establish the existence

of a sharp threshold for the r-density and determine the values of the threshold
numbers τr such that, for all ε > 0,

E [νr(P )] =

{
1 − o(1) if n ≤ 2(τr−ε)d for all d

o(1) if n ≥ 2(τr+ε)d for all d

holds for the expected value of νr(P ).
In particular, these results indicate that the high densities often encountered in

polyhedral combinatorics (e.g., the cut-polytope of the complete graph has both
2- and 3-density equal to one) are due to the geometry of 0/1-polytopes rather
than to the special combinatorics of the underlying problems.

The threshold values τr (for r ≥ 3) nicely extend the results for r = 2, while the
proof becomes more involved and needs a heavier machinery (the one developed
in the above mentioned paper by Dyer, Füredi, and McDiarmid). As a pay-back,
however, it reveals several interesting insights into the geometry of (random) 0/1-
polytopes.
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Excluded Subposets in the Boolean Lattice

Gyula O.H. Katona

Introduction. Let [n] = {1, 2, . . . , n} be a finite set, families F ,G, etc. of
its subsets will be investigated. If F is a family let fi denote the number of its
i-element members. Let P be a poset. The goal of the present investigations is to
determine the maximum size of a family F (in [n]) which does not contain P as a
(non-necessarily induced) subposet. This maximum is denoted by La(n, P ).

The easiest example is the case when P consist of two comparable elements
(subsets of [1]). Then we are actually looking for the largest family without in-
clusion. The well-known Sperner theorem ([6]) gives the answer, the maximum is(

n
�n

2 	
)
.

The following sharpening, the so called YBLM inequality ([8], [1], [4], [5]) is
also important.

Theorem 1 If F is a family of subsets of [n] without inclusion then

n∑
i=0

fi(
n
i

) ≤ 1

holds

We say that the distinct sets A, B1 . . . , Br form an r-fork if they satisfy A ⊂
B1, . . . , Br.

The first result in this direction of generalizing the Sperner theorem was the
following one ([3]).

Theorem 2 Suppose that F contains no 2-fork. Then(
n

	n
2 

)(

1 +
1
n

+ o

(
1
n

))
≤ |F| ≤

(
n

	n
2 

)(

1 +
2
n

+ o

(
1
n

))

holds.
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The case of r + 1-forks was considered in [7].

Theorem 3 Suppose that F contains no r + 1-fork. Then(
n

	n
2 

)(

1 +
r

n
+ o

(
1
n

))
≤ |F| ≤

(
n

	n
2 

)(

1 + 2
r2

n
+ o

(
1
n

))

holds.

Let us remark that the lower estimates in the previous results and in the new
results of the next section are all based on a code construction of [2] and its
generalizations.
New results. The second term of the upper estimate is too weak in Theorem
1.3. We were recently able to improve this result.

Theorem 4 (A. de Bonis, G.O.H. Katona) Suppose that F contains no r+1-fork.
Then (

n

	n
2 

)(

1 +
r

n
+ o

(
1
n

))
≤ |F| ≤

(
n

	n
2 

)(

1 +
2r

n
+ o

(
1
n

))
.

This is best possible in the sense that the coding problem what is used in the
construction contains an undecided multiplicative factor 2.

The proof of the upper bound in the above theorem is based on the following
YBLM-type inequality.

Theorem 5 ( A. de Bonis, G.O.H. Katona) Suppose that F contains no r+1-fork
(0 < r) and all members F ∈ F satisfy |F | ≤ m. Then

n∑
i=0

fi(
n
i

) ≤ 1 +
r

n − m + 1
.

Let us now try to maximize the size of a family F containing no r + s + 1 distinct
members satisfying A1, . . . , As ⊂ B1, . . . , Br+1. Let Pr+1,s denote the poset with
two levels, s element on the lower, r + 1 elements on the upper level, every lower
one is in relation with every upper one. It is easy to see that our condition can
be formulated in the way that we are looking for the maximum number of the
elements in the Boolean lattice of subsets of [n] (defined by inclusion) without
containing Pr+1,s as a subposet.

Theorem 6 (A. de Bonis, G.O.H. Katona) Suppose that 2 ≤ s, 2 ≤ r and s ≤ r+1
hold. Then(

n

	n
2 

)(

2 +
r

n
+ o

(
1
n

))
≤ La(n, Pr+1,s)

≤
(

n

	n
2 

)(

2 + 2
r + s − 2

n
+ o

(
1
n

))
.
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Surprisingly, we have an exact result in the case s = 2, r = 1.

Theorem 7 (A. de Bonis, G.O.H. Katona, K. Swanepoel) If 5 ≤ n and F contains
no four distinct members A1, A2, B1, B2 such that Ai ⊂ Bj, i, j = 1, 2 then the
maximum of |F| is the sum of the two largest binomial coefficients of order n.
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Local Chromatic Number and Sperner Capacity
János Körner

(joint work with Concetta Pilotto and Gábor Simonyi)

Colouring the vertices of a graph so that no adjacent vertices receive identical
colours gives rise to many interesting problems and invariants. The best known
among all these invariants is the chromatic number, the minimum number of
colours needed for such proper colourings. the following interesting variant was
introduced by Erdős, Füredi, Hajnal, Komjáth, Rödl, and Seress [5] (cf. also [7]).
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Definition 1 ([5]) The local chromatic number ψ(G) of a graph G is the maximum
number of different colours appearing in the closed neighbourhood of any vertex,
minimized over all proper colourings of G. Formally,

ψ(G) := min
c: V (G)→N

max
v∈V (G)

|{c(u) : u ∈ ΓG(v)}|,

where N is the set of natural numbers, ΓG(v), the closed neighborhood of the vertex
v ∈ V (G), is the set of those vertices of G that are either adjacent or equal to v
and c : V (G) → N runs over those functions that are proper colourings of G.

It was proved in [5] that there exist graphs with ψ(G) = 3 and χ(G) arbitrarily
large.

Throughout our paper [12] the present extended abstract is referring to, we
are interested in chromatic invariants as upper bounds for the Shannon capacity
of undirected graphs and its natural generalization Sperner capacity for directed
graphs. We treat Shannon capacity in terms that are complementary to Shannon’s
own, (cf. [15], [14] and [9], [11]). In this language Shannon capacity describes
the asymptotic growth of the clique number in the co-normal powers of a graph.
Shannon proved (although in different terms) that the Shannon capacity c(G) of
a graph is upper bounded by its fractional chromatic number.

We show that ψ(G) is bounded from below by the fractional chromatic number
of G. This proves, among other things, that ψ(G) is always an upper bound for the
Shannon capacity c(G) of G, but it is not a very useful one since it is always weaker
than the fractional chromatic number itself. Thus the situation is rather different
in the case of directed graphs. We introduce an analog of the local chromatic
number for directed graphs and show that it is always an upper bound for the
Sperner capacity of the digraph at hand. To illustrate the usefulness of this bound
we apply it to show, for example, that an oriented odd cycle with at least two
vertices with outdegree and indegree 1 always has its Sperner capacity equal to
that of the single-edge graph K2. We introduce fractional versions that further
strengthen our bounds.

The definition of the directed version of ψ(G) is straightforward.

Definition 2 The local chromatic number ψd(G) of a digraph G is the maximum
number of different colours appearing in the closed out-neighbourhood of any vertex,
minimized over all proper colourings of G. Formally,

ψd(G) := min
c: V (G)→N

max
v∈V (G)

|{c(w) : w ∈ Γ+
G(v)}|

where N is the set of natural numbers, Γ+
G(v), the closed out-neighbourhood of

the vertex v ∈ V (G), is the set of those vertices w ∈ V (G) that are either equal
to v or else are endpoints of directed edges (v, w) ∈ E(G), originated in v, and
c : V (G) → N runs over those functions that are proper colourings of G.
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Our main goal is to prove that ψd(G) is an upper bound for the Sperner capacity
of digraph G.

Definition 3 For directed graphs G = (V, E) and H = (W, L), the co-normal (or
disjunctive or OR) product G · H is defined to be the following directed graph:

V (G · H) = V × W

and
E(G · H) = {((v, w), (v′, w′)) : (v, v′) ∈ E or (w, w′) ∈ L}.

The nth co-normal (or disjunctive or OR) power Gn of digraph G is defined as the
n-fold co-normal product of G with itself, i. e., the vertex set of Gn is V n = {x =
(x1 . . . xn) : xi ∈ V }, while its edge set is defined as

E(Gn) = {(x,y) : ∃i (xi, yi) ∈ E(G)}.
(A pair (a, b) always means an oriented edge in this paper as opposed to undirected
edges denoted by {a, b}.)

Definition 4 ([9])
A subgraph of a digraph is called a symmetric clique if its edge set contains all

ordered pairs of vertices belonging to the subgraph and we denote the size (num-
ber of vertices) of the largest symmetric clique by ωs(G). The (non-logarithmic)
Sperner capacity of a digraph G is defined as

σ(G) = sup
n

n
√

ωs(Gn).

It is obvious that Sperner capacity is a generalization of Shannon capacity. It
is a true generalization in the sense that there exist digraphs the Sperner capacity
of which is different from the Shannon capacity (c(G) value) of its underlying
undirected graph. Denoting by G both an arbitrary digraph and its underlying
undirected graph, it follows from the definitions that σ(G) ≤ c(G) always holds.
The smallest example with strict inequality in the previous relation is a cyclically
oriented triangle, cf. [4], [3].

Shannon capacity is is difficult to determine, and it is unknown for many
relatively small and simple graphs, for example, for all odd cycles of length at
least 7. This shows that Sperner capacity cannot be easy to determine either.
There is an interesting and important connection between Sperner capacity and
extremal set theory, introduced in [13] and fully explored in [10]. Several problems
of this flavour are also discussed in [11].

Alon [1] proved that for any digraph G

σ(G) ≤ min{∆+(G), ∆−(G)} + 1
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where ∆+(G) is the maximum out-degree of the graph G and similarly ∆−(G) is
the maximum in-degree. The proof relies on a linear algebraic method similar to
the one already used in [3] for a special case (cf. also [6] for a strengthening and
cf. [2] for a general setup for this method in case of undirected graphs). We also
use this method for proving the following stronger result.

Theorem 5
σ(G) ≤ ψd(G).

We call an oriented cycle alternating if it has at most one vertex of outdegree
1. (In stating the following results we follow the convention that an oriented
graph is a graph without oppositely directed edges between the same two points,
while a general directed graph may contain such pairs of edges.) Clearly, in any
oriented cycle the number of vertices of outdegree 2 equals the number of vertices
of outdegree 0. Thus, in particular, a 2k+1 length oriented odd cycle is alternating
if it has k points of outdegree zero, k points of outdegree 2 and only 1 point of
outdegree 1. It takes an easy checking that up to isomorphism there is only one
orientation of C2k+1 which is alternating.

Theorem 6 Let G be an oriented odd cycle that is not alternating. Then

σ(G) = 2.

The Sperner capacity of an alternating odd cycle can indeed be larger than 2. This
is obvious for C3, where the alternating orientation produces a transitive clique of
size 3. A construction proving that the Sperner capacity of the alternating C5 is at
least

√
5 is given in [8]. The construction is clearly best possible by the celebrated

result of Lovász [14] showing c(C5) =
√

5.
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On H-linked Graphs

Alexandr Kostochka
(joint work with Gexin Yu)

In this talk, we introduce the notion of H-linked graphs and find suffiicient
minimum degree conditions for a graph to be H-linked. This improves known
conditions for a graph to be k-ordered.
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Let H be a graph. An H-subdivision in a graph G is a pair of mappings
f : V (H) → V (G) and g: E(H) into the set of paths in G such that:

(a) f(u) �= f(v) for all distinct u, v ∈ V (H);
(b) for every uv ∈ E(H), g(uv) is an f(u)f(v)-path in G, and distinct edges

map into internally disjoint paths in G.
Say that a graph G is H-linked if every injective mapping f : V (H) → V (G)

can be extended to an H-subdivision in G. This is a natural generalization of
k-linkage.

Recall that a graph is k-linked if for every list of 2k vertices

{s1, . . . , sk, t1, . . . , tk} ,

there exist internally disjoint paths P1, . . . , Pk such that each Pi is an si, ti-path.
From the definitions of k-linked and H-linked graphs, we immediately see that a
graph G is k-linked if and only if G is H-linked for every graph H with |E(H)| = k.

It is known that to check that a graph on at least 2k vertices is k-linked it
is enough to check only the lists {s1, . . . , sk, t1, . . . , tk}, where all si and ti are
distinct. Thus, a graph G on at least 2k vertices is k-linked if and only if G is
Mk-linked, where Mk is the matching with k edges.

Let Bk denote the (multi)graph with 2 vertices and k parallel edges. By
Menger’s Theorem, a graph G on at least k + 1 vertices is k-connected if and
only if G is Bk-linked.

A graph is k-ordered, if for every ordered sequence of k vertices, there is a cycle
that encounters the vertices of the sequence in the given order. Let Ck denote the
cycle of length k. Clearly, a graph G is k-ordered if and only if G is Ck-linked.

After Chartrand introduced the notion of k-ordered graphs, several authors
(see, e.g., [4, 8, 7, 5]) studied sufficient degree conditions for a graph to be k-
ordered. Recall that Dirac [2] found sufficient conditions for a simple graph G to
be Hamiltonian in terms of the minimum degree, δ(G), and Ore [9] found similar
conditions in terms of σ2(G), the minimum value of the sum deg(u) + deg(v) over
all pairs {u, v} of non-adjacent vertices in G. Let D0(n, k) denote the minimum
positive integer d such that every n-vertex simple graph with minimum degree at
least d is k-ordered. Similarly, let R0(n, k) denote the minimum positive integer r
such that every n-vertex simple graph G with σ2(G) ≥ r is k-ordered. Improving
on results in [4, 8], it was shown in [5] that R0(n, k) = n + �(3k − 9)/2� for
every 3 ≤ k ≤ n/2. This implies that D0(n, k) ≤ �(2n + 3k − 9)/4� for every
3 ≤ k ≤ n/2. Moreover, Kierstead et al. [7] showed that D0(n, k) = �n

4 � +
	k

2
 − 1 for 3 ≤ k ≤ n+3
11 . Observe that these bounds demonstrate the interesting

phenomenon: R0(n, k) > 2D0(n, k) for k small with respect to n. It is also known
that D0(n, k) > �n

4 � + 	k
2 
 − 1 for k > n/3, but the value of D0(n, k) was not

known for n+3
11 < k < 2n

5 .
The main result of the talk gives the minimum degree conditions for a graph
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to be H-linked if δ(H) ≥ 2. This results extends the result of Kierstead et al. [7]
in two directions: for a larger scope of k and for much more general H .

Theorem 1 Let H be a simple graph with k edges and δ(H) ≥ 2. Every graph G
of order n ≥ 5k with δ(G) ≥ �(n + k)/2� − 1 is H-linked. If H is the cycle Ck

with k edges, then every graph G of order n ≥ 5k with δ(G) ≥ �n/2� + 	k/2
 − 1
is H-linked. The minimum degree conditions are sharp.

In particular, Theorem 1 yields D0(n, k) = �n
4 � + 	k

2 
 − 1 for k ≤ n/5.
Note that δ(G) ≥ �(n + k)/2�−1 is exactly the minimum degree condition that

provides the k-connectivity of G. Thus, an evident degree condition for a graph
to be k-connected, provides that a graph is H-linked for many H . If one drops
the condition δ(H) ≥ 2, then this degree restriction is not sufficient in general. In
a joint work with Kawarabayashi [6], we considered similar problem for k-linked
graphs. Let D(n, k) be the minimum positive integer d such that every n-vertex
graph with minimum degree at least d is k-linked. Also, let R(n, k) denote the
minimum positive integer r such that every n-vertex graph G with σ2(G) ≥ r is
k-linked.

Theorem 2 [6] If k ≥ 2, then

R(n, k) =




2n − 3, n ≤ 3k − 1;
	 2(n+5k)

3 
 − 3 3k ≤ n ≤ 4k − 2;
n + 2k − 3, n ≥ 4k − 1,

(1)

and

D(n, k) =
⌈

R(n, k)
2

⌉
=




n − 1, n ≤ 3k − 1;
	n+5k

3 
 − 1 3k ≤ n ≤ 4k − 2;
�n−3

2 � + k, n ≥ 4k − 1.
(2)

Egawa et al. [3] considered a closely related problem, but the answers differ,
especially for σ2(G). The bounds of Theorem 2 and of Egawa et al. [3] are helpful
in estimating f(k) — the minimum positive integer f such that every f -connected
graph is k-linked. After a series of papers by Jung, Larman and Mani, Mader, and
Robertson and Seymour, the first linear upper bound for f , namely, f(k) ≤ 22k
was proved by Bollobás and Thomason [1]. Very recently, Thomas and Wollan [10]
improved this bound to f(k) ≤ 16k. In [6] we show how to apply Theorem 2 in
the Thomas-Wollan proof to improve their bound to f(k) ≤ 12k. Thomas and
Wollan informed us that elaborating our idea they are able to improve the bound
even further: to f(k) ≤ 10k.
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Spanning Triangulations in Graphs with Large Minimum Degree
Daniela Kühn

(joint work with Deryk Osthus)

In [6] and [5] we investigated the following extremal problem: given a function
m = m(n), how large does the minimum degree of a graph G of order n have to
be in order to guarantee a planar subgraph with at least m(n) edges? The main
result of [5] determines the minimum degree which is necessary to force a planar
subgraph with the maximum possible number of edges, i.e. a planar triangulation.
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Theorem 1 There exists an integer n0 such that every graph G of order n ≥ n0

and minimum degree at least 2n/3 contains a triangulation as a spanning subgraph.

Our proof of Theorem 1 can easily be extended to obtain a spanning triangulation
of an arbitrary surface. Theorem 1 improves a result from [6] where the minimum
degree was required to be at least 2n/3 + γn (here γ > 0 can be chosen to be
arbitrary small and n0 = n0(γ)).

The following example shows that Theorem 1 is best possible for all integers
n which are divisible by 3. Consider the graph G∗ which is obtained from two
disjoint cliques A and B of order n/3 by adding an independent set C of n/3 new
vertices and joining each of them to all the vertices in the two cliques. So G∗

has minimum degree 2n/3 − 1. Observe that any spanning triangulation in G∗

would have two facial triangles T1 and T2 which share an edge and are such that
T1 contains a vertex of A and T2 contains a vertex of B. But this is impossible
since every triangle of G∗ containing a vertex of A (respectively B) can have at
most one vertex outside A (respectively B), namely in C. One can extend this
example slightly to show that for all n a minimum degree of �2n/3� − 1 does not
ensure a spanning triangulation (see [5]).

The spanning triangulation guaranteed by Theorem 1 can be found in poly-
nomial time. In other words, the maximum planar subgraph problem (which in
a given graph G asks for a planar subgraph with the maximum number of edges)
can be solved in polynomial time for graphs G of minimum degree at least 2n/3.
In general this problem was shown to be Max SNP-hard by Cǎlinescu et al. [1],
i.e. there exists a positive ε for which there cannot be a polynomial time approx-
imation algorithm with approximation ratio better than 1 − ε, unless P = NP .
The best known approximation algorithm has an approximation ratio of 4/9 [1].

Our proof of Theorem 1 relies on Szemerédi’s Regularity lemma, the Blow-
up lemma of Komlós, Sárközy and Szemerédi [4] and several ideas which were
introduced in [3] by the same authors. (In [3] they proved the related result that
every graph of sufficiently large order n and minimum degree at least 2n/3 contains
the square of a Hamilton cycle.)

In the remainder we discuss how Theorem 1 might perhaps be strengthened.
Obviously a minimum degree of 2n/3 will not force every given triangulation P
of order n as a subgraph. For example, G might be 3-partite, which implies that
we can only hope for triangulations P with chromatic number 3. Of course, we
cannot guarantee all of these either, as there are triangulations whose chromatic
number is 3 and whose maximum degree is n − 2. However, in view of our proof
of Theorem 1, it might be helpful to restrict one’s attention to triangulations P of
bounded band-width, as this imposes a linear structure on P . (The band-width of a
graph H is the smallest integer k for which there exists an enumeration v1, . . . , v|H|
of the vertices of H such that every edge vivj ∈ H satisfies |i − j| ≤ k.) Bollobás
and Komlós [2] conjectured that for every γ > 0 and all r, ∆ ∈ N there are α > 0
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and n0 ∈ N such that every graph G of order n ≥ n0 and minimum degree at least
(1− 1

r +γ)n contains a copy of every graph H of order n whose chromatic number
is at most r, whose maximum degree is at most ∆ and whose band-width is at
most αn.

This would imply that every sufficiently large graph of minimum degree at
least (2/3+ γ)n contains every 3-chromatic triangulation of bounded band-width.
Even in this special case the error term γn cannot be omitted completely: there
are 3-chromatic triangulations whose colour classes have different sizes. These
obviously do not embed into the complete 3-partite graph whose vertex classes
have equal size. However, it might be true that for all integers b there exists a
constant C = C(b) such that every graph of order n and minimum degree at least
2n/3 + C contains every 3-chromatic triangulation of order n and band-width at
most b as a subgraph.

Also, we do not know whether one can strengthen Theorem 1 in the following
way. Given n, is there a triangulation Pn of order n which is contained in every
graph G of order n and minimum degree at least 2n/3? When n is divisible by 3,
then the preceding arguments show that Pn would have to be 3-chromatic with
equal size colour classes. Moreover, Pn would have to contain induced cycles of
many different lengths. To see the latter, consider a graph G which is similar
to the graph G∗ defined earlier. This time the cliques have order n/3 − 1, the
independent set C has order n/3 + 2 and we insert a 2-factor into C. One can
show that every spanning triangulation of G must contain one of the cycles in
G[C].
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Revisiting Two Theorems of Curto and Fialkow on Moment Matrices
Monique Laurent

The moment problem
Given a probability measure µ on Rn, the quantity yα :=

∫
xαµ(dx) is called its

moment of order α. The moment problem concerns the characterization of the
sequences y = (yα)α∈Z

n
+

that are the sequences of moments of some nonnegative
measure µ; in that case one says that µ is a representing measure for y and µ is a
probability measure if y0 = 1. The results of Curto and Fialkow that we consider
here deal with moment sequences of finite atomic measures, i.e., measures of the
form µ =

∑r
i=1 λiδxi with λ1, . . . , λr �= 0 and x1, . . . , xr ∈ Rn. Here, δx is the

Dirac measure at x ∈ Rn (with mass 1 at x and 0 elsewhere), whose moment
sequence is the zeta vector ζx := (xα)α∈Zn ∈ R

Z
n
+ .

Given y ∈ R
Z

n
+ , its moment matrix is the symmetric matrix M(y) indexed by

Z
n
+ whose (α, β)th entry is equal to yα+β, for α, β ∈ Z

n
+. A well known necessary

condition for y to have a representing measure µ is the positive semidefiniteness of
its moment matrix. Moreover, the support of µ is contained in the set of common
zeros of the polynomials belonging to the kernel of M(y) and the rank of M(y) is
at most the number of atoms in the support of µ.

The cone M consisting of the sequences y having a representing measure, and
the cone P consisting of the polynomials nonnegative on Rn, are dual of each
other (Haviland [5]). Moreover, the cone M+ consisting of the sequences y whose
moment matrix M(y) is positive semidefinite, and the cone Σ2 consisting of all
sums of squares of polynomials, are dual of each other (Berg et al. [1]). Thus
the moment problem can be cast - via duality - as the problem of characterizing
nonnegative polynomials. The inclusion: Σ2 ⊆ P is an equality for n = 1 and it
is strict for n ≥ 2, as already noticed by Hilbert in the 1890s. Equivalently, the
inclusion: M ⊆ M+ is an equality for n = 1 (this is Hamburger’s theorem) and
it is strict for n ≥ 2.

There are, however, some cases when the implication: y ∈ M+ =⇒ y ∈ M
holds. Berg, Christensen and Ressel [1] show that this is true when y is bounded.
Curto and Fialkow [2] show that this is true when M(y) has finite rank.

Theorem 1 [2] If M(y) � 0 and M(y) has finite rank r, then y has a unique
representing measure, which is r-atomic.

As a direct application of Theorem 1, the reverse implication also holds: If y
has a r-atomic representing measure, then M(y) � 0 and rank M(y) = r.

Curto and Fialkow’s proof for Theorem 1 is along the following lines. (See
chapter 4 in [2].) Assume M(y) � 0 and rank M(y) = r. Then, the kernel
I := {p ∈ R[x1, . . . , xn] | M(y)p = 0} of M(y) is an ideal in R[x1, . . . , xn] and the
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quotient vector space A := R[x1, . . . , xn]/I has finite dimension r. Define an inner
product on A by setting 〈p, q〉 := pT M(y)q. In this way, A is a Hilbert space of
dimension r. For q ∈ R[x1, . . . , xn], consider the multiplication operator ϕq : A →
A defined by ϕq(p) = pq. Obviously, the operators ϕx1 , . . . , ϕxn pairwise commute.
Curto and Fialkow use then the spectral theorem and the Riesz representation
theorem for proving the existence of a representation measure for y. This type of
proof based on functional analytic tools is often used for proving results about the
moment problem. See, e.g., Fuglede [4], Schmüdgen [8].

The first main contribution of this paper is an alternative more elementary
proof for Theorem 1. Our proof uses Hilbert’s Nullstellensatz and, beside this
algebraic result, it uses only elementary linear algebra. Our starting point is to
observe that the kernel I of M(y) is a radical ideal. Hence, the variety V (I)
(consisting of the common complex roots of all polynomials in I) has cardinality
r. Say, V (I) = {v1, . . . , vr}. Note that a complex point v belongs to V (I) if and
only if its conjugate v belongs to V (I). Thus, one can write: V (I) = S ∪ T ∪ T ,
where S := V (I) ∩ Rn and T := {v | v ∈ T }.

Let pv1 , . . . , pvr ∈ C[x1, . . . , xn] be interpolation polynomials at the points of
V (I); that is, pvi(vj) = 1 if i = j and pvi(vj) = 0 if i �= j, for i, j = 1, . . . , r. One
can assume that pv is real valued for v ∈ S and that pv = pv for v ∈ T .

Let Z be the matrix whose columns are the zeta vectors ζv1 , . . . , ζvr , and let
Z̃ be the matrix whose rows contain the coefficient vectors of the interpolation
polynomials pv1 , . . . , pvr . Thus, Z̃Z = Ir. Theorem 1 now follows from the next
three lemmas.

Lemma 2 M(y) = Zdiag(Z̃y)ZT .

Lemma 3 V (I) ⊆ Rn.

Lemma 4 M(y) =
∑r

i=1 pT
vi

M(y)pviζviζ
T
vi

and µ :=
∑r

i=1 pT
vi

M(y)pviδvi is the
unique measure representing y.

The F -moment problem
Curto and Fialkow [3] study the F -moment problem for truncated sequences. That
is, given a sequence y ∈ RS2t , decide whether y has a representing measure
supported by a given set F ⊆ R

n. Here, for an integer t ≥ 1, St denotes the set of
α ∈ Zn

+ with
∑

i αi ≤ t. Consider the case when F is a basic closed semialgebraic
set, of the form

F := {x ∈ R
n | h1(x) ≥ 0, . . . , hm(x) ≥ 0}, (1)

where h1, . . . , hm ∈ R[x1, . . . , xn]; set

dj = �deg(hj)/2�, d :=
m

max
j=1

dj . (2)
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Necessary conditions can be formulated in terms of positive semidefiniteness of the
localizing matrices of y. Given h ∈ R[x1, . . . , xn], h ∗ y denotes the vector whose
αth entry is (h ∗ y)α :=

∑
β hβyα+β ; its moment matrix is a localizing matrix of y.

Moreover, Mt(y) is the matrix indexed by St whose (α, β)th entry is yα+β . One
can easily verify that, if y ∈ RS2t has a representing measure supported by the
set F , then Mt(y) � 0 and Mt−dj(hj ∗ y) � 0 for all j = 1, . . . , m. Curto and
Fialkow [3] show that, under certain rank assumptions, these necessary conditions
are also sufficient for the existence of a representing measure supported by F . The
following is the main result of [3] (Theorem 1.6 there).

Theorem 5 [3] Let F be the set from (1) and let d1, . . . , dm, d be as in (2). Let
y ∈ RS2t and r := rank Mt(y). The following assertions are equivalent.

(i) y has a r-atomic representing measure whose support is contained in F .

(ii) Mt(y) � 0 and y can be extended to a vector y ∈ R
S2(t+d) in such a way that

Mt+d(y) is a flat extension of Mt(y) and Mt(hj ∗ y) � 0 for j = 1, . . . , m.

The second main contribution of our paper is a very short proof of this result.
Assume (ii) holds. Then, by Theorem 6 below, y has a representing measure
µ =

∑r
i=1 λiδvi , where r = rank Mt(y). Hence, it suffices to show that all vi’s

belong to the set F . This follows from the assumption that Mt(hj ∗ y) � 0, after
observing that, as r = rank Mt(y), one can find interpolation polynomials at
v1, . . . , vr having degree at most t.

Theorem 6 [2] Given y ∈ RS2t , assume that Mt(y) � 0 and that rank Mt(y) =
rank Mt−1(y). Then one can extend y to a vector in R

Z
n
+ having a representing

measure which is (rank Mt(y))-atomic.

Our study of the moment problem is partly motivated by its application to
optimization. Indeed, Lasserre [7] shows how to construct asymptotic converging
sequences of semidefinite relaxations using moment matrices, for the problem of
minimizing a polynomial over a basic closed semi-algebraic set. Curto and Fi-
alkow’s results are used for proving, in some cases, the finite convergence. See also
Henrion and Lasserre [6].
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Partition Regular Equations

Imre Leader
(joint work with N. Hindman, P.A. Russell and D. Strauss)

An n × m matrix A, with rational entries, is called partition regular if when-
ever the natural numbers are finitely coloured there is a monochromatic vector x
(meaning that all entries of x have the same colour) such that Ax = 0. We may
also speak of the ‘system of equations’ Ax = 0 being partition regular.

The aim of this talk is to review some previous knowledge about the important
notion of ‘consistency’, to be defined below, and then to go on to some more recent
work. This recent work is joint with Hindman and Strauss [3],[4] and joint with
Russell [5].

Many of the classical theorems of Ramsey Theory, such as Schur’s theorem
and van der Waerden’s theorem, may naturally be interpreted at statements that
certain matrices are partition regular. The partition regular matrices were charac-
terised by Rado [7] in the 1930s. His characterisation had the following important
consequence: if A and B are partition regular then so is their diagonal sum. In
other words, if we can always solve Ax = 0 in one colour class, and we can always
solve By = 0 in one colour class, then in fact we can solve Ax = 0 and By = 0 in
the same colour class. We say that the matrices A and B are consistent.
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This is important because it can be used to prove some ‘universal’ results.
For example, whenever the natural numbers are finitely coloured, some class must
contain solutions to all partition regular systems.

Let us now pass to the infinite case, where, in contrast to Rado’s theorem, the
whole picture is very much not yet understood. Which infinite systems of equations
are partition regular? One very simple example, coming straight from Ramsey’s
theorem, is as follows: whenever the natural numbers are finitely coloured there
exist x1, x2, . . . such that the set {xi + xj : i �= j} is monochromatic. (This is not
quite given in the form of a solution to Ax = 0 for some suitable A, but it can easily
be converted into that form if desired.) More generally, Ramsey’s theorem implies
that, for any fixed a1, . . . , am positive integers, whenever the natural numbers are
finitely coloured there exist x1, x2, . . . such that the set {a1xi1 + . . . + amxim :
i1 < . . . < im} is monochromatic. We call this simple system a ‘Ramsey’ system.
It is worth pointing out that one cannot relax the condition on i1, . . . , im to the
condition that they are merely distinct: for this system there are bad colourings.

The first non-trivial example of an infinite partition regular system was given by
Hindman [2], who showed that whenever the natural numbers are finitely coloured
there exist x1, x2, . . . such that the set

FS(x1, x2, . . .) = {
∑
i∈I

xi : 0 < |I| < ∞}

is monochromatic. This was extended by Milliken [6]and Taylor [8], who showed
that, for any fixed a1, . . . , am positive integers, whenever the natural numbers are
finitely coloured there exist x1, x2, . . . such that the set

FSa1,...,am(x1, x2, . . .) = {a1

∑
i∈I1

xi + . . . + am

∑
i∈Im

xi}

is monochromatic, where we allow all finite nonempty I1, . . . , Im such that max Ir <
min Ir+1 for all r. However, it is important to point out that not too many other
examples of infinite partition regular systems are known.

It was proved by Deuber, Hindman, Leader and Lefmann [1] that unfortu-
nately, in the infinite case, consistency does not always hold. Indeed, two different
Milliken-Taylor systems are, except in trivial cases, always inconsistent. This left
as a vexing open problem the question of whether or not the simple Ramsey sys-
tems were consistent. This was open for some time, being eventually solved by
Hindman, Leader and Strauss [3]. The proof uses a large amount of machinery
from the Stone-Cech compactification of the natural numbers (the space of ultra-
filters), together with a new notion related to this space called ‘central partition
regularity’.

Recently, however, Leader and Russell [5] have found a very short proof of the
consistency of Ramsey systems.
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One other interesting development has concerned Ramsey systems with nega-
tive entries. Here we allow some of the ai to be negative (although of course the
final coefficient am must be positive, to have any hope of finding solutions in the
natural numbers). One might imagine that this is just generalisation for its own
sake, but curiously enough when one allows negative entries one suddenly obtains
some much simpler proofs of inconsistency than were needed in [1]. This work is
presented in [4].
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Lifts, Discrepancy and Nearly Optimal Spectral Gaps

Nati Linial
(joint work with Yonatan Bilu)

Let G be a graph on n vertices. A 2-lift of G is a graph H on 2n vertices, with
a covering map π : H → G. It is not hard to see that all eigenvalues of G are also
eigenvalues of H . In addition, H has n “new” eigenvalues. We conjecture that
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every d-regular graph has a 2-lift such that all new eigenvalues are in the range
[−2

√
d − 1, 2

√
d − 1] (If true, this is tight , e.g. by the Alon-Boppana bound). Here

we show that every graph of maximal degree d has a 2-lift such that all “new”
eigenvalues are in the range [−c

√
d log3 d, c

√
d log3 d] for some constant c. This

leads to a polynomial time algorithm for constructing arbitrarily large d-regular
graphs, with second eigenvalue O(

√
d log3 d).

The proof uses the following lemma (Lemma 5): Let A be a real symmetric matrix
with zeros on the diagonal. Let d be such that the l1 norm of each row in A is at
most d. Let α be such that for every x, y ∈ {0, 1}n with < x, y >= 0 it holds that
|xAy|

||x||||y|| ≤ α. Then the spectral radius of A is O(α(log(d/α) + 1)). An interesting
consequence of this lemma is a converse to the Expander Mixing Lemma.

Definitions
Let G = (V, E) be a graph on n vertices, and let A be its adjacency matrix. Let
µ1 ≥ µ2 ≥ . . . ≥ µn be the eigenvalues of A. We say that G is an (n, d, µ) −
expander if G is d-regular, and maxi=2,...,n |µi| ≤ µ. When µ = 2

√
d − 1 we say

that such a graph is Ramanujan. When µ = Õ(
√

d) we say that such a graph is
Quasi-Ramanujan.

A signing of the edges of G is a function s : E(G) → {−1, 1}. The signed
adjacency matrix of a graph G with a signing s has rows and columns indexed by
the vertices of G. The (x, y) entry is s(x, y) if (x, y) ∈ E and 0 otherwise.
A 2-lift of G, associated with a signing s, is a graph Ĝ defined as follows. Associated
with every vertex x ∈ V are two vertices, x0 and x1, called the fiber of x. If
(x, y) ∈ E, and s(x, y) = 1 then the corresponding edges in Ĝ are (x0, y0) and
(x1, y1). If s(x, y) = −1, then the corresponding edges in Ĝ are (x0, y1) and
(x1, y0). The graph G is called the base graph, and Ĝ a 2-lift of G. By the spectral
radius of a signing we refer to the spectral radius of the corresponding signed
adjacency matrix. When the spectral radius of a signing of a d-regular graph is
Õ(

√
d) we say that the signing (or the lift) is Quasi-Ramanujan.

Quasi-Ramanujan 2-Lifts and Quasi-Ramanujan Graphs

Preliminaries. The eigenvalues of a 2-lift of G can be easily characterized in
terms of the adjacency matrix and the signed adjacency matrix:

Lemma 1 Let A be the adjacency matrix of a graph G, and As the signed ad-
jacency matrix associated with a 2-lift Ĝ. Then every eigenvalue of A and every
eigenvalue of As are eigenvalues of Ĝ. Furthermore, the multiplicity of each eigen-
value of Ĝ is the sum of its multiplicities in A and As.
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Consider the following scheme for constructing (n, d, λ)-expanders. Start with
G0 = kd+1, the complete graph on d + 1 vertices ∗ . Its eigenvalues are d, with
multiplicity 1, and −1, with multiplicity d. We want to define Gi as a 2-lift of
Gi−1, such that all new eigenvalues are in the range [−λ, λ]. Assuming such a
2-lifts always exist, the Gi constitute an infinite family of (n, d, λ)-expanders.
It is therefore natural to look for the smallest λ = λ(d) such that every graph of
degree at most d has a 2-lift, with new eigenvalues in the range [−λ, λ]. In other
words, a signing with spectral radius ≤ λ. We note that λ(d) ≥ 2

√
d − 1 follows

from the Alon-Boppana bound.
Quasi-Ramanujan 2-lifts for every graph. Based on extensive computer sim-
ulations we conjecture that every graph has a signing with small spectral radius:

Conjecture 2 Every d-regular graph has a signing with spectral radius at most
2
√

d − 1.

In this section we show a close upper bound:

Theorem 3 Every graph of maximal degree d has a signing with spectral radius
O(
√

d · log3 d).

The theorem follows immediately from the following two lemmata (along with
Lemma 1). The first shows that with positive probability the Rayliegh quotient is
small for vectors in v, u ∈ {−1, 0, 1}n. The second shows that this is essentially a
sufficient condition for all eigenvalues being small.

Lemma 4 For every graph of maximal degree d, there exists a signing s such that
for all v, u ∈ {−1, 0, 1}n the following holds:

|vtAsu|
||v||||u|| ≤ 10

√
d log d, (1)

where As is the signed adjacency matrix.

Lemma 5 Let A be an n × n real symmetric matrix such that the l1 norm of
each row in A is at most d. Assume that for any two vectors, u, v ∈ {0, 1}n, with
supp(u) ∩ supp(v) = ∅:

|uAv|
||u||||v|| ≤ α,

and that all diagonal entries of A are, in absolute value, O(α(log(d/α)+1)). Then
the spectral radius of A is O(α(log(d/α) + 1)).

∗We could start with any small d-regular graph with a large spectral gap. Such graphs are
easy to find.



56 Oberwolfach Report 1/2004

Note 6 Lemma 5 is tight up to constant factors. To see this, consider the n-
dimensional vector x whose i’th entry is 1/

√
i. Let A be the outer product of x

with itself, that is, the matrix whose (i, j)’th entry is 1/
√

i · j. Clearly x is an
eigenvector of A corresponding to the eigenvalue ||x||2 = Θ(log(n)). Also, the sum
of each row in A is O(

√
n). To prove that the lemma is essentially tight, we need to

show that maxu,v∈{0,1}n
uAv

||u||||v|| is constant. Indeed, fix k, l ∈ [n]. Let u, v ∈ {0, 1}n

be such that ||u|| = k and ||v|| = l. As the entries of A are decreasing along the
rows and the columns, uAv is maximized for such vectors when their support is
the first k and l coordinates. For these optimal vectors, uAv = Θ(

√
k · l). Thus,

maxu,v∈{0,1}n

uAv

||u||||v|| = Θ(1).

An explicit construction of quasi-Ramanujan graphs. For the purpose of
building expanders, it is enough to prove a weaker version of Theorem 3. Roughly,
that every expander graph has a 2-lift with small spectral radius. In this sub-
section we show that when the base graph is a good expander (in the sense of the
definition below), then w.h.p. a random 2-lift has a small spectral radius. We then
derandomize the construction to get a deterministic polynomial time algorithm for
constructing arbitrarily large expander graphs.

Definition 7 We say that a graph G on n vertices is (β, t)-sparse if for every
u, v ∈ {0, 1}n, with |S(u, v)| ≤ t,

uAv ≤ β||u||||v||.
Lemma 8 Let A be the adjacency matrix of a d-regular (γ(d), log n)-sparse G
graph on n vertices, where γ(d) = 10

√
d log d. Then for a random signing of G

(where the sign of each edge is chosen uniformly at random) the following hold
w.h.p.:

1. ∀u, v ∈ {−1, 0, 1}n : |uAsv| ≤ γ(d)||u||||v||.
2. Ĝ is (γ(d), 1 + log n)-sparse

where As is the random signed adjacency matrix, and Ĝ is the corresponding 2-lift.

Corollary 9 Let A be the adjacency matrix of a d-regular (γ(d), log n)-sparse G
graph on n vertices, where γ(d) = 10

√
d log d. Then there is a deterministic poly-

nomial time algorithm for finding a signing s of G such that the following hold:

1. The spectral radius of As is O(
√

d log3 d).

2. Ĝ is (γ(d), 1 + log n)-sparse,

where As is the signed adjacency matrix, and Ĝ is the corresponding 2-lift.
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A converse to the Expander Mixing Lemma
There are several approaches to expansion in graphs. A combinatorial definition
says that a d-regular graph on n vertices is an (n, d, c)-vertex expander if every set
of vertices, W , of size at most n/2, has at least c|W | neighbors outside itself. An
algebraic definition says that such a graph is an (n, d, λ)-expander if all eigenvalues
but the largest are, in absolute value, at most λ.
The two notions are closely related. For example, it is known (cf. [2]) that an
(n, d, λ)-expander is also an (n, d, d−λ

2d )-vertex expander. Conversely, Alon shows in
[1] that an (n, d, c)-vertex expander is also an (n, d, d− c2

4+2c2 )-expander. Roughly,
these results show that one type of expansion implies the other. However, in all
such results one implication (from combinatorial to algebraic expansion) is much
weaker than the other.
For two subsets of vertices, S and T , let e(S, T ) denote the number of edges
between them. A very useful property of (n, d, λ)-expanders is known as the Ex-
pander Mixing Lemma (cf. [2]): For every two subsets of vertices, A and B, of an
(n, d, λ)-expander:

|e(A, B) − d|A||B|/n| ≤ λ
√

|A||B|.
Lemma 5 also implies a converse to this well known fact:

Corollary 10 Let G be a d-regular graph on n vertices. Suppose that for any
S, T ⊂ V (G), with S ∩ T = ∅

|e(S, T ) − |S||T |d
n

| ≤ α
√

|S||T |
Then all but the largest eigenvalue of G are bounded, in absolute value, by O(α(1+
log(d/α))).

It is known that for a random d-regular graph, w.h.p., the condition in Corollary
10 holds with α = O(

√
d) (cf. [3]). Hence, it follows from the corollary that w.h.p.,

such a graph is an (n, d, O(
√

d log d))-expander. While this result is weaker than
previous ones ([6, 5, 4]), the proof here is somewhat shorter and simpler.
Acknowledgments. We thank László Lovász for insightful discussions, and Efrat
Daom for help with computer simulations. We thank Eran Ofek for suggesting that
Corollary 10 might be used to bound the second eigenvalue of random d-regular
graphs.
We appreciate the helpful comments we got from Alex Samorodnitsky, Eyal Rozen-
man and Shlomo Hoory.
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Expected Length of the Longest Common Subsequence for Large
Alphabets

Jiř́ı Matoušek

(joint work with Marcos Kiwi and Martin Loebl)

We investigate the distribution of the length L of the longest common subse-
quence of two randomly uniformly and independently chosen n character words
u = u1u2 . . . un and v = v1v2 . . . vn over a k-ary alphabet. That is, L is the maxi-
mum integer such that there exist indices i1 < i2 < · · · < iL and j1 < j2 < · · · < jL

with uiq = vjq , q = 1, 2, . . . , L. This problem has emerged more or less indepen-
dently in several remarkably disparate areas, including the comparison of versions
of computer programs, cryptographic snooping, and molecular biology. An ex-
tended abstract of this work appears in Proc. 6th Latin American Theoretical
Informatics Symposium (LATIN 2004), LNCS series, Springer, Berlin. A full ver-
sion is available at the web page of the author.

By a well-known subadditivity argument, E [L] /n converges to a constant γk.
The value of γk is not known for any particular value of k, although much effort
has been spent in finding good upper an lower bounds for it (see, for example, [2]
and references therein).

We analyze the behavior of γk for k → ∞, and more generally, we consider
the expectation of L when k is an (arbitrarily slowly growing) function of n and
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n → ∞. In particular, we prove a conjecture of Sankoff and Mainville from the
early 80’s [7] stating that

lim
k→∞

γk

√
k = 2. (1)

(See [6, § 6.8] for a discussion of work on lower and upper bounds on γk as well as
a stronger version, due to Arratia and Steele, of the above stated conjecture.)

The constant 2 in (1) arises from a connection with another celebrated prob-
lem, the distribution of LISN , the length of the longest increasing subsequence
in a (uniform) random permutation of {1, 2, .., N}. Hammersley [4] proved the
existence of β = limN→∞(E [LISN ] /

√
N) and conjectured that β = 2. Later,

Logan and Shepp [5], based on a result by Schensted [8], proved β ≤ 2, and fi-
nally, Vershik and Kerov [10] showed β = 2. In a major recent breakthrough Baik,
Deift, Johansson [3] described explicitly the asymptotic distribution of LISN (for
N → ∞). For a detailed account of these results, history, and related work we can
recommend the surveys of Aldous and Diaconis [1] and Stanley [9]; the methods
used in attacking this problem are of remarkable beauty and diversity.

Our main result about the longest common subsequence can be stated as fol-
lows.

Theorem 1 For every ε > 0 there exist k0 and C such that for all k > k0 and all
n with n/

√
k > C we have

(1 − ε) · 2n√
k

≤ E [L] ≤ (1 + ε) · 2n√
k

where, as above, L is the length of the longest common subsequence of two random
words of length n over an alphabet of size k. Moreover, there is an exponentially
small tail bound; namely, for every ε > 0 there exists c > 0 such that for k and n
as above,

P
[∣∣∣∣L − 2n√

k

∣∣∣∣ ≥ ε
2n√

k

]
≤ e−cn/

√
k.

In the rest of this extended abstract, we outline the main tools and ideas of
the proof, referring to the full version for precise formulations and further details.

First we reformulate the problem a little. Given the two random words u =
u1u2 . . . un and v = v1v2 . . . vn, let us draw two horizontal lines in the plane and
place n points a1, a2, . . . , an in this order on the top line and n points b1, b2, . . . , bn

in this order on the bottom line. Then we connect ai to bj by an edge (straight
segment) iff ui = vj , obtaining a drawing of a bipartite graph G (which is a disjoint
union of complete bipartite graphs). A common subsequence of the words u and v
corresponds to a planar matching in G (a matching in which no two edges cross).

Although we want to deal mainly with the case of n arbitrarily large compared
to k, which is the situation in the Sankoff–Mainville conjecture, we first consider
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a seemingly opposite setting: when k is large and n is also large but considerably
smaller than n. For definiteness, we set n = k0.7. Then we expect G to have
about n2/k = k0.4 edges, and most of these edges connect vertices of degree
1. If we let G′ be the subgraph of G obtained by deleting all edges incident
to vertices of degree greater than 1, then G′ is a matching (plus some isolated
vertices). The number N of edges of G′ is typically very close to k0.4. The
matching determines a permutation of {1, 2, . . . , N}, and by a symmetry argument,
it can be seen that, for a given N , all permutations of {1, 2, . . . , N} have the
same probability of being obtained in this way. Moreover, the longest increasing
subsequence of the permutation corresponds exactly to the largest planar matching
in G′. Therefore, up to a small error, the longest common subsequence of u and v
is distributed as LISN . Then one can derive from the known results about LISN

that E [L] = (2 + o(1))n/
√

k holds in this situation. For the rest of the proof,
we also need tail estimates for large deviations of L, and these are conveniently
obtained from Talagrand’s inequality applied to L (we cannot directly use known
tail estimates for LISN , for example because of the vertices of degree larger than
1 in G).

Now we consider n very large compared to k (and k still large). A lower bound
for E [L] is straightforward: We partition the words u and v into segments of length
k0.7 each, and we use the previously derived result separately for each block (the
ith block consists of the ith segment of the word u plus the ith segment of the
word v). Thus, the lower bound is provided by a common subsequence, or planar
matching in the graph language, that never crosses a block boundary.

An upper bound for E [L] is more demanding, since the largest planar matching
need not respect any partition into blocks fixed in advance; there could be “very
skew” edges. Our strategy is to simultaneously consider many different partitions
into blocks. The blocks have upper and lower segments of size about k0.7, but
they can be very skew; the segment of u starting at a position i can form a
block with a segment of v starting at position j, with i and j differing by a large
amount. Supposing that there is a planar matching with at least m = (1+ε)2n/

√
k

edges, it “fits” at least one of the block partitions, meaning that it respects its
block boundaries. For each fixed block partition and each fixed distribution of
the numbers of edges of the planar matching among the blocks, we bound above
the probability that there is a planar matching with m edges that fits that block
partition; this relies on independence among the blocks. Then we sum up over all
possible block partitions and show that with high probability, there is no planar
matching with m edges at all.
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On the Power of Two Choices in Continuous Time
Colin McDiarmid

(joint work with Malwina Luczak)

Balls-and-bins processes have been useful for analysing a wide range of prob-
lems, in discrete mathematics and computer science, and in particular for problems
which involve load sharing and resource balancing, see [8]. Here is one central re-
sult, from Azar, Broder, Karlin and Upfal (1994 [1],1999 [2]), concerning the ‘power
of two choices’. Let d be a fixed positive integer. Suppose that there are n bins,
and n balls arrive one after another: each ball picks d bins uniformly at random
and is placed in a least loaded of these bins. Then with probability tending to 1
as n → ∞ (aas), the maximum load of a bin is lnn/ln lnn + O(1) if d = 1, and is
ln lnn/ lnd + O(1) if d ≥ 2. Thus there is a dramatic drop when we move from 1
to 2 choices.

In some recent work, balls have been allowed to ‘die’ – see [2, 3, 9] – which is
of course desirable when modelling telephone calls. For example, suppose that we
start with n balls in n bins: at each time step, one ball is deleted uniformly at
random, and one new ball appears and is placed in one of d bins as before. It is
shown in [2] that as n → ∞, at any given time t ≥ cn2 ln lnn, aas the maximum
load of a bin is at most ln lnn/ lnd + O(1).

Let us consider here a simple and natural ‘immigration-death’ balls-and-bins
model in continuous time. Indeed let us consider two such models, one involving
bins and one involving queues, first the bins.

Let d be a fixed positive integer. Suppose that there are n bins. Balls arrive
in a Poisson process at rate λn, where λ > 0 is a constant. Upon arrival each ball
chooses d random bins (with replacement), and is placed into a least-loaded bin
among those chosen. (If there is more than one chosen bin with least load, the
ball is placed in the first such bin chosen.) Balls have independent exponential
lifetimes with unit mean.

Probabilists have proved various detailed weak-convergence results for such
models, see for example [4, 9, 10], but these results seem not to say anything
about quantities like the equilibrium maximum load. Using mainly combinatorial
methods, we can establish concentration results, which apply to the fraction of bins
with load at least k at time t; these concentration results may then be used to
analyse a balance equation involving these quantities. We are thus able to handle
random variables like the maximum load, over long periods of time. The system
mixes rapidly, so let us focus on the stationary behaviour. (In fact, it is because
the system mixes rapidly that we are able to prove our concentration results.)

Theorem 1 ([5]) Let d be a fixed positive integer, and suppose that the n-bin
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system is in the stationary distribution. Then there is an integer-valued function
m(n) such that aas the maximum load is m(n) or m(n)− 1: if d = 1 then m(n) =
(1 + o(1))ln n/ln lnn, and if d ≥ 2 then m(n) = ln lnn/lnd + O(1).

Now consider a second continuous-time model, the supermarket model. This is
as before except that now bins are replaced by queues, each with a single unit-rate
server, and λ < 1. There are similar results for this model.

Theorem 2 ([6]) Let d be a fixed positive integer, and suppose that the n-queue
system is in the stationary distribution. If d = 1, then aas the maximum queue
length is within ω(n) of ln n/ ln(1/λ), where ω(n) is any function tending to ∞),
and it is not concentrated on a bounded interval. If d ≥ 2 then there is an integer
valued function m(n) = ln lnn/lnd+O(1) such that aas the maximum queue length
is m(n) or m(n) − 1.

This is all joint work with Malwina Luczak. It arose from our endeavour to
establish rigorous continuous-time results for routing in networks analogous to the
discrete-time results in [7]. The ‘bins’ part of this work has recently been written
up, the queues part nearly so: results on routing will follow later.
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Homomorphism Duality: On Short Answers to Exponentially Long
Questions

Jaroslav Nešetřil

(joint work with Claude Tardif)

We give a new and more efficient construction of duals for general finite rela-
tional structures of a given type. We complement this by proving the superpoly-
nomial lower bound for the size of the dual core. This bound is achieved even for
duals of paths (i.e. for the type (2). This solves the main problem of [9].

Coloring problems belong to some of the central problems of combinatorics.
Perhaps being encouraged by applications (such as channel assignement problems
or Constraint Satisfaction type problems (CSP)) the recent revival of interest led
to the investigation of many variants and far reaching generalizations, see e.g.
[5, 3, 13]. The following problem captures both the difficulty and generality of
some of this development:

H-coloring problem
Instance: A graph G;
Question: Does there exists a homomorphism G −→ H .
Recall, that a homomorphism G −→ H is any mapping f : V (G) −→ V (H)

satisfying f(x)f(y) ∈ E(H) whenever xy ∈ E(G).
Thus for any complete graph H = Kk the H-coloring problem reduces to the

question whether the chromatic number χ(G) of graph G is ≤ k. All CSP-problems
may be expressed in a similar way as H-coloring problems for relational structures:

Let ∆ = (δi; i ∈ I) be a sequence of positive integers. A relational structure
of type ∆ (shortly ∆-structure) is a pair (X, (Ri; i ∈ I)) where X is a finite set
and Ri is a δi-nary relation on X (i.e. we have Ri ⊂ Xδi). Given a type ∆ and
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δ-systems A = (X, (Ri; i ∈ I)) and A′ = (X ′, (R′
i; i ∈ I)) a homomorphism is a

mapping f : X −→ X ′ satisfying for every i ∈ I

(f(x1), f(x2), . . . , f(xδi)) ∈ R′
i whenever (x1, x2, . . . , xδi) ∈ Ri.

Given a structure H of type ∆ we define the H-coloring problem in the complete
analogy to graphs (yes, despite using for ∆-systems symbols A, B and the like, we
still want to reserve H for the template of the coloring problem).

Viewing all this one expects that H-coloring problems are difficult to handle
and that such problems tend to be computationally hard. This is indeed the case
for undirected graphs. But for other types, and already for type (2) corresponding
to the directed graphs, the situation is very difficult and there are many polynomial
instances and the whole problem seems to be presently very difficult: there are
many polynomial instances and even more hard cases, see e.g.[3, 2, 1].

This paper is devoted to the study of polynomial instances of H-coloring prob-
lems. Among those perhaps the simplest are those coloring problems which can
be characterized by a simple obstruction set, by forbidden structures of a single
type. This is expressed by the notion of the (singleton) homomorphism duality:

We say that a pair (F, H) of ∆-structures is a dual pair if the following equiv-
alence holds for every ∆-structure A:

F �−→ A iff A −→ H.

The ∆-structure H is also called the dual of F and it is denoted by DF .
Note that up to homomorphism equivalence the dual DF is uniquelly determined.
One also sees easily that the only dual pair for undirected graphs (up to the
homomorphism equivalence) is the pair (K2, K1), see [8] where this notion was
first isolated. However one should not be discouraged by this as the richness of
dualities lies in relational structures. Already for directed graphs (i.e. the type
(2)) the duality pairs include pairs (Pk, Tk) where Pk is the monotone path of
length k (i.e. with k + 1 vertices) and Tk is the transitive tournament with k
vertices. One can see easily that these duality pairs correspond to the Hasse-
Galai-Roy theorem: an undirected graph G has chromatic number > k if and
only if every orientation of G contains a monotone path of length k. Dualities
represent a suprisingly rich scheme and many more dualities (and thus polynomial
instances of coloring problems) were found [6, 7, 11]. Finally [9] characterize
all homomorphism dualities (recall that a core of ∆ structure A is the minimal
structure which is homomorphism equivalent to A):

Theorem 1 For every type ∆ and for every ∆-tree T there exists a dual ∆-
structure DT . There are no other dual pairs.

Viewing the difficulty of the classification of polynomial instances of H-coloring
(already) for directed graphs it is perhaps surprising that one can achieve the full
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characterization of homomorphism dualities for general ∆-systems. The abun-
dance of polynomial instances leads to the question about the nature of dual
graphs. The proof given in [9] rests on some algebraic construction (such as the
graph exponentiation) and on the reformulation of dualities in terms of homomor-
phism partial order C (”gaps” in C). Thus dual structures DT are complicated
(and constructed indirectly) and their properties are non-trivial (and sometimes
surprising, [10]). Thus it is desirable to have simpler explicite construction. Such
a construction was provided in [11] for the case of directed graphs. This has been
recently used in [12] to prove that the construction of the dual DT is connected
appart from isolated vertices.

In this paper we give a new construction of the dual for a general type ∆. This
new construction is also more efficient: for a ∆-tree T with n vertices it produces
the dual DT of size 2n log(n) (as opposed to the double exponential bound which
follows from [9]).

We complement this by providing examples which yield superpolynomial lower
bound for cores of DT . This improves the result of [9] and solves the main open
problem left there. Perhaps surprisingly, in order to prove this lower bound we
use relational structures (for large ∆).

The super polynomial lower bound for the size of core duals can be interpreted
in the positive terms:

Corollary 2 There are directed core graphs H such that |V (H)| ≥ 2n, and for
every directed graph G, G is H-colorable if and only if every subgraph of G with
at most n log(n) vertices is H-colorable.

This an introduction to a paper by the same authors and the same title which
is being submitted. It is available electronically at ITI Series and KAM-DIMATIA
Series.
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[8] J. Nešetřil, A. Pultr: On Classes of Relations and Graphs Determined by
Subobjects and Factorobjects, Discrete Math. 22 (1978), 287–300.
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Extremal Connectivity for Topological Cliques

Deryk Osthus

(joint work with Daniela Kühn)

Given a natural number s, let d(s) be the smallest number such that every
graph of average degree > d(s) contains a subdivision of the complete graph Ks

of order s. The existence of d(s) was proved by Mader [6]. As first observed by
Jung [3], the complete bipartite graph Kt,t with t := 	s2/8
 shows that d(s) ≥
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	s2/8
. Bollobás and Thomason [2] as well as Komlós and Szemerédi [4] showed
that s2 is the correct order of magnitude for d(s). More precisely, it is known that

(1 + o(1))
9s2

64
≤ d(s) ≤ (1 + o(1))

s2

2
. (1)

The upper bound is due to Komlós and Szemerédi [4]. As observed by �Luczak,
the lower bound is obtained by considering a random subgraph of a complete
bipartite graph with edge probability 3/4. It is widely believed that the lower
bound gives the correct constant, i.e. that random graphs provide the extremal
graphs. If true, this would mean that the situation is similar as for ordinary
minors. Indeed, Thomason [8] was recently able to prove that random graphs are
extremal for minors and Myers [7] showed that all extremal graphs are essentially
disjoint unions of pseudo-random graphs.

In [5] we showed that the lower bound in (1) is correct if we restrict our
attention to bipartite graphs whose connectivity is close to their average degree:

Theorem 1 Given s ∈ N, let cbip(s) denote the smallest number such that every
cbip(s)-connected bipartite graph contains a subdivision of Ks. Then

cbip(s) = (1 + o(1))
9s2

64
.

In Theorem 1 the condition of being bipartite can be weakened to being H-free
for some arbitrary but fixed 3-chromatic graph H . The proof of Theorem 1 builds
on results and methods of Komlós and Szemerédi [4]. For arbitrary graphs, the
best current upper bound on the extremal connectivity is the same as in (1). The
proof of Theorem 1 yields the following improvement [5].

Theorem 2 Given s ∈ N, let c(s) denote the smallest number such that every
c(s)-connected graph contains a subdivision of Ks. Then

(1 + o(1))
9s2

64
≤ c(s) ≤ (1 + o(1))

s2

4
.

The lower bounds in Theorems 1 and 2 are provided by the random bipartite
graphs mentioned above (since their connectivity is close to their average degree).
Thus at least in the case of highly connected bipartite graphs they are indeed
extremal.

By using methods as in the proof of Theorem 1, in [5] we also obtain a small
improvement for the constant in the upper bound in (1).

Theorem 3 Given s ∈ N, let d(s) denote the smallest number such that every
graph of average degree > d(s) contains a subdivision of Ks. Then

(1 + o(1))
9s2

64
≤ d(s) ≤ (1 + o(1))

10s2

23
.
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The example of �Luczak mentioned above only gives us extremal graphs for
Theorem 1 whose connectivity is about 3n/8, i.e. whose connectivity is rather
large compared to the order n of the graph. However, in [5] we showed that
there are also extremal graphs whose order is arbitrarily large compared to their
connectivity. In contrast to this, the situation for ordinary minors is quite different.
In general a connectivity of order s

√
log s is needed to force a Ks minor, but

the connectivity of the known extremal graphs is linear in their order. In fact,
confirming a conjecture of Thomason [9], Böhme, Kawarabayashi and Mohar [1]
proved that for all integers s there is an integer n0 = n0(s) such that every graph
of order at least n0 and connectivity at least 45s contains the complete graph
Ks as minor. Thus a linear connectivity suffices to force a Ks minor if we only
consider sufficiently large graphs.
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Constructions of Non-Principal Families in Extremal Hypergraph
Theory

Oleg Pikhurko
(joint work with Dhruv Mubayi)

Here, we prove the non-principality phenomenon for the classical extremal
problems for k-uniform hypergraphs. The main motivation is to study the quali-
tative difference between the cases k = 2, and k ≥ 3, and our results for the Turán
problem exhibit this difference.

Given a a family F of k-graphs, let ex(n,F) be the maximum size of an F -free
k-graph G on n vertices. Let π(F) be the limit of ex(n,F)/

(
n
k

)
as n → ∞. We

call π(F) the Turán density of F .
Mubayi and Rödl [11] conjectured that there is a family F of 3-graphs such

that
π(F) < min{π(F ) | F ∈ F}, (1)

and commented that the result should even hold for a family F of size two.
Balogh [1] proved the conjecture, calling this phenomenon the non-principality
of the Turán function. This is in sharp contrast with the case of graphs (k = 2)
where the Erdős-Stone-Simonovits Theorem [4, 2] applies.

However, Balogh’s family has many graphs. Here we show how the so-called
stability results lead to families F satisfying (1) and consisting of two k-graphs
only. This approach succeeds for all even k ≥ 4 and for k = 3, since it depends on
stability results which are known only in these cases.

Non-Principal Families of Size 2

To obtain the cone cn(F ) of a k-graph F , enlarge each edge of F by a new
common vertex x:

cn(F ) := {{x} ∪ D | D ∈ F}.
We call two order-n k-graphs F and G ε-close if we can make F isomorphic to

G by adding and removing at most ε
(
n
k

)
edges. A k-graph G is F -extremal if it

is a maximum F -free k-graph of order v(G). Let us call a k-graph F stable if any
F -free k-graph G of order n with at least (π(F ) − o(1))

(
n
k

)
edges is o(1)-close to

an F -extremal k-graph.

Lemma 1 Let F be a stable k-graph. Suppose that we can find a k-graph H of
order h such that π(H) ≥ π(F ) and any F -extremal k-graph of order n contains



Combinatorics 71

Ω(nh) copies of H. Then

π({F, H}) < min(π(F ), π(H)). (2)

Proof. Suppose on the contrary that π({F, H}) ≥ π(F ). Then there is an {F, H}-
free k-graph G of order n and size (π(F ) − o(1))

(
n
k

)
. Since F is stable, G is

o(1)-close to an F -extremal k-graph G′. By hypothesis, G′ contains Ω(nh) copies
of H . But each edge belongs to O(nh−k) H-subgraphs, so we cannot destroy all
of them by removing o(nk) edges. This is a contradiction to G �⊂ H .

Theorem 2 For even k ≥ 4 and for k = 3 there are k-graphs F and H satisfy-
ing (2).

Proof. Let k = 2l be even. Let F = {A ∪ B, A ∪ C, B ∪ C}, where A, B, C
are disjoint l-sets. Frankl [5] showed that π(F ) = 1

2 . Keevash and Sudakov [9,
Theorem 3.4] showed that F is stable. Every extremal k-graph G′ for F on n ≥ n0

vertices has vertex partition X ∪ Y , |X | ≈ |Y | ≈ n
2 , and consists of all edges

intersecting X (and also Y ) in an odd number of vertices.
Let us take H = cn(Kk−1

m ) where m = m(k) is a sufficiently large integer to
satisfy k!

mk

(
m
k

)
> 1

2 . The latter implies that π(H) > 1
2 , because the blown-up

Kk
m does not contain H . As G′ contains (2 + o(1)) n

2

(
n/2
m

)
copies of H , Lemma 1

implies that the family {F, H} has the required properties.
For k = 3 we can use the stability result either for the Fano plane, (established

independently by Füredi and Simonovits [7] and by Keevash and Sudakov [8]), or
for F3,2, established by Füredi, Pikhurko, and Simonovits [6]. In both cases we
can take H = cn(K2

m) for some sufficiently large m.

Concluding Remarks

For the case of odd k ≥ 5, we can build upon the ideas in [1] and construct
a non-principal k-graph family F for every k ≥ 3, see [10]. The obtained family
consists of finitely many k-graphs; however, this approach does not seem to give
|F| = 2.

One can also consider the Ramsey-Turán density ρ(F) where in addition to
being F -free we require that the maximum size of an independent set of G is o(n).
(This problem was introduced by Erdős and Sós [3].) One can show that for k ≥ 3
if F is a non-principal k-graph family with respect to the Turán density then F(2)
is non-principal with respect to the Ramsey-Turán density, see [10]. Here F(2) is
obtained by blowing-up each member of F by factor of 2.

Curiously, the situation with graphs remains open.
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Problem 3 Do there exist 2-graphs G1, G2 for which

ρ({G1, G2}) < min{ρ(G1), ρ(G2)}?

What about if we require ρ({G1, G2}) > 0 as well?
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[3] P. Erdős and V. T. Sós. On Ramsey-Turán type theorems for hypergraphs.
Combinatorica, 2:289–295, 1982.
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The Phase Transition in the Uniformly Grown Random Graph has
Infinite Order

Oliver Riordan
(joint work with Béla Bollobás and Svante Janson)

The emergence of a giant component is one of the most frequently studied
phenomena in the theory of random graphs. Much of the interest is due to the fact
that a giant component in a finite graph corresponds to an infinite component, or
‘infinite cluster’, in percolation on an infinite graph. In fact, it can be argued that it
is more important and more difficult to study detailed properties of the emergence
of the giant component than to study the corresponding infinite percolation near
the critical probability.

The quintessential example of the emergence of a giant component is in the
classical random graph model Gn,p, the graph with vertex set {1, 2, . . . , n} in
which each pair of vertices is joined with probability p, independently of all other
pairs. Let us say that an event holds with high probability (whp), if it holds with
probability tending to 1 as n → ∞. In 1960, Erdős and Rényi [7, 8] showed that
the critical probability for Gn,p is 1/n: if c < 1 is a constant then whp the largest
component of Gn,c/n has O(log n) vertices, while there is a function θ(c) > 0 such
that for constant c > 1, whp Gn,c/n has a component of order (θ(c) + o(1))n, and
no other component of order larger than O(log n). The proper ‘window’ of the
phase transition was found much later by Bollobás [1] and �Luczak [10]. In Gn,c/n

the giant component emerges rather rapidly: the right-derivative of θ(c) at c = 1
is 2; this makes the study of the phenomenon manageable.

Our task here is considerably harder, since in the model we shall study the giant
component emerges much more slowly. Our model, Gn(c), is the finite version of
a model first proposed by Dubins in 1984 (see [9, 11]): it is parametrized by
n, the number of vertices, and a constant c > 0 to which edge probabilities are
proportional, just as for Gn,c/n. It can be read out of results of Kalikow and
Weiss [9] and Shepp [11] that there is a critical value c = 1/4 above which a giant
component is present. In Gn(c), the transition from having no giant component
to having a giant component is rather tantalizing, since it is very slow indeed. It
turns out that for any c less than 1/4, whp the largest component of Gn(c) already
contains nΘ(1) vertices, which is much larger than the O(log n) we have in Gn,a/n,
a < 1. For c > 1/4, whp there is a giant component of order proportional to n,
and the other components are small. In fact, there is a function φ(c), equal to 0 for
c ≤ 1/4 but positive for c > 1/4, such that whp the largest component of Gn(c)
has order (φ(c) + o(1))n. However, rather than having positive right-derivative
at the critical point, in this case (if the derivatives exist) every derivative of φ(c)
at c = 1/4 is zero. This phenomenon is often called a phase transition of infinite
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order. Somewhat surprisingly, in spite of this extremely gentle growth of the giant
component, we can give good bounds on φ(c) from above and below, showing, in
particular, that φ(1/4 + ε) = o(εk) for every k.

A somewhat similar, although less surprising, phenomenon was studied in [2],
where for a different model it was shown that for every positive value of the
appropriate parameter c there is a giant component, but its normalized size has
all derivatives zero at c = 0. Nevertheless, a gentle increase at the very beginning
is considerably less suprising than a ‘sudden’ gentle increase in a function which
is zero up to some positive value.

Turning to the model, in [3], Callaway, Hopcroft, Kleinberg, Newman and
Strogatz introduced a simple new model (which we shall call the CHKNS model)
for random graphs growing in time. They gave heuristic arguments to find the
critical point for the percolation phase transition in this graph, and numerical
results (from integrating an equation, rather than just simulating the graph) to
suggest that this transition has infinite order. Heuristic arguments for an infinite
order phase transition in this and other models have been given by Dorogovtsev,
Mendes and Samukhin [4].

Here we consider an even simpler and more natural model, the uniformly grown
random graph, or ‘1/j-graph’. This is the finite version of a model proposed by
Dubins in 1984. We define the 1/j-graph G

1/j
n as the random graph on {1, 2, . . . , n}

in which each pair i < j of vertices is joined independently with probability 1/j.
We may think of Gn = G

1/j
n as a graph growing in time, where each vertex joins to

a set of earlier vertices chosen uniformly at random, the set itself having a random
size, which is essentially Poisson with mean 1. We study the random subgraph
Gn(c) of Gn obtained by selecting edges independently with probability c < 1. Of
course, Gn(c) can be defined directly by specifying that each pair i < j is joined
independently with probability c/j. With this definition, values of c greater than
one make sense, provided we replace c/j by max{c/j, 1}.

Kalikow and Weiss [9] showed that for c < 1/4 the infinite version G∞(c)
of Gn(c) is disconnected with probability one. It is implicit in their work that
whp the largest component in the finite graph Gn(c), c < 1/4, has order o(n).
In the other direction, Shepp [11] showed that for c > 1/4, G∞(c) is connected
with probability 1; his proof involved showing that Gn(c) has a component of
order Θ(n) with probability bounded away from zero. Hence, the threshold for
the emergence of a giant component in Gn(c) is at c = 1/4. A similar result for a
considerably more general model was proved by Durrett and Kesten [6].

Here we study the size of the giant component above the threshold, showing
that the giant component emerges very slowly.

Theorem 1 There is a function φ(c) such that as n → ∞ with c ≥ 0 fixed, whp
the largest component of G

1/j
n (c) contains (φ(c) + o(1))n vertices.



Combinatorics 75

Furthermore, φ(c) = 0 for c ≤ 1/4, and

φ(c) = exp

(
− π + o(1)

2
√

c − 1/4

)

as c tends to 1/4 from above.

In particular, φ(1/4 + ε) = o(εk) for any k, and the phase transition is of
‘infinite order’.

Although we work with the 1/j-graph, as it has a simpler and more natural
static description, all our results carry over to the CHKNS model. As pointed
out independently by Durrett [5], this is also true of the earlier threshold results,
which predate the CHKNS model by 10 years!
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[7] P. Erdős and A. Rényi, On the evolution of random graphs, Magyar Tud. Akad.
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The Regularity Method for k-uniform Hypergraphs
Vojtěch Rödl

(joint work with Brendan Nagle, Mathias Schacht and Jozef Skokan)

The Regularity Lemma of Szemerédi [20], proved to be a powerful tool in
Combinatorics. This lemma states that all sufficiently large graphs can be ap-
proximated, in some sense, by random graphs. Since “random-like” graphs are
often easier to handle than arbitrary graphs, the Regularity Lemma is especially
useful in situations when the problem in question is easier to prove for random
graphs.

Let G = (V, E) be a graph and A, B ⊆ V be a pair of disjoint sets of vertices
of G. Denote by e(A, B) the number of edges of G between A and B. The density
of the pair (A, B) is defined by d(A, B) = e(A, B)/(|A||B|). The pair is called
ε-regular if for any A′ ⊆ A, B′ ⊆ B with |A′| ≥ ε|A|, |B′| ≥ ε|B|, we have
|d(A, B) − d(A′, B′)| < ε.

Theorem 1 (Szemerédi’s Regularity Lemma) For every ε > 0 there exist
a T0 such that the vertex set V (G) of any graph G can be partitioned into t ≤ T0

classes V (G) = V1 ∪ · · · ∪ Vt, so that all but εt2 pairs (Vi, Vj) are ε-regular.

Many applications of the Regularity Lemma are based on its accompanying
Counting Lemma (see, e.g., [9, 10] for a survey).

Theorem 2 (Counting Lemma) If G is an 	-partite graph with V (G) = V1 ∪
· · · ∪ V� and |Vi| = n for all i ∈ [	], and all pairs (Vi, Vj) are ε-regular of density d

for 1 ≤ i < j ≤ 	, then G contains (1±f�(ε))d(�
2)×n� cliques K� of order 	, where

f�(ε) → 0 as ε → 0.

We discuss a generalization of Szemerédi’s Regularity Lemma from graphs to k-
uniform hypergraphs, which allows us to prove an accompanying Counting Lemma.
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Unlike for graphs, there are several “natural ways” to define “regularity” for k-
uniform hypergraphs. Consequently, various forms of a Regularity Lemma for
hypergraphs have been already considered in [1, 2, 4, 6, 13]. None of these Regu-
larity Lemmas seemed to admit a companion counting result (i.e., a corresponding
generalization of Theorem 2). The first attempt of developing a Hypergraph Reg-
ularity Lemma with a corresponding Counting Lemma was undertaken by Frankl
and the speaker in [5] for 3-uniform hypergraphs. Recently, the speaker in collab-
oration with Skokan [17] established a generalization of this Regularity Lemma to
k-uniform hypergraphs for any k ≥ 3.

Analogously to the feature that Szemerédi’s Regularity Lemma decomposes
a given graph into an ε-regular partition, this Hypergraph Regularity Lemma
decomposes the edge set of a given k-uniform hypergraph into constantly many
“blocks”, almost all of which are, in a specific sense, “quasi-random”. The concept
of hypergraph regularity which plays the analogous role of the ε-regular pair is,
unfortunately, considerably more technical than its graph counterpart, and we
cannot give the precise definitions here.

Just as Theorem 2, the Counting Lemma, is an important companion statement
to Szemerédi’s Regularity Lemma, most applications of the Hypergraph Regularity
Lemma from [17] require a similar companion lemma - the “general Counting
Lemma”. Analogously to Theorem 2, the general Counting Lemma estimates the
number of copies of the clique K

(k)
� (i.e., the complete k-uniform hypergraph on

	 vertices) contained in an appropriate collection of “dense and regular blocks”
within a regular partition provided by the Hypergraph Regularity Lemma. Such
a Counting Lemma was established for special cases (k = 3, 	 > 3 and k = 4,
	 = 5) in [5, 11, 16]. Recently, in [12] Nagle, Schacht and the speaker, succeeded
to prove the general Counting Lemma for any 	 > k ≥ 2, reducing it to an earlier
result from [8]. This Counting Lemma together with the Hyergraph Regularity
Lemma of [17] can be viewed as a generalization of the Regularity Method from
graphs to uniform hypergraphs. A similar extension was independently obtained
by Gowers [7].

These generalizations can be applied to several extremal hypergraph problems.
In particular, answering a question of Erdős, Frankl, and speaker [3], we proved
the following theorem in [15]

Theorem 3 Suppose an n-vertex k-uniform hypergraph H contains only o(n�)
copies of K

(k)
� . Then one can delete o(nk) edges of H to make it K

(k)
� -free.

It is known that this theorem can be used to give an alternative proof the
well-known Density Theorem of Szemerédi regarding the upper density of sets
containing no arithmetic progression of fixed length (see [5, 15]). Moreover, it can
also be used to derive combinatorial proofs to some of the density theorems of
Furstenberg and Katznelson (see [7, 14, 18]).
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Graph Parameters and Reflection Positivity
Alexander Schrijver

(joint work with Michael H. Freedman and László Lovász [1])

We characterize which real-valued (undirected) graph parameters are of the
following type, where H is a graph and α : V H → R+ and β : EH → R:

fH,α,β(G) :=
∑

φ:V G→V H
φ homomorphism

(
∏

v∈V G

αφ(v))(
∏

uv∈EG

βφ(u)φ(v)). (1)

Here φ : V G → V H is a homomorphism if φ(u)φ(v) ∈ EH for all uv ∈ EG. (So if
φ(u) = φ(v), then H has a loop at φ(u).) To reduce technicalities, it has turned
out to be convenient to assume that G has no loops but may have multiple edges,
while H has no multiple edges but may have loops.

Several graph parameters are indeed of this type. A first example of such a
parameter is f(G) := the number of k-vertex-colourings of G (for some fixed k).
Then we can take H = Kk (the complete loopless graph on k vertices), and α and
β the all-one functions on V G and EG respectively. More generally, by taking
any graph H and α ≡ 1 and β ≡ 1, f(G) counts the number of homomorphism
of G into H . By taking H to be a two-vertex graph with one edge connecting the
two vertices and a loop at one of the two vertices, f(G) then counts the number
of stable sets of G.

Other examples are given by the partition functions of several models in sta-
tistical mechanics. Then H can be taken to be a complete graph with all loops
attached, and V H is interpreted as the set of states certain elements of a system
G can adopt. The function β : EH → R describes the energy of the interaction
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of two neighbouring states, while α : V H → R+ can be the external energy of the
different states, or, alternatively, if

∑
v∈V H αv = 1, αv may be the probability that

an element is in state v. Then any function φ : V G → V H is a configuration of
system G, and fH,α,β(G) is the total or average energy of the system. (A different
interpretation of this model is in economics, where β gives the profit or cost of
certain interactions, and fH,α,β gives the expected profit or cost.)

It will follow from our theorem (but also a direct construction based on charac-
ters can be made) that also the following graph parameters are of the type above.
Let Γ be a finite abelian group and let S be a subset of Γ with −S = S (i.e.,
−s ∈ S if s ∈ S). For any graph G, fix an arbitrary orientation. Call a function
x : EG → Γ an S-flow if all values of x are in S and x satisfies the flow conserva-
tion law at each vertex v of G: the inflow is equal to the outflow. Let f(G) be the
number of S-flows. (Since −S = S, this number is independent of the orientation
chosen.) A well-known example is when Γ is the cyclic group with k elements and
S = Γ \ {0}. Then an S-flow corresponds to a nowhere-zero k-flow, and Tutte’s
nowhere-zero 5-flow conjecture says that f(G) > 0 if k = 5 and G has no bridges.
(It can be shown that for the case of nowhere-zero k-flows, we can take for H the
complete graph on k vertices with all loops attached, and set α(v) = 1/k for each
v ∈ V H , β(e) = k − 1 for each nonloop edge e of H , and β(e) = −1 for each loop
e of H .)

The question of characterizing the graph parameters of form (1) is motivated,
among others, by the question of the physical realizability of certain graph param-
eters. It turns out that two conditions on certain matrices derived from the graph
parameter are necessary and sufficient: restricted (namely exponential) growth
of the ranks and positive semidefiniteness — a condition that corresponds to the
well-known reflection positivity in statistical mechanics.

These matrices are described as follows. For any integer k ≥ 0, let Gk be the
set of graphs in which k of the vertices are labeled 1, . . . , k, while the remaining
vertices are unlabeled. For G, G′ ∈ Gk, let GG′ denote the graph obtained by first
taking the disjoint sum of G and G′, and next identifying equally labeled vertices.
(So GG′ has |V G| + |V G′| − k vertices.) For any graph parameter f , let Mf,k be
the (infinite) Gk × Gk matrix whose entry in position G, G′ is equal to f(GG′).

Then for any graph parameter f (where K0 is the graph with no vertices and
edges):

Theorem 1 There exist H, α : V H → R+ and β : EH → R such that f = fH,α,β

if and only if f(K0) = 1 and there exists a c such that each Mf,k is positive
semidefinite and has degree at most ck.

Necessity can be shown rather straightforwardly. The method for proving
sufficiency is based on considering each Gk as a semigroup (taking GG′ above as
multiplication), making the semigroup algebra over Gk, and taking the quotient
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algebra over the null-space of Mf,k, thus obtaining a finite-dimensional Banach
algebra, which has a basis of idempotents. The interaction of the idempotents
between these algebras for different values of k gives us the combinatorics to find
H and the functions α and β.

Extension of this method gives similar results for directed graph and hyper-
graph parameters, and more generally for any parameter for systems that have a
certain semigroup structure.
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Claw-free Graphs

Paul Seymour
(joint work with Maria Chudnovsky)

A graph is claw-free if no induced subgraph is isomorphic to the complete
bipartite graph K1,3. We give a structural description of all claw-free graphs with
the additional property that every vertex is in a 3-vertex stable set.

One way to formulate our result is that, for every claw-free graph G, either G
belongs to one of (about ten) well-understood basic classes of graphs, or G admits
one of (about five) types of decomposition, or some vertex is not in a stable set
of size 3. Having proved that, we can stand back and ask, what does this tell us
about the “global structure” of G? And there is indeed a “structure theorem”,
but we are still working on its precise formulation, and for this abstract we confine
ourselves to the decomposition theorem.

First, here are a few kinds of claw-free graphs.

• Line graphs. If H is a graph, its line graph L(H) is the graph with vertex
set E(H), in which distinct e, f ∈ E(H) are adjacent if and only if they have
a common end in H .

• The icosahedron. This is the unique planar graph with twelve vertices all
of degree five.

• The Schläfli graph. Let G be the graph with 27 vertices ai,j,k (1 ≤ i, j, k ≤
3), and with adjacency as follows. ai,j,k is adjacent to ai′,j′,k′ if and only if
either
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– k′ = k and either i′ = i or j′ = j, or

– k′ = k + 1 (mod 3) and j′ �= i, or

– k′ = k + 2 (mod 3) and i′ �= j.

• Circular interval graphs. Let Σ be a circle and let F1, . . . , Fk be subsets
of Σ, each homeomorphic to the closed interval [0, 1], and no three with union
Σ. Let V be a finite subset of Σ, and let G be the graph with vertex set V
in which v1, v2 ∈ V are adjacent if and only v1, v2 ∈ Fi for some i.

• XX-configurations. Let G be the graph with vertex set {v1, . . . , v13},
with adjacency as follows. v1- · · · -v6 is a hole in G of length 6. Next, v7

is adjacent to v1, v2; v8 is adjacent to v4, v5, and possibly to v7; v9 is ad-
jacent to v6, v1, v2, v3; v10 is adjacent to v3, v4, v5, v6, v9; v11 is adjacent to
v3, v4, v6, v1, v9, v10; v12 is adjacent to v2, v3, v5, v6, v9, v10; and v13 is adjacent
to v1, v2, v4, v5, v7, v8.

• An extension of L(K6). Let H be the graph with seven vertices h0, . . . , h6,
in which h1, . . . , h6 are pairwise adjacent and h0 is adjacent to h1. Let G
be the graph obtained from the line graph L(H) of H by adding one new
vertex, adjacent precisely to the members of V (L(H)) = E(H) that are not
incident with h1 in H .

• The graph of crosses. Let k ≥ 1. Let G have vertex set the union of
nine disjoint sets Ai,j (1 ≤ i, j ≤ 3), where A2,1,A2,3, A1,2,A3,2 all have
cardinality k, and the other five have cardinality 1. Let every vertex of Ai,j

be adjacent to every vertex of Ai′,j′ if either i = i′ or j = j′, and otherwise
let there be no edges between Ai,j and Ai′,j′ . Now we need to change the
adjacency between the four sets A2,1, A2,3, A1,2, A3,2. Order each of these
four sets. If u is the ith vertex of one of these four sets, say Aa,b, and v is
the jth vertex of another of these sets, say Ac,d, let u, v be adjacent if either

– i = j and a �= c and b �= d, or

– i �= j and either a = c or b = d.

• The path of triangles. Let G have vertices v1, . . . , vn with n odd, in which
for i < j, vi is adjacent to vj if either j − i = 1, or j − i = 2 and i is odd, or
j − i ≥ 3 and j − i = 2 mod 3.

For each of these types of graph, we regard the graphs of that type and all
their induced subgraphs as forming one of our basic classes. These are the nicest
of our classes; there are a few others, quite similar, that we omit. (We shall not
attempt a precise statement of the theorem here.)
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Next, decompositions. Two subsets X, Y of V (G) with X∩Y = ∅ are complete
to each other if every vertex of X is adjacent to every vertex of Y , and anticomplete
if no vertex in X is adjacent to a member of Y .

Distinct vertices u, v of G are twins (in G) if they are adjacent and have ex-
actly the same neighbours in V (G) \ {u, v}. Admitting twins is the first of our
decompositions.

Now let A, B be disjoint subsets of V (G). The pair (A, B) is called a homoge-
neous pair of cliques if

• A, B are both cliques

• every vertex v ∈ V (G) \ (A∪B) is either A-complete or A-anticomplete and
either B-complete or B-anticomplete, and

• A is neither complete nor anticomplete to B.

The third kind of decomposition is a 1-join. Suppose that V1, V2 partition
V (G), and for i = 1, 2 there is a subset Ai ⊆ Vi such that:

• for i = 1, 2, Ai is a clique, and Ai, Vi \ Ai are both nonempty

• A1 is complete to A2

• every edge between V1 and V2 is between A1 and A2.

In these circumstances, we say that (V1, V2) is a 1-join.
Next, suppose that V0, V1, V2 are disjoint subsets with union V (G), and for

i = 1, 2 there are subsets Ai, Bi of Vi satisfying the following:

• for i = 1, 2, Ai, Bi are cliques, Ai ∩Bi = ∅ and Ai, Bi and Vi \ (Ai ∪Bi) are
all nonempty

• A1 is complete to A2, and B1 is complete to B2, and there are no other edges
between V1 and V2, and

• V0 is a clique; and for i = 1, 2, V0 is complete to Ai ∪ Bi and anticomplete
to Vi \ (Ai ∪ Bi).

We call the triple (V1, V0, V2) a 2-join. (This is closely related to, but not quite
the same as, what has been called a 2-join in other papers.)

The fifth and last decomposition is the following. Let (V1, V2) be a partition
of V (G), such that for i = 1, 2 there are cliques Ai, Bi, Ci ⊆ Vi with the following
properties:

• For i = 1, 2 the sets Ai, Bi, Ci are pairwise disjoint and have union Vi
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• V1 is complete to V2 except that there are no edges between A1 and A2,
between B1 and B2, and between C1 and C2.

• V1, V2 are both nonempty.

In these circumstances we say that G is a hex-join of G|V1 and G|V2. Note that if
G is expressible as a hex-join as above, then the sets A1 ∪B2, B1∪C2 and C1∪A2

are three cliques with union V (G), and consequently no graph G with α(G) > 3
admits a hex-join. (α(G) denotes the size of the largest stable set in G.)

Let us say a triad in G is a stable set of vertices with cardinality 3. Our main
theorem, then, says:

Theorem 1 For every connected claw-free graph in which every vertex belongs to
a triad, either G belongs to one of the basic classes, or G admits either twins, a
homogeneous pair of cliques, a 1-join, a 2-join or a hex-join.

It is convenient to break the proof (and indeed, the full statement of the theo-
rem) into four cases:

• α(G) ≥ 4

• α(G) ≤ 3, but there are four vertices so that only one pair of them is adjacent

• for every triad, every vertex not in X has exactly two neighbours in X , and
every vertex is in a triad

• for every triad, every vertex not in X has exactly two neighbours in X , and
some vertex is not in any triad.

In each case (except the fourth, where we have nothing to say), we have a result
that “either G belongs to a basic class or G admits a decomposition”, but the
basic classes and decompositions are different for different types. We omit further
details here. Some of these results are written in [1, 2].
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Paradoxical Decompositions and Growth Properties
Vera T. Sós

The theory of paradoxical decompositions arose in connection with the exis-
tence of non-Lebesgue measurable sets.

The non-existence of isometry-invariant finitely additive measure in R3 was
proved by Banach and Tarski (1924) [1] by means of paradoxical decomposition.
They proved that it is possible to partition the unit ball in R3 into finitely many
pieces and to rearrange them by rigid motions (using isometric transformations)
to form two unit balls. This “duplication”, this “paradoxical decomposition” of
the ball at first seems to be impossible.

The analysis of this surprising phenomenon led to the concept of amenable
groups introduced and studied first by von Neumann (1929) [10]. Since that time
the subject developed into a field which has importance beside analysis, group
theory and geometry in discrete mathematics and computer science (e.g., in the
theory of random walks, percolation, expanders).

The Hausdorff-Banach-Tarski paradoxical decompositions of the ball (or of the
sphere) in Rd exist for d = 3 (and also for d > 3), but do not exist for d = 1 and
d = 2.

Von Neumann discovered that these different phenomena are due to the dif-
ference between the isometry groups of R1, R2 and R3, the latter one is more
“rich”. He considered a general setting where the basic notions are the finitely
additive group invariant measure (or invariant mean) and the paradoxical groups
(or amenable groups=non-paradoxical groups).

The objective of the present talk is to give some illustrations and indications
of the wide range of topics which developed from the subject mentioned above,
providing some motivation of the particular problem considered in the paper of
Deuber, Simonovits and Sós [3] and some of its aftermath.

In the paper [3] - - for an arbitrary metric space the concept of wobbling trans-
formations (called more recently also bounded perturbation of the identity) is in-
troduced.

Definition. Let (X, d) be a metric space, A, B ⊆ X . A bijection f : A → B is
called a wobbling bijection if

sup
x∈A

d(x, f(x)) < ∞ .

A, B ⊆ X are called wobbling equivalent if there is a wobbling bijection f : A → B.
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Definition. The set A ⊆ X is called wobbling paradoxical if there is a decompo-
sition

A = A1 ∪ A2, A1 ∩ A2 = ∅
such that A, A1, A2 are pairwise wobbling equivalent.

In [3] wobbling paradoxicity is characterized by the following growth condition:
For A ⊂ X , k > 0 let Nk(A) denote the k-neighbourhood of A:

Nk(A) = {x ∈ X : d(x, A) ≤ k} .

Definition. The metric space (X, d) is doubling, if there is a k > 0 such that

|Nk(A)| ≥ 2|A|for every finiteA ⊂ X.

Theorem 1 Let (X, d) be a discrete and countable metric space. (X, d) is wobbling
paradoxical if and only if it is doubling.

In the lecture we surveyed the connection of wobbling paradoxicity to the
amenability of groups, to theory of random walks on graphs and groups and some
recent applications of the doubling property and wobbling paradoxicity.

A survey paper written jointly with Gábor Elek will appear in a Volume dedi-
cated to the memory of Walter Deuber.

For detailed information and references about the extremely wide area the
reader is referred to the excellent books like of Gromov [5], de la Harpe [6],
Lubotzky [9], Paterson[11], Wagon [13], Woess [14], and the many survey pa-
pers on these subjects, e.g., by Ceccherini-Silberstein, Grigorchuk and de la Harpe
[2], Laczkovich [7], [8], Thomassen and Woess [12].
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On the Sparse Regularity Lemma

Angelika Steger
(joint work with S. Gerke, Y. Kohayakawa, V. Rödl)

Over the last decades Szemerédi’s regularity lemma [17] has proven to be a very
powerful tool in modern graph theory. Roughly speaking, the regularity lemma
asserts that one can partition a graph G into a constant number of equal-size parts
in such a way that most parts are pairwise ε-regular; see [1, 2, 14] for the precise
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statement of Szemerédi’s regularity lemma and some applications. Unfortunately,
in its original setting it only gives nontrivial results for dense graphs, that is graphs
with Θ(n2) edges. In 1996 Kohayakawa [10] and independently Rödl introduced
a variant which holds for sparse graphs, provided they satisfy some additional
structural conditions (which essentially mean that the graph does not contain too
dense spots). However, using this sparse regularity lemma to prove extremal and
Ramsey type results similar to the known results in the dense case, requires an
additional key step, as �Luczak showed that one cannot directly generalise the
methods used for dense graphs to the sparse case, see [12]. The missing step has
been formulated as a conjecture by Kohayakawa, �Luczak and Rödl [11], see also
[12]. Over the last few years this conjecture has already attracted considerable
attention; see [9] and the references therein. One reason for the popularity of the
conjecture is its connection with Turán-type problems in random graphs: if the
K�LR conjecture is true for a graph H , then asymptotically almost surely (a.a.s.)
the number of edges in any H-free subgraph of a binomial random graph Gn,p is
at most ((1−1/(χ(H)−1)+ε)

(
n
2

)
p for any ε > 0 as long as p > C(ε, H)n−1/d2(H).

Here χ(H) denotes the chromatic number of H , and d2(H) denotes the 2-density
of H . Observe that the bound on the number of edges in an H-free subgraph is
essentially best possible since every graph G contains a (χ(H)−1)-partite subgraph
with (1− 1/(χ(H)− 1))|E(G)| edges. Also the result is not true for much smaller
p since then a.a.s. the number of copies of H in Gn.p is much smaller than the
number of edges; see [9].

This Turán-type result has been established in a series of papers for various
special cases, each requiring its own a tailor-made proof. It is now known when
H = K3 is a triangle [3], H is a cycle of arbitrary length [4, 7, 8], and when
H = K4 is the complete graph on four vertices [11]. If one only considers denser
random graphs, where p is about the square root of the conjectured value, then
the result is also known to be true for all complete graphs [13, 16].

In fact in their paper [11] Kohayakawa, �Luczak and Rödl not only proved the
Turán problem for H = K4, but also outlined a proof strategy based on the sparse
regularity lemma which would prove the Turán result for general graphs H , if one
could prove an equivalent of the well known embedding lemma for dense graphs
in the sparse context as well. They formulated this requirement as a conjecture
— the above mentioned K�LR-conjecture.

In the remainder of this abstract we first state the K�LR-conjecture precisely
and then report on recent achievements.

Definition 1 A bipartite graph B = (U
·∪W, E) is called (ε, p)-regular if for all

U ′ ⊆ U and W ′ ⊆ W with |U ′| ≥ εn and |W ′| ≥ εn,∣∣∣∣ |E(U ′, W ′)|
p · |U ′| · |W ′| −

|E(U, W )|
p · |U | · |W |

∣∣∣∣ ≤ ε.
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If instead all such U ′ ⊆ U W ′ ⊆ W just satisfy

|E(U ′, W ′)| ≥ p · λ · |U ′| · |W ′|

for some constant λ > 0 the graph B = (U
·∪W, E) is called (ε, p, λ)-lower regular.

Definition 2 Let H be a graph on l vertices. An l-partite graph G = (V1 ∪ . . . ∪
Vl, E) on l pairwise disjoint vertex sets Vi of size n each is called (H, n, m, ε)-
regular if the graph induced by Vi, Vj is (ε, m/n2)-regular whenever {i, j} ∈ E(H)
and there are no edges between Vi and Vj otherwise. The set of all (H, n, m, ε)-
regular graphs is denoted by S(H ; n, m, ε), and F(H ; n, m, ε) is the set of all graphs
in S(H ; n, m, ε) not containing H as a subgraph.

The K�LR-conjecture can now be formulated as follows.

Conjecture 3 Let H be an arbitrary graph and β > 0, then there exist positive
constants ε0, C, n0 such that

|F(H, n, m, ε)| < βm

(
n2

m

)e(H)

for all m ≥ Cn2−1/d2(H), n ≥ n0 and 0 < ε ≤ ε0, where d2(H) = max{ e(F )−1
v(F )−2 :

F ⊆ H, v(F ) > 2}.

Note that
(
n2

m

)e(H)
is the number of graphs which are “blow-ups” of H , and

it is not hard to see that it is also asymptotically equal to |S(H, n, m, ε)|, so the
conjecture asserts that only an exponentially small fraction βm of such graphs are
H-free. It was shown by �Luczak that |F(H, n, m; ε)| > 0 for some graphs H , see
[12] where �Luczak is quoted.

The conjecture is easily seen to be true for trees. It is also known to be true
for cycles [15] and for the complete graphs H = K4 and K5 on four respectively
five vertices [5, 6].

One of the key difficulties in the proof of the K�LR-conjecture is the fact that
for m = o(n2) the size of a neighbourhood of a vertex is on average o(n). The
definition of regularity, however, only deals with linear sized subsets and thus
regularity seem to be not inherited by subgraphs induced on the neighborhoods of
some vertices. Recently we were able to prove that nevertheless in the sparse case
a hereditary version holds as well.

Theorem 4 For all β, ε′, λ > 0 there exist ε, C > 0 such that for all (ε, p, λ)-

regular graphs B = (U
·∪W, E) the following holds. For all q ≥ C(λp)−1 there

exist at most βq
(|U|

q

)
sets Q ⊆ U such that (Q, W ) is not (ε′, p, λε′/32)-lower

regular.
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This lemma readily implies much shorter and elegant proofs of the results
known so far. It can also be used to prove the Turán result for H = K6 and,
hopefully, more general results in the near future.
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graphs. Combinatorica 17(2), 1997, pp. 173–213.
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[17] E. Szeméredi. Regular partitions of graphs. In Problémes Combinatoires et
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Solving Extremal Problems Using Stability Theorems

Benjamin Sudakov
(joint work with P. Keevash and in part with N. Alon and J. Balog)

In this talk we discuss a ‘stability approach‘ for solving extremal problems.
Roughly speaking, it can be described as follows. In order to show that given
configuration is a unique optimum for an extremal problem, we first prove an
approximate structure theorem for all constructions whose value is close to the
optimum and then use this theorem to show that any imperfection in the structure
must lead to a suboptimal configuration. To illustrate this strategy, we use the
following results.

• Let Tk(n) be the Turán graph, i.e., the complete k partite graph on n vertices
with class sizes as equal as possible and denote by tk(n) the number of edges
in Tk(n). Then for k ≥ 2 and sufficiently large n every graph G on n vertices
has at most 2tk(n) distinct 2-edge colorings without a monochromatic clique
of size k + 1. Moreover the equality is only possible if G = Tk(n). This
settles a conjecture of Yuster. Our proof is based on Szemerédi’s regularity
lemma together with some additional tools in Extremal Graph Theory, and
provide one of the rare examples of a precise result proved by applying this
lemma.

• The Fano plane is a 3-uniform hypergraph with 7 triples on 7 vertices whose
edges correspond to the lines of the projective plane over the field with two
elements. We show that the maximum number of triples on n vertices not
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containing a copy of the Fano plane can be obtain by partitioning vertices
into two equal parts and taking all the triples which intersect both of them.
This confirms a conjecture of V. Sós from 1976 which was also independently
proved by Füredi and Simonovits.

• Let C(2k)
r be the 2k-uniform hypergraph obtained by letting P1, · · · , Pr be

pairwise disjoint sets of size k and taking as edges all sets Pi ∪Pj with i �= j.
This can be thought of as the ‘k-expansion’ of the complete graph Kr: each
vertex has been replaced with a set of size k. An example of a hypergraph
with vertex set V that does not contain C(2k)

3 can be obtained by partitioning
V = V1 ∪ V2 and taking as edges all sets of size 2k that intersect each of V1

and V2 in an odd number of elements. Let B(2k)
n denote a hypergraph on n

vertices obtained by this construction that has as many edges as possible.
We prove a conjecture of Frankl, which states that any hypergraph on n

vertices that contains no C(2k)
3 has at most as many edges as B(2k)

n .

Sidorenko has given an upper bound of r−2
r−1 for the Turán density of C(2k)

r

for any r, and a construction establishing a matching lower bound when
r is of the form 2p + 1. We also show that when r = 2p + 1, any C(4)

r -
free hypergraph of density r−2

r−1 − o(1) looks approximately like Sidorenko’s
construction. On the other hand, when r is not of this form, we show that
corresponding constructions do not exist and improve the upper bound on
the Turán density of C(4)

r to r−2
r−1 − c(r), where c(r) is a constant depending

only on r.

To prove these results we use the tools from extremal graph theory, linear
algebra, the Kruskal-Katona theorem and properties of Krawtchouck poly-
nomials.

All these results were obtained jointly with P. Keevash and the first one was
also obtained jointly with N. Alon and J. Balogh.

Canonical Colourings with Many Colours
Anusch Taraz

(joint work with B. Bollobás, Y. Kohayakawa, V. Rödl, M. Schacht)

Canonical colouring theorems state that, roughly spoken, every colouring of a
sufficiently large object exhibits a local pattern of a given size that is coloured in a
very regular way. From this point of view, partition theorems such as Ramsey’s or
van der Waerden’s theorem deal with the special case of colourings with a bounded
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numbers of colours and assert that here, the local pattern can be guaranteed to be
monochromatic. The topic of this talk, on the contrary, is to determine conditions
that ensure local spots which are rich in colours. Our objects of interest will be
both cliques in hypergraphs as well as arithmetic progressions on the integers.

Let us begin with arithmetic progressions. The classical theorem of van der
Waerden states that every colouring of the first n natural numbers with at most
t colours must contain a monochromatic k-term arithmetic progression, provided
that n is sufficiently large compared to t and k. If no restriction on the number of
colours is given, then the canonical colouring theorem by Erdős and Graham [2]
states that we must find a monochromatic k-AP or an injective k-AP; i.e. one
which uses pairwise distinct colours.

What condition could guarantee the latter of the two outcomes? It is not
enough to merely ask for the colouring to use many colours globally, as can be seen
by the following simple example. If 	 = 3i · r, where r isn’t divisible by 3, then
colour the number 	 with colour i. Obviously this colouring uses an unbounded
number of colours, but it is easy to see that not even an injective 3-AP will appear.
Thus we need a stronger requirement on the colourfulness.

Theorem 1 For every k ∈ N and for every ε > 0 there exist integers t and n0

such that for every n ≥ n0 every colouring γ : [n] → N with the property that

∀T ⊆ [n] with |T | ≥ (1 − ε)n : |γ(T )| > t

must contain an injective k-term arithmetic progression.

The proof of this theorem is in fact quite short, as it can be based on a quantita-
tive version [3] of Szemerédi’s famous density theorem for arithmetic progressions.
For graphs and hypergraphs such a density result does not hold and therefore the
situation becomes more difficult. Here we are considering colourings of E(Kr

n),
the edges of the complete r-uniform hypergraph on n vertices. For the sake of
a simpler exposition, we only mention the case r = 3 here. Given a family of
disjoint vertex sets V1, . . . , Vs, we say that two edges e, e′ ⊂ V1 ∪· · ·∪Vs are of the
same type if |e ∩ Vj | = |e′ ∩ Vj | for all j = 1, . . . , s. Generalizing the result in [1],
the following theorem asserts, roughly spoken, the existence of colourful canonical
colourings which may be 1-partite, 2-partite or 3-partite.

Theorem 2 For every k ∈ N and for every ε > 0 there exist integers t and n0

such that for every n ≥ n0 every colouring γ : E(K(3)
n ) → N with the property that

∀T ⊆ E(K(3)
n ) with |T | ≥ (1 − ε)

(
n

3

)
: |γ(T )| > t

must contain one of the following colourful canonical colourings:
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• there exists a set V1 and an index i ∈ {1, 2, 3} such that |V1| = k and so that
two edges contained in V1 receive the same colour only if their i-th vertices
in V1 are identical, or

• there exist sets V1, V2 and indices i ∈ {1, 2, 3} and j ∈ {1, 2} such that
|V1| = |V2| = k and so that two edges of the same type receive the same
colour only if their i-th vertices in Vj are identical, or

• there exist sets V1, V2, V3 and indices i ∈ {1, 2, 3} and j ∈ {1, 2, 3} such that
|V1| = |V2| = |V3| = k and so that two edges of the same type receive the
same colour only if their i-th vertices in Vj are identical.

As an application of this theorem we consider (	, H)-local colourings. For fixed
integer 	 and hypergraph H , a colouring of E(Kr

n) is said to be (	, H)-local, if
every copy of H in Kr

n is coloured with at most 	 different colours. Obviously, the
larger we choose 	, the more colours can appear in an (	, H)-local colouring. We
address two questions:

• Given H , what is the largest value of 	 such that the maximum number of
colours used by an (	, H)-local colouring is still bounded?

• Given H , what is the largest value of 	 such that the maximum number of
colours used by an (	, H)-local colouring is still essentially bounded?

Here the term essentially bounded means the following: for every ε > 0, the
colouring is such that after the removal of a suitably chosen ε-fraction of the edges,
the remaining edges only use a bounded number of colours.
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Chromatic Numbers of Triangle-free Graphs and their Complements
Carsten Thomassen

It is easy to see that triangle-free graphs may have large minimum degree. It
is also well-known that they may have arbitrarily large chromatic numbers. Can
these two phenomena happen simultaneously? Erdős and Simonovits asked in
1973 for which positive real numbers c, there exists a function f(c) such that the
following holds: If G is a triangle-free graph with n vertices and minimum degree
at least cn, then the chromatic number is at most f(c). (In other words, the
chromatic number is independent of the number of vertices of the graph). They
proved that f(c) does not exist for c < 1/3. I proved a few years ago that f(c)
exists for each c > 1/3. So only the case c = 1/3 remains open. S. Brandt has
conjectured that f(1/3) = 4.

Hajos’ conjecture says that every graph of chromatic number k contains a
subdivision of the complete graph on k vertices. The conjecture was disproved
by Catlin in 1979 for all k greater than 6. Kühn and Osthus have verified Hajos’
conjecture for graphs of girth greater than 100. The conjecture is open for triangle-
free graphs. I showed recently that, if a regular triangle-free graph has bipartite
edge-index greater than the number of vertices of the graph, then the complement
is a counterexample to Hajos’ conjecture. Thus, the complements of triangle-free
graphs provide a large class of interesting counterexamples, and it is conceivable
that some of these might be counterexamples to Hadwiger’s conjecture as well.
Searching for possible counterexamples, I tried to investigate the bipartite edge-
index of triangle-free graphs on a fixed surface, in particular the projective plane.
I found no natural graphs with a sufficiently large bipartite edge-index. Instead I
found some with a small bipartite edge-index solving two open problems stated in
Bollobas’ classical monograph ”Extremal Graph Theory” from 1978. One of the
problems, due to Erdős, involves the smallest possible bipartite edge-index g(n)
of a 4-color-critical graph on n vertices. Erdős asked if g(n) tends to infinity as n
tends to infinity. I showed that g(n) equals 3 or 4 for infinitely many n.

Dynamic Configuration of Optical Telecommunication Networks

Andreas Tuchscherer

We investigate methods for online call admission and routing and wavelength
assignment in optical telecommunication networks. On demand connections are
established by lightpaths which are optical channels that operate on one wave-
length and can pass several network links without any opto-electronic conversion.
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Definition 1 An optical network is a triple (G, Λ, W ), where

• G = (V, E) is a simple and undirected graph,

• Λ = {λ1, . . . , λk} is a set of wavelengths, and

• W : E → 2Λ is a map from E to the power set of Λ, where W (e) is the set
of wavelengths generally available on edge e.

A lightpath in the optical network (G, Λ, W ) is a pair (p, λ) which consists of a
path p in G together with a wavelength λ ∈ Λ such that λ ∈ W (e) for each edge
e ∈ E(p).

The Wavelength Division Multiplexing technique allows for using different wave-
lengths on one edge simultaneously. However, each wavelength on an edge cannot
be used by more than one lightpath at the same time.

Definition 2 (Wavelength conflict constraint) For each pair of simultane-
ously routed lightpaths (p1, λ1) and (p2, λ2) in an optical network (G, Λ, W ), we
have:

E(p1) ∩ E(p2) = ∅ or λ1 �= λ2.

A lightpath (p, λ) is called free if it can be realized without violating the wavelength
conflict constraint.

The considered problem can be formulated as follows.

Definition 3 (Dynamic Singleclass Call Admission Problem) An instance
of the Dynamic Singleclass Call Admission Problem (Dsca) is given by an opti-
cal network (G, Λ, W ), a time horizon T , and a sequence of connection requests
(σ1, σ2, . . .) with σj = (uj, vj , bj, tj , dj , pj), where

uj, vj ∈ V are the end nodes,
bj ∈ N is the number of required lightpaths,

tj ∈ [0, T ] is the start time,
dj ∈ R+ is the duration,
pj ∈ R+ is the profit.

The task is to maximize the total profit gained such that valid answers are given
to all connection requests. The answer for each σj must be given without knowl-
edge of calls with later start times and specifies whether the request is accepted or
rejected. If σj is accepted, it contributes pj to the total profit but requires that bj

lightpaths connecting uj and vj are realized in (G, Λ, W ) from tj until tj + dj. In
doing so, the wavelength conflict constraint must be satisfied all the time.
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Concerning the evaluation of online algorithms for the problem Dsca by com-
petitive analysis, the following negative result can easily be shown.

Theorem 4 ([Tuc03]) For the problem Dsca with dj = ∞ and pj = bj for each
request σj, the competitive ratio of each deterministic competitive algorithm is km,
where k denotes the number of wavelengths and m denotes the number of edges in
the optical network.

In the following, we report on the practical approach. The algorithms below
are evaluated by simulation. The greedy algorithms have originally been proposed
in [MA98]. We distinguish between two variants: partial wavelength search (pws)
and total wavelength search (tws).

pws: Let λi1 , . . . , λik
be some order on the set of wavelengths. If there is a

free [u, v]-lightpath, route a shortest one in wavelength λ, where λ is
the first wavelength in the order providing any free [u, v]-lightpath.

tws: Let λi1 , . . . , λik
be some order on the set of wavelengths. If there is

a free [u, v]-lightpath, route a shortest one in wavelength λ, where λ
is the first wavelength in the order providing a globally shortest free
[u, v]-lightpath.

Sorting the wavelengths in order of decreasing current availability (number
of edges where the wavelength can currently be used) turned out to yield the
best versions in partial and total wavelength search (see [Tuc03]). We denote the
corresponding algorithms by pack(p) and pack(t).

The second class of algorithms (network fitness algorithms) have been devel-
oped at Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB) in a joint
project with T-Systems Nova GmbH.

fit: Let fit : S → R+ be some network fitness function, where S denotes
the set of all possible network states of (G, Λ, W ) (a network state
corresponds to a configuration of routed lightpaths). If there is a free
[u, v]-lightpath, route such a lightpath (p, λ) that the resulting state
S + (p, λ) yields a maximum fitness value.

We consider two network fitness algorithms called available-lightpaths-reduc-
tion (alr) and single-flow-reduction (sfr). While alr defines the fitness as the
total number of currently free lightpaths, the algorithm sfr defines the fitness as
the sum over all pairs of nodes s and t and each wavelength λ of the maximum
number of free edge-disjoint [s, t]-lightpaths in wavelength λ.

We have investigated by simulation the blocking probability (ratio of rejected
requests and appeared requests) depending on the traffic load (multiplex factor).
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Figure 2 depicts the results for the four presented algorithms in a setting with
randomly generated calls. It turns out that the total wavelength search version
pack(t) is superior to the partial wavelength search version pack(p) and produces
solutions with about the same quality as alr. The network fitness algorithm sfr

performs best.
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Figure 2: Results of selected algorithms in a 14-nodes network.
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On the Turán Number for the Hexagon
Jacques Verstraëte

(joint work with Zoltan Füredi and Assaf Naor)

One of the fundamental problems in extremal combinatorics is the determina-
tion of the maximum number of edges in a graph which contains no 2k-cycles. The
densest constructions of 2k-cycle-free graphs for certain small values of k arise from
the existence of rank two geometries called generalized k-gons, first introduced by
Tits [5]. These may be defined as rank two geometries whose bipartite incidence
graphs are r-regular graphs of diameter k and girth 2k, where r > 2 and k > 2,
and are known to exist only when k is three, four or six. This fact is an important
consequence of a fundamental theorem of Feit and Higman [3]. It is therefore of in-
terest to examine the extremal problem for quadrilaterals, hexagons, and cycles of
length ten. In these cases, Lazebnik, Ustimenko and Woldar [4] used the existence
of polarities of generalized polygons to construct dense 2k-cycle-free graphs.

Erdős and Simonovits [2] conjectured the asymptotic optimality of these graphs,
by conjecturing that the extremal number for the 2k-cycle is asymptotic to 1

2n1+1/k

as n tends to infinity. This was known to hold for quadrilaterals almost fifty years
ago, but was recently disproved in [4] for cycles of length ten. The only remaining
case allowed by the Feit-Higman theorem is the case of hexagons. In this paper,
we refute the Erdős-Simonovits conjecture for hexagons:

Theorem 1 For infinitely many positive integers n, there are n-vertex hexagon-
free graphs of size at least

3(
√

5 − 2)
(
√

5 − 1)4/3
n4/3 + O(n) ≈ 0.534n4/3.

On the other hand, every n-vertex hexagon-free graph has size at most λn4/3 +
O(n), where λ ≈ 0.627 is the real root of 16λ3 − 4λ2 + λ − 3 = 0.

The proof of Theorem 1 requires a statement about hexagon-free bipartite
graphs, which is interesting in its own right (see de Caen and Szekely [1]).

Theorem 2 Let m, n be positive integers. Then an m by n bipartite hexagon-free
graph has size at most 21/3(mn)2/3 + O(n). When m = 2n or n = 2m, there are
m by n bipartite graphs with 21/3(mn)2/3 + O(n) edges.
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Sharp Bounds on Long Arithmetic Progressions in Sumsets
V. H. Vu

(joint work with E. Szemerédi)

One of the main tasks of additive number theory is to examine structural
properties of sumsets. For a set A of integers, the sumset lA = A+ · · ·+A consists
of those numbers which can be represented as a sum of l elements of A. A closely
related notion is that of l∗A, which is the collection of numbers which can be
represented as a sum of l different elements of A. Among the most well-known
results in all mathematics are Vinogradov’s theorem which says that 3P (P is the
set of primes) contains all sufficiently large odd number and Waring’s conjecture
(proved by Hilbert, Hardy and Littlewood, Hua, and many others) which asserts
that for any given r, there is a number l such that l∗Nr (Nr denotes the set of
rth powers) contains all sufficiently large positive integers (see [16] for an excellent
exposition concerning these results).

In recent years, a considerable amount of attention has been paid to the study
of finite sumsets. For a finite set A, the natural analogue of Vinogadov-Waring
results is to show that under proper conditions, a finite set sumset lA (l∗A) contains
a long arithmetic progression.

Let us assume that A is a subset of the interval [n] = {1, . . . , n}, where n is
a large positive integer. The concrete problem we would like to talk about is to
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estimate the length of the longest arithmetic progression in lA (l∗A) as a function
of l, n and |A| (we are, of course, talking about the worst set A). This problem was
stated explicitly for the sumset lA in a survey of Freiman, but we notice that many
results had been proved earlier [1, 11, 12, 5]. We adapt a notation from Freiman’s
paper and denote by f(|A|, l, n) the minimum length of the longest arithmetic
progression in lA, where the minimum is taken over all sets A ⊂ [n] with |A|
elements (f∗(|A|, l, n) is defined similarly).

In this paper, we solve the problem completely for a wide range of l and |A|.
In fact, our method carries us far beyond our original aim of estimating f(|A|, l, n)
and f∗(|A|, l, n). We are able to show that lA and l∗A not only contain large
arithmetic progressions, but also large proper generalized arithmetic progressions.
Let us state the result for lA.

Theorem 1 For any fixed positive integer d there are positive constants C and c
depending on d such that the following holds. For any positive integers n and l
and any set A ⊂ [n] satisfying ld|A| ≥ Cn, lA contains an arithmetic progression
of length cl|A|1/d.

Corollary 2 For any fixed positive integer d there are positive constants C1, C2,
c1 and c2 depending on d and ε such that whenever C1n

ld
≤ |A| ≤ C2n

ld−1

c1l|A|1/d ≤ f(|A|, l, n) ≤ c2l|A|1/d.

Theorem 3 For any fixed positive integer d there are positive constants C and c
depending on d such that the following holds. For any positive integers n and l
and any set A ⊂ [n] satisfying ld|A| ≥ Cn, lA contains a proper GAP of rank d′

and volume at least cld
′|A|, for some d′ ≤ d.

The same results hold for l∗A. However the proofs are much more difficult
because of the assumption that the elements in a sum must be different. We can
also prove similar results for finite fields.

Our results have some interesting applications. In particular, we settle two
forty year old conjectures of Erdős [3] and Folkman [7] (respectively) concerning
infinite arithmetic progressions. Let us end this abstract with the statements of
these conjectures/theorems. For an infinite sequence of integers A, SA denotes the
collection of partial sums of A.

Theorem 4 Let A = a1 < a2 < . . . be a sequence of positive integers with density
at least Cn1/2, where C is a sufficiently large constant. Then SA contains an
infinite arithmetic progression.

This theorem was conjectured by Folkman in 1966 [7] and was a refined form
of an earlier conjecture by Erdős made in 1962 [3] (see also [4] and [10] for more
recent discussions).
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Theorem 5 Let A = a1 < a2 < . . . be a sequence of positive integers with density
at least Cn, where C is a sufficiently large constant. Then SA contains an infinite
arithmetic progression.

By the density of A, we mean the number of elements of A between 1 and n.
In the second theorem, this number may be large than A as we allow repetitions.
It is known since the sixties (see [2]) that both statements are sharp, up to the
constant C.

Most of the results discussed here appear in [14] and [15]. A related paper is
[13], in which an application of different kind is discussed.
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On Musin’s Proof for the Kissing Number in Dimensions 3 and 4

Günter M. Ziegler

The “kissing number problem” asks for the maximal number of white spheres
that can touch a black sphere of the same size in n-dimensional space. The answers
in dimensions one, two and three are classical, while the answers in dimensions
eight and twenty-four were a big surprise in 1979, based on an extremely elegant
method initiated by Philippe Delsarte in the early eighties.

However, despite the fact that in dimension four there is a really special con-
figuration which is conjectured optimal—the shortest vectors in the D4 lattice,
which are also the vertices of a regular 24-cell—it was even proved [1] that the
bounds given by Delsarte’s method aren’t good enough to solve the problem in
dimension four: This may explain the astonishment even to experts when last fall
Oleg Musin announced a solution (currently under review) of the problem, based
on a clever modification of Delsarte’s method [3, 4].

The purpose of my talk was to outline Musin’s new ideas. This started with a
short description of the classical approach, due to Delsarte, Goethals & Seidel [2]:
If f(t) =

∑
k ckG

(n)
k (t) is a non-negative combination of Gegenbauer polynomials

which satisfies f(t) ≤ 0 in the range t ∈ [−1, 1
2 ], then κ(n) ≤ f(1)/c0 is an upper

bound for the kissing number in dimension n. Musin’s modification is to require
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the condition f(t) ≤ 0 only in a range t ∈ [t0, 1
2 ] for some fixed t0 < − 1

2 , while
f(t) must be strictly monotonically decreasing in the range t ∈ [−1, t0]. This leads
to an upper bound on κ(n) in terms of some non-convex non-linear optimization
problems. Musin explains ideas that reduce the dimensions of these optimization
problems considerably. Apparently the problems are rather well-behaved, and can
be solved numerically.

Their solution not only yields κ(4) = 24, but it also gives us a systematic and
conceptual new proof for the Newton–Gregory problem, κ(3) = 12, which was first
resolved by Schütte and van der Waerden (1953).

References

[1] V. V. Arestov and A. G. Babenko, Estimates for the maximal value of
the angular code distance for 24 and 25 points on the unit sphere in �4, Math.
Notes, 68 (2000), pp. 419–435.

[2] P. Delsarte, J. M. Goethals, and J. J. Seidel, Spherical codes and
designs, Geomeetriae Dedicata, 6 (1977), pp. 363–388.

[3] O. R. Musin, The kissing number in four dimensions. Preprint, September
2003, 22 pages; math.MG/0309430.

[4] , The problem of the twenty-five spheres, Russian Math. Surveys, 58
(2003), pp. 794–795.

Reporter: Anusch Taraz



Combinatorics 105

Participants

Prof. Dr. Martin Aigner

aigner@math.fu-berlin.de

Institut für Mathematik II (WE2)
Freie Universität Berlin
Arnimallee 3
D–14195 Berlin

Prof. Dr. Noga Alon

noga@math.tau.ac.il

Department of Mathematics
Sackler Faculty of Exact Sciences
Tel Aviv University
Tel Aviv 69978 – ISRAEL

Prof. Dr. Anders Björner

bjorner@math.kth.se

Dept. of Mathematics
Royal Institute of Technology
S-100 44 Stockholm

Prof. Dr. Aart Blokhuis

aartb@win.tue.nl

Department of Mathematics
Technische Universiteit Eindhoven
Postbus 513
NL-5600 MB Eindhoven

Prof. Dr. Bela Bollobas

Bollobas@msci.memphis.edu

b.bollobas@dpmms.cam.ac.uk

Dept. of Mathematical Sciences
University of Memphis
Memphis, TN 38152 – USA

Prof. Dr. Graham R. Brightwell

graham@tutte.lse.ac.uk

g.r.brightwell@lse.ac.uk

Dept. of Mathematics
London School of Economics
Houghton Street
GB-London WC2A 2AE

Dr. Maria Chudnovsky

mchudnov@Math.Princeton.EDU

Department of Mathematics
Princeton University
Fine Hall
Washington Road
Princeton, NJ 08544-1000 – USA

Prof. Dr. Reinhard Diestel

diestel@math.uni-hamburg.de

Mathematisches Seminar
Universität Hamburg
Bundesstr. 55
D–20146 Hamburg

Prof. Dr. Andras Frank

frank@cs.elte.hu

Department of Operations Research
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Introduction by the Organisers

The Statistics in Finance Workshop, organized by Richard A. Davis (Ft. Collins)
and Claudia Klüppelberg (Technische Universität München), was held January
11-17. This meeting was well attended with over 40 participants with broad geo-
graphic representation from Europe, England, Australia, the Far East, and the US.
This workshop was a nice blend of researchers with various backgrounds includ-
ing statistics, probability, and econometrics. Approximately 33 talks, of varying
lengths, were delivered during the five days. The talks were given by both leading
experts in the field as well as by up and coming stars.

There were several major themes in the various sessions. These included, con-
tinuous time models, Levy processes, stochastic volatility models, GARCH models,
extreme value theory with applications to financial risk, theory of copulas, and op-
tion pricing. This meeting generated a great deal of discussion and often smaller
groups of people met in the evenings for expanded and detailed lectures. A num-
ber of important research contacts were made which we fully expect to stimulate
many new collaborative research projects.

In addition to the excellent scientific program, there were two scheduled so-
cial activities. The inclement weather cleared up just in time for the traditional
Wednesday afternoon hike to Oberwolfach for coffee and Black Forest Cake. The
second activity, which most considered the highlight of the week, was a piano
recital performed by Peter Brockwell and Gernot Müller.

For many of the participants, this was their first trip to Oberwolfach, and they
came away very impressed from the experience. There was a strong consensus
that the “Statistics in Finance Workshop” should become a regular Oberwolfach
event.
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Abstracts

Continuous Time Stochastic Volatility Modelling
and Bipower Variation

Ole. E. Barndorff-Nielsen and Neil Shephard

The theory of semi-martingales and stochastic integration constitutes a powerful
and natural background for continuous time modelling of stochastic volatility, as
observed in financial time series. However, for the models to make financial sense
it is necessary to restrict somewhat from the completely general concept of semi-
martingales (SM). Recall that Y ∈ SM means that Y is of the form Y = A +M
where A ∈ FV and M ∈ Mloc. We wish to think of Y as the log price process
of a financial asset, with the process A expressing potential rewards and M the
risk. For this the decomposition of Y into the sum of A and M should be unique.
This is achieved by requiring A to be predictable (in which case Y is said to be a
special semi-martingale).

If we further assume that M is continuous, M ∈ SMc (below we comment
on alternative possibilities), then this has important consequences. First, if the
model Y is to be arbitrage free then A has also to be continuous, i.e. A ∈ FVc.
Further, by the Dambis-Dubins-Schwarz Theorem, M is then representable as a
time changed Brownian motion (BM). So M = B[M ] and B = MT where [M ] is
the quadratic variation of M and the time-change T is the inverse function of [M ].
(For this it is necessary that [M ]t → ∞ for t → ∞.) Thirdly, supposing that [M ] is
absolutely continuous, of the form [M ] =

∫ t

0 τudu, then, again by the no arbitrage
requirement, A must also be absolutely continuous, A =

∫ t

0
audu. The process

σ =
√

τ expresses the volatility, and it is to be noted that τ , which is termed the
variance process, may have jumps. Finally, the absolute continuity together with
the time-change representation implies that M can be written as Mt =

∫ t

0 σudWu

for a BM W .
Thus the choice for Y has been narrowed to the continuous stochastic volatility

semi-martingale framework (SVSMc) where

(1) Yt =
∫ t

0

audu +
∫ t

0

σudWu.

This type of process is sometimes called a Brownian semi-martingale; but, having
the financial context in mind, we refer to it as a (continuous time) stochastic
volatility process.

For more specific modelling, aimed at representing the important, and widely
established, stylised features of financial observational series, choices have to be
made of the two ingredients a and σ of (1). A simple example for a, of some
definite interest, takes at = µ+βτt. More generally, one may consider at = g(t, τt)
for some smooth function g. As to σ, a number of points have to be considered: (i)
Should σ be a pure diffusion process (or perhaps a superposition of such processes);
or should it be a pure diffusion plus a finite activity (FA) process (finite activity
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meaning that there are only finitely many jumps in any finite time interval), or
should it perhaps be an infinite activity (IA) process (for instance, an inverse
Gaussian OU process or a superposition of such processes, or one of the CARMA
processes introduced by Brockwell (2001), or one of the Lévy driven long-memory
models considered by Anh, Heyde and Leonenko (2002). (ii) Should the model
incorporate leverage, in the sense of dependence between σ and W . (iii) Should
σ be Markovian. And more specifically, how should the law of τ be chosen so
as to capture both the typical ‘exbell’ shape of log returns and the, generally
observed, quasi long range dependence in the log price series. Note that if a is 0,
or independent of σ and W , then under (1) the autocorrelations of the returns are
necessarily 0, in accordance with the empirical facts.

To account for possible jumps in the price process one possibility is to add an
independent FA process to Y . Another is to substitute the σ • W term by either
σ•L or LT where L denotes a Lévy process and T is a time-change. Note that, ex-
cept for stable Lévy motions L, these two approaches are not equivalent; each has
its advantages and drawbacks. A simpler approach is pure Lévy modelling which
replaces Y by L. This already yields significant improvements over the classical
Black-Scholes model, but misses, in particular, the key time-wise dependence fea-
ture of finance data. A further variant, that does model dependence, is the recently
introduced continuous time GARCH model of Klüppelberg, Lindner and Maller
(2004). A great amount of interesting work in this area has been carried out in
the project led by Ernst Eberlein at Freiburg University. And in monograph form
there are now two recent additions to the literature that set out important aspects
of the Lévy based methods: Schoutens (2003) and Cont and Tankov (2003).

Our own joint research has fallen within the framework outlined above, and
much of this will be described in considerable detail in our forthcoming book
Barndorff-Nielsen and Shephard (2005).

The most recent part of this research concerns the new concept of bipower
variation, that we have introduced and studied in Barndorff-Nielsen and Shephard
(2003, 2004). This considers returns over time periods of lengths � and δ, where
nδ = � for some positive integer n and where for concreteness we may think of
� as representing a day, with δ corresponding to 5, 10 or 30 minute consecutive
intervals during that day. In the simplest 1,1 case, we define the realised bipower
variation on the i-th day as the probability limit for δ → 0 of

{Yδ}[1,1]
i =

n∑
j=2

|yj−1,i| |yj,i| ;

here
yj,i = Y(i−1)�+jδ − Y(i−1)�+(j−1)δ, j = 1, 2, ..., n.

The limit of {Yδ}[1,1]
i is denoted by {Y }[1,1]

i . We show that when we add to an SV
process a finite activity jump process then, up to proportionality, the probability
limit of this object (subject to some weak assumptions) is the quadratic variation
of the SV process over the day as δ ↓ 0. Thus the realised bipower variation process
is reasonably robust to jumps.
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An asymptotic distribution theory for realised bipower variation can be calcu-
lated. Further, the joint distribution of realised bipower variation and the qua-
dratic variation version of this, can be calculated under the assumption that there
are no jumps. This allows us to consistently test the hypothesis that the sample
path of price processes have jumps.
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[8] Schoutens, W. (2003): Lévy Processes in Finance: Pricing Financial Derivatives. Wiley,
New York.

Fractionally Integrated Continuous Time ARMA Processes
Peter J. Brockwell

(joint work with Tina Marquardt)

Continuous-time models for time series which exhibit both heavy-tailed and
long-memory behaviour are of considerable interest, especially for the modelling
of financial time series, where such behaviour is frequently observed empirically.
A recent paper of Anh, Heyde and Leonenko (2002) develops such models via the
Green-function solution of fractional differential equations driven by Lévy pro-
cesses. A very general class of Gaussian fractionally integrated continuous time
models with extensive financial applications has also been introduced by Comte
and Renault (1996).

In this paper we consider the class of Lévy-driven continuous-time ARMA
(CARMA) processes and the fractionally integrated (FICARMA) processes ob-
tained by fractional integration of the kernel of the CARMA process. For com-
pleteness we include a brief account of the derivation of this kernel and indicate
its relevance to the stochastic volatility model of Barndorff-Nielsen and Shep-
hard (2001). In the latter paper an Ornstein-Uhlenbeck process driven by a non-
decreasing Lévy process was used to model volatility in a stochastic volatility
model for log asset prices. The stationary Ornstein-Uhlenbeck process,

X(t) =
∫ t

−∞
e−c(t−y)dL(y), c > 0,
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was chosen because it has a non-negative kernel (g(t) = exp(−ct)I[0,∞)(t)) and
consequently, if the driving Lévy process L is non-decreasing, the process X will
be non-negative as is necessary if it is to represent volatility. However the use
of the Ornstein-Uhlenbeck process restricts the class of volatility autocorrelation
functions to functions of the form ρ(h) = exp(−ch) for some c > 0. Barndorff-
Nielsen and Shephard suggested extending this class by using linear combinations
of independent Ornstein-Uhlenbeck processes with positive coefficients, however
the autocorrelation functions are still restricted to be monotone decreasing. If the
Ornstein-Uhlenbeck process is replaced by a non-negative Lévy-driven CARMA
process, a much larger class of autocorrelations can be modelled, and in particular
the monotonicity constraint can be removed (see Brockwell (2003) for further
details).

In this paper we derive explicit expressions for the kernel and auto covariance
functions of a FICARMA process whose autoregressive polynomial has distinct ze-
roes. (Corresponding results for multiple zeroes can be obtained by letting distinct
roots converge to a common limit.) We also consider the asymptotic behaviour of
these functions for large lags. The results are continuous-time analogues of the re-
sults of Sowell (1992) for discrete-time fractionally integrated ARMA processes. A
comprehensive treatment of the latter processes can be found in the book of Beran
(1994). From a second-order point of view, the fractionally integrated CARMA
process is a special case of the (Gaussian) fractionally integrated processes defined
by Comte and Renault (1996), however the particular form of the kernel of the
CARMA process leads to very simple expressions for the kernel and autocovariance
functions for the corresponding fractionally integrated process.

If a CARMA(p, q) process is sampled at times {0, 1, 2, . . .}, it is well-known
that the sampled process is a discrete-time ARMA(p, r) process with r < p. It
is therefore of interest to compare the behaviour of the fractionally integrated
CARMA process sampled at integer times with that of the sampled CARMA
process fractionally integrated (in the discrete-time sense). In this paper we make
such a comparison for the fractionally integrated Ornstein-Uhlenbeck process.
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cesses driven by Lévy noise. J. Appl. Prob. 39, 730-747.

[2] Barndorff-Nielsen, O.E. and Shephard, N. (2001): Non-Gaussian Ornstein-Uhlenbeck-based
models and some of their uses in financial economics. J. R. Stat. Soc. Ser. B 63, 1-42.

[3] Beran, R. (1994): Statistics for long-memory processes. Chapman and Hall, New York.
[4] Brockwell, P.J. (2003): Representations of continuous-time ARMA processes. J. Appl. Prob.

(to appear).
[5] Comte, F. and Renault, E. (1996): Long memory continuous time models. J. Econometrics

73, 101-149.
[6] Sowell, F. (1992): Maximum likelihood estimation of stationary univariate fractionally inte-

grated time series models. J. Econometrics 53, 165-188.



Statistics in Finance 121

Extremal Behaviour of Fractal Models
Boris Buchmann

(joint work with Claudia Klüppelberg)

A fractional Brownian motion (FBM) is a centred Gaussian process (BH
t)t∈R

with covariance function

EBH
tB

H
s =

1
2
{|t|2H + |s|2H − |t − s|2H}.

The parameter H ∈ (0, 1) is the so-called Hurst coefficient. For H = 1/2 FBM is
the Wiener process, otherwise, both long memory (H > 1/2) and short memory
(H < 1/2) occurs in the increments and FBM is no longer a semi-martingale.
FBM has been studied by Kolmogorov in the fourties as a model for turbulence
and by Mandelbrot and van Ness (1968) to describe certain aspects in the Nile
data. Recently, it has been proposed as tool for financial applications (e.g. Hu
and Øksendal (1999), Brody, Syroka and Zervos (2003)). The fractional Ornstein-
Uhlenbeck process (OH,γ,σ

t ) (FOUP), i.e., the stationary solution of the Langevin
equation

OH,γ,σ
t = OH,γ,σ

0 − γ

∫ t

0

OH,γ,σ
s ds + σBH

t ,

where γ > 0, has been studied by Cheridito, Kawaguchi, Maejima (2003). It is a
Gaussian process which again exhibits long memory (H > 1/2) and short memory
(H < 1/2). In contrast to the latter authors we have studied the shape of the
covariance function near zero. Combining both results allows us to develop the
extreme value theory for FOUP based on classical results on Gaussian processes
(Pickands (1969), Berman (1971), Leadbetter, Lindgren, Rootzén (1983)). More
precisely, we obtain the norming constant bT (H, γ, σ) such that

2
Γ(2H+1)1/2

γH

σ
(log T )1/2

{
max

0≤t≤T
OH,γ,σ

t −bT (H, γ, σ)
}

d→ G,

where G is a Gumbel distributed random variable. The extreme value theory can
be extended to processes XH,γ,f

t := f(OH,γ
t ) where f is a state space transform

(SST), i.e., a continuous strictly increasing function. Our concept is related to the
work of Davis (1982) where the extreme value theory for diffusions is studied by
transforms in time and space. The process XH,γ,f to be in the maximum domain
of a Gumbel distribution is provided by the following condition on the derivative,
namely,

lim
z→∞

f ′(z + a(z))
f ′(z)

= 1

for all functions x �→ a(x) such that a(x) = O(x−1) for x → ∞. Generally, if
f ′(x) = r(x) exp(κxp) for sufficiently large x and some regularly varying function
r the condition is satisfied whenever p < 2. If f is a SST such that for some
constants C0 > 0 and C1 ∈ R

log f(x) = C0x
2 + C1 + o(1) for x → ∞,
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then XH,f,γ is found to be in the maximum domain of attraction of a Frechét
distribution. The concept of SSTs can be related with a geometric approach to
solve integral equations of the type

Xt − X0 =
∫

0

t

µ(Xs)ds +
∫

0

t

σ(Xs)dBH
s .

As (BH
t) is not a semi-martingale for H �= 1/2 Itô integration can not be used

to define an integral w.r.t FBM. Different approaches have been discussed in the
literature (Hu and Øksendal (1999), Mikosch and Norvaĭsa (2000), Duncan, Hu and
Pazik-Duncan (2000), Mazet, Alós and Nualart (2001)). We follow the approach
of Zähle (1998, 2001) which works for H > 1/2. FBM is then sufficiently Hölder
continuous such that the integral w.r.t FBM is well-defined as Riemann-Stieltjes
integral whenever the integrand is Hölder of some order strictly larger 1 − H . By
a law of iterated logarithm (Arcones (1995)) FBM takes values in the weighted
function space ṼH containing all functions f Hölder of at least any order strictly
smaller H such that

sup
t

|f(t)|
1 + |t|H √(log log)+(|t|) < ∞ .

Replacing BH by any possible function g ∈ ṼH we derive a necessary and sufficient
condition on µ and σ for existence and uniqueness of a solution in terms of SSTs
and the FOUP.
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Structural Models for Credit Risk Migration
Ngai Hang CHAN

1. Abstract

A structural model for credit migration is considered in this paper. The pro-
posed model is firm specific and depends on two parameters: the default distance
and credit history. The default distance is the standardized logarithmic asset-to-
liability ratio modelled by a Brownian motion and the credit history is modelled
by an occupation time variable. By examining the properties of this occupation
time variable, the credit performance of a given firm can be analyzed. This model
not only allows one to derive a closed-form credit transition probability, but also
explains default probability overlaps of different ratings. It can be used to back
out the subjective thinking of credit performance of rating agencies.

2. Structural Models

Credit risk management is an important tool in finance, especially in the high-
yield bond market and the bank loan market. An essential concern of a financial
corporation is changes in credit ratings of companies. Nationally recognized statis-
tical rating organizations (NRSRO), like Standard & Poor’s and Moody’s Investor
Services, classify corporate bond issuers into different credit ratings in order to
reflect their credit worthiness. Credit risk managers pay serious attentions to the
ratings and transition matrices published by NRSRO. Transition matrices in the
form of arrays of migrating probabilities constitute the building block of risk man-
agement tools, see for example JP Morgan’s Credit Metrics and McKinsey’s Credit
Portfolio View. The Markov model of Jarrow, Lando and Turnbull (1997) uses
the transition matrix to generate the term structure of credit spreads.

Predictions of transition probabilities have been receiving considerable amount
of attentions recently. Most of the research make use of historical transition ma-
trices and firm ratings to estimate future transition probabilities, see for example
Aderson et. al (1991), Altman and Kao (1992), Kavvathas (2000), and Lando
and Skodeberg (2002). Two types of default models are structural approach and
reduced-form models. Structural type models suggest that a firm defaults when its
asset value drops below its liabilities. KMV corporation implements this structural
approach and generates expected default probabilities (EDPs) of firms. Details of
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the KMV methodology can be found in Crosbe and Bohn (1993). Jarrow and
Turnbull (1995) and Duffie and Singleton (1999) propose a second approach called
reduced-form models. The time of default in this model is characterized by an
exogenously defined intensity process.

This paper proposes a structural model of credit migration. There are at least
two reasons to adopt the structural approach. First, it has a solid theoretical basis
as it takes into account of the capital structure of a firm. Second, a structural
model makes use of the distance-to-default of a firm. The distance-to-default
values can be measured from the market, either through KMV or internal models.
Finally, the recent acquisition of KMV and Moody’s Investor Services provides the
market with a possibility of using structural approach to measure credit transition
probabilities.

The proposed model is firm specific and depends on distance-to-default and
migrating signal duration. Using the idea of Gordy and Heitfield (2001), distance-
to-default is mapped into different rating categories by partitioning the distribution
of empirical data. The proposed model is able to capture the slow-to-respond
features of rating agencies. Such a time-lagged response to new information can
be interpreted as an extra rating criterion to reflect the market reputations of
a rated company. If the distance-to-default is assumed to follow a symmetric
distribution, then migrating probabilities generated from the model can still be
skewed on one side. There are several desirable features of the model. Rating
agencies can use it to explain changes in firm ratings in relation to current and
historical credit performance. The proposed model also allows the overlap of EDPs
across different letter grades, and offers a means to reconcile the empirical findings
of Kealhofer et. al (1998). Analytical formula for calculating migrating probability
can also be obtained.

3. Résumé

Dans cet article, on développe un modèle structurel pour la migration de crédit.
On propose un modèle pour chaque entreprise dépendant de deux paramètres: le
temps avant la faillite de l’entreprise et l’histoire du crédit. Le temps avant la
faillite est défini comme le rapport logarithmique standardisé entre l’actif et la
dette, et est modelisé par un mouvement Brownien. L’histoire du crédit est mod-
elisée par une durée variable. En examinant les propriétés de ce temps variable, la
performance du cred́it d’une entreprise donnée peut être analysée. Ce modèle per-
met non seulement d’obtenir l’expression de la probabilité de transition du crédit,
mais il explique aussi les chevauchements des probabilités de faillite pour differents
taux. Le modèle peut aussi être utilisé pour reévaluer l’idée subjective donnée par
une agence chargée de l’estimation de la performance d’un crédit.
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Stochastic Volatility Models for Ordinal Valued Time Series
Claudia Czado

(joint work with Gernot Müller)

Our aim is to model the intraday development of stock prices, in particular the
development of the price change process. The price changes have some specific
features which we want to be covered by our model. One important feature is that
price changes only occur in integer multiples of a certain amount, the so-called
tick size. In modelling the price changes we therefore have to take into account
that we observe a discrete time series. Also other important features of such time
series are covered by the following model:

yobs
t = k ⇐⇒ yt ∈ [ck−1, ck) k ∈ {1, . . . , K}(1)
yt = x′

tβ + exp(ht/2)εt t ∈ {1, . . . , T}(2)
ht = µ + z′

tα + φ(ht−1 − µ − z′
t−1α) + σηt(3)

A modified version of the underlying stochastic volatility model (2) and (3) for
continuous responses was considered by Chib, Nardari and Shephard (2002). Ob-
served are only the variables yobs

t , which are discretized versions of the latent
continuous variables yt. xt and zt are vectors of covariates, εt and ηt are assumed
to be i.i.d. N(0, 1). We fix c1 and µ for reasons of identifiability.

For the estimation of the parameters in this model we develop a MCMC algo-
rithm, which is based on the algorithm presented in Chib, Nardari and Shephard
(2002) for the underying continuous model. However, standard Gibbs MCMC
steps for the additional discretization in Equation (1) lead to bad convergence be-
haviour of the resulting MCMC iterations. Figure 1 shows the cutpoint chains for
simulated data, where the dotted lines indicate true values, when starting values
are chosen to be 1.5, 3.0, 4.5, 6.0, 7.5, respectively.



126 Oberwolfach Report 2/2004

Therefore we develop additional grouped move (GM) steps to speed up the
convergence especially for the chains of the cutpoints ck. The idea of GM steps
is based on a theorem of Liu and Sabatti (2000) which states: If Γ is a locally
compact group of transformations defined on the sample space S, L its left-Haar
measure, w ∈ S follows a distribution with density π, and γ ∈ Γ is drawn from
π(γ(w))|Jγ(w)|L(dγ), with Jγ(w) = det (∂γ(w)/∂w), ∂γ(w)/∂w the Jacobian
matrix, then w∗ = γ(w) also has density π (Liu and Sabatti (2000), Theorem 1).

Commonly π is considered to be the interesting posterior distribution. The diffi-
culty in the choice of a suitable transformation group is to find one where on the one
hand the problematic parameters are transformed and on the other hand the distri-
bution
π(γ(w))|Jγ(w)|L(dγ) allows to draw samples very fast. We apply this theorem
only for the conditional distribution of w := (y1,. . ., yT , c3,. . ., cK−1, β0, . . . , βp)
given all the observations and all the remaining parameters. This conditional
distribution can be computed iteratively. In order to get an easy sampling dis-
tribution we now use the scale group, Γ = {γ > 0 : γ(w) = (γw1, . . . , γwd)}, with
γ−1dγ as left-Haar measure. This finally leads to a Gamma distribution for γ2.
Therefore, after each iteration of our MCMC sampler, we insert the corresponding
GM-step, which consists of drawing a γ2 from the resulting Gamma distribution
and update w to γ · w. As Figure 2 shows, this significantly speeds up the con-
vergence of the algorithm. Here we used the same simulated data as in Figure 1
and the same starting values. By using the GM steps the chains reach the area
around the true values within about 50 iterations.

Standard sampler: Extremely slow convergence of cutpoints.

iteration

0 200 400 600 800 1000

0
2

4
6

8 estimated

true

Figure 1. First 1000 MCMC iterations for cutpoints produced
by standard Gibbs sampler. The dotted lines indicate the true
values.
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GM−MGMC sampler: Extremely fast convergence of cutpoints.

iteration

0 200 400 600 800 1000

0
2

4
6

8

estimated

true

Figure 2. First 1000 iterations of chains for cutpoints produced
by GM-MGMC sampler. The dotted lines indicate the true values.

Finally we fit the model to IBM intraday data collected in January 2001. We
show that a positive price jump increases the probability that the next price jump
will be negative and vice versa. Furthermore, the time between transactions has
an impact on the log-volatility in Equation (3): The more time elapses between
two subsequent transactions, the higher is the probability for a big price jump
(upwards or downwards).
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Data Driven Local Coordinates for Linear State Space Systems
M. Deistler

(joint work with T. Ribarits)

The topic of the lecture is embedded in a larger research program at our de-
partment concerning identification of ARMA(X) and state space (SS) systems, in
particular stressing the multivariate case. The motivation for this program is that
in many applications in econometrics and engineering, AR(X) type models are
still preferred in modelling linear systems, despite the fact that ARMA(X) and SS
models are more flexible. The reasons for this are that parametrization and esti-
mation is much simpler in the AR(X)case, in particular the (maximum likelihood)
estimators are of least squares type, they are explicitly given, numerically fast and
have no problems of local optima.

In making ARMA(X) and SS systems more competitive, one direction we follow
is to look for better parametrizations, in particular for the SS case. Note that
ARMA(X) and SS systems represent the same classes of transfer functions, but SS
systems in general have larger classes of observationally equivalent systems. The
latter fact should be considered as an advantage, because this allows for selection
of more suitable representatives.
We consider a state space system

xt+1 = Axt + Bεt

yt = Cxt + εt

where εt is the s–dimensional white noise innovation, xt is the n–dimensional state
and yt is the s–dimensional output; (A,B,C) are the system matrices.

We consider two approaches: The first approach, data driven local coordinates
(DDLC), has been originally introduced by McKelvey and Helmersson. Here
(A,B,C) is embedded in Rn2+2sn. For minimal (A,B,C), the equivalence classes
are n2–dimensional manifolds. Commencing from an initial estimator (A,B,C),
the orthocomplement to the tangent space to this manifold at (A,B,C) is taken as
a parameter space. The likelihood function then is optimized over this parameter
space and the procedure is iterated with the new estimate. We analyse the topo-
logical and geometrical properties of this parametrization which are relevant for
identification. In particular we show that this parametrization is locally homeo-
morphic, but globally, problems, e.g. of nonidentifiability, arise.

The second approach is separable least squares DDLC (slsDDLC). Here first a
least squares step is performed in order to concentrate out B. The concentrated
likelihood then only depends on (A,C) and for this reduced parameter space, again
DDLC is performed. We again analyse the topological and geometrical properties
of this parametrization.
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Finally, the numerical properties of the maximum likelihood estimation paramet-
rized by the ‘classical’ echelon form, by DDLC and by slsDDLC are investigated
in a simulation study. slsDDLC is found to be superior to DDLC and both give
much better results than echelon forms.

Estimation in Semi-parametric Volatility Models
Feike C. Drost

The availability of large data sets is rapidly growing, especially in finance. In
discrete time models, ARMA models with GARCH type errors are quite suitable
to pick up the time-varying nature of the first two conditional moments with only
a few parameters. However the implications of parametric volatility models for
higher order conditional moments, are not reflected in the data. More precisely
formulated, the conditional error distribution cannot be described by just a func-
tional form of the conditional volatility and a fixed nonparametric distribution.
To avoid this kind of misspecification we use a semi-parametric model where the
conditional error distributions are treated as a nuisance parameter. In continuous
time models, stochastic volatility models are used to model similar stylized facts.
Since the volatility of volatility functions in these models do not affect the first
two conditional moments, a nonparametric approach is advised here as well.

Usually, from a practitioners point of view, some finite dimensional parameter
is of interest, for example, the mean or median as a measure of location, the
Value at Risk as a measure of risk, etc. The question arises how to efficiently
estimate such quantities in general semi- and nonparametric models. To study
what is best asymptotically, one needs a bound on the asymptotic performance
of estimators in the presence of an infinite dimensional nuisance parameter. For
the i.i.d. case, a comprehensive account on the present theory along these lines
is given in Bickel, Klaassen, Ritov, and Wellner (1993). In financial data, of
course, the time dimension also plays an important role. Drost, Klaassen, and
Werker (1997) and Koul and Schick (1997) have developed a unified theory for time
series models with independently and identically distributed innovations. This
covers, for example, semi-parametric ARMA models (Kreiss (1987)). Recent work
in applied financial econometrics shows that the assumption of i.i.d. innovations
does not hold when using standard semi-parametric time series models, see Engle
and Russell (1998).

Based on the first two conditional moments, a popular method to estimate the
parameters is the Quasi Maximum Likelihood (QML) approach. This method
applies the Maximum Likelihood (ML) procedure to the data as if the conditional
distributions are normal. Under some regularity conditions this approach leads to
consistent and asymptotically normal estimators, but the efficiency may be quite
low.

An alternative to QML, is the Generalized Method of Moments (GMM). Here
the conditional moments are used together with a suitably chosen instrument. It
is well-known that the QML estimator can be obtained by a suitable choice of
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the instruments. However, these QML instruments are not optimal since they do
not use the possible time varying character of the third and fourth moment of the
conditional error distribution. Optimal instruments are easily derived along the
lines in Wefelmeyer (1996).

Although the GMM estimator is optimal in the class of estimators based on the
first two conditional moments, it is not necessarily the optimal estimator. As in
the aforementioned literature, additional information can be gained by estimating
the conditional error distribution. In several applications it is known that the
conditional error distribution (given the total past) equals the conditional error
distribution given some restricted information set Ht. Special cases are:

• i.i.d. errors: choose the restricted information set Ht to be the trivial
sigma field.

• Markov errors: choose the restricted information set Ht = σ (εt), the
information set generated by the last error.

• general case: do not put any restrictions on Ht, and choose the restricted
information set to be the full information set.

Since the first two conditional moments are of particular interest in finan-
cial applications, we present the score functions for QML, GMM, and the Semi-
parametric (SP) approach in the following example. The estimator based on the
SP score performs best.

Example 1. Consider the semi-parametric location-scale model,

Yt+1 = µt + σtεt+1, EGtεt+1 = 0, EGtε
2
t+1 = 1, Gt ≡ L (εt+1|Ht) ,

with location-scale score

l̇ (εt+1; Gt) =
[
−g′t

gt
(εt+1) ,−1

2

{
1 + εt+1

g′t
gt

(εt+1)
}]T

.

Apart from the model assumptions and some regularity conditions, nothing is
known about the conditional error distributions. Put γt = EGtε

3
t+1, κt = EGtε

4
t+1,

then the score functions of the QML/GMM/SP/ML estimators are given by, re-
spectively,

l̇QML
t+1 =

[
µ̇t

σt
,
σ̇2

t

σ2
t

] [
1 0
0 2

]−1 [
εt+1

ε2
t+1 − 1

]
,

l̇GMM
t+1 =

[
µ̇t

σt
,
σ̇2

t

σ2
t

] [
1 γt

γt κt − 1

]−1 [
εt+1

ε2
t+1 − 1

]
≡
[
µ̇t

σt
,
σ̇2

t

σ2
t

]
l̇∗ (εt+1; Gt) ,

l̇SP
t+1 =

{[
µ̇t

σt
,
σ̇2

t

σ2
t

]
− E

([
µ̇t

σt
,
σ̇2

t

σ2
t

]∣∣∣∣Ht

)}
l̇ (εt+1; Gt)

+ E

([
µ̇t

σt
,
σ̇2

t

σ2
t

]∣∣∣∣Ht

)
l̇∗ (εt+1; Gt) ,

l̇ML
t+1 =

[
µ̇t

σt
,
σ̇2

t

σ2
t

]
l̇ (εt+1; Gt) .
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Note that the implied information is strictly increasing: the SP score is closest (in
L2-sense) to the unattainable ML score.
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Modelling Dependence for High–Frequency Data in Finance
Paul Embrechts

(joint work with W. Breymann and A. Dias)

Based on high-frequency data for US$/DM and US$/Yen, stylised facts for
extremal dependence in financial data are investigated. Starting with 5’ data,
through deseasonalisation, data are investigated at the (1 hr, 2 hr, 4 hr, 8 hr,
12 hr, 1 day) frequencies. Dependence is modelled throughout based on the con-
cept of copula. In order to get close to iid bivariate residual vectors, several
stochastic models are fitted at the various frequencies. These models include mar-
ginal ARMA-GARCH, CCC-GARCH, VECH and DCC-GARCH. The following
tests/statistical techniques are performed on the residuals:

- tests for ellipticity
- copula fitting
- dynamic dependence parameters
- comparison of high (low) quantile fitting procedures (leading to the Clay-

ton model)
- spectral measure estimation
- change point analysis.

This work is done jointly with W. Breymann and A. Dias (see [1]) and A. Dias (see
[2]). Further references and related work are to be found under www.math.ethz.ch/
∼embrechts. We also would like to thank Olsen and Associates for providing the
data.
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Extremal Behaviour of Continuous-Time Moving Average Processes
Vicky Fasen

We consider a stationary continuous-time moving average (MA) process

Y (t) =
∫ t

−∞
f(t − s) dL(s) for t ≥ 0 ,

where f is a deterministic kernel function and L is a Lévy process whose incre-
ments, represented by L(1), are subexponential and in the domain of attraction of
the Gumbel distribution. Examples are Weibull-like distributions with α ∈ (0, 1).
The extremal behaviour of subexponential MA processes in the domain of attrac-
tion of the Fréchet distribution are well studied Rootzén (1978) and Rosinski and
Samorodnitsky (1993). A good overview about subexponential distributions can
be found in Embrechts et al. (1997) and about Lévy processes in Sato (1999).

Extremes of {Y (t)}t≥0 are caused by big jumps of the driving Lévy process in
combination with large values of the kernel function f . This means that discrete
time points {tn}n∈N chosen properly to incorporate the times where big jumps
of the Lévy process and the extremes of the kernel function occur characterise
the extremal behaviour of the continuous time process. We restrict ourselves to
kernel functions with a finite number of local extremes. Examples for Y include
a Weibull-Ornstein-Uhlenbeck process, certain shot noise processes and CARMA
processes (Brockwell (2001)).

The extremal behaviour of the discrete-time process {Y (tn)}n∈N is described
by the weak limit of a sequence of marked point processes, i.e.

– by the point processes of exceedances over high thresholds, and
– by marks, which are stochastic processes themselves, and characterize the

behaviour of {Y (t)}t≥0, if Y (tn) exceeds a high threshold.
The limiting distribution of such a sequence of marked point processes is a Pois-
son process with deterministic marks represented by a scaled version of the kernel
function. Further we can compute the normalising constants of the maxima to
converge weakly to the Gumbel distribution. The results are similar to the ex-
tremal behaviour of discrete MA processes (Davis and Resnick (1988), Rootzén
(1986)).
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Nonparametric Value-at-Risk Estimates
Jürgen Franke

(joint work with Mabouba Diagne and Peter Mwita)

We consider a financial time series St with returns Rt = (St − St−1)/St−1,
and we want to estimate the conditional Value-at-Risk, the conditional α-quantile

qα(r, x) ≡ VaR(r, x) of Rt+1 given past returns
→
Rt

(p)

= (Rt, . . . , Rt−p+1) = r and
exogeneous market information Xt = x ∈ Rd (returns of index or other stock, FX
or interest rates etc.), i.e. we have

pr(Rt+1 ≤ qα(r, x)|
→
R

(p)

t = r, Xt = x) = α.

First, we model the returns as a nonlinear ARX-ARCHX-process

(1) Rt+1 = m(Rt, . . . , Rt−p+1, Xt) + σ(Rt, . . . , Rt−p+1, Xt)Zt+1

with i.i.d. innovations Zt having mean 0 and variance 1 and a known distribution.
We can estimate the local trend and volatility functions m, σ nonparametrically
by

• kernel estimates or local polynomials for either lowdimensional argu-
ments or under restrictions on the functions m, σ (e.g. additive or gener-
alized additive structure)

• neural networks for highdimensional arguments
where, for estimating σ2(s, x), we use the residual-based estimator of Fan and

Yao (98). Both nonparametric approaches lead to asymptotically normal and, for
tuning parameter (bandwidth for local smoothers and number of neurons for neural
networks) changing appropriately for increasing sample size, consistent estimates
if the time series (Rt, Xt) satisfies some mixing condition (Franke and Diagne,
2002, Franke, Kreiss and Mammen, 2002, Franke et al., 2002, Franke, Neumann
and Stockis, 2004). Using estimates for m, σ, we get as a nonparametric VaR-
estimate q̂α(r, x) = m̂(r, x) + σ̂(s, x)qZ

α , where qZ
α denotes the α - quantile of

the law of Zt. An example for a German stock price illustrates the feasibility
of the nonparametric approach and the usefulness of incorporating exogeneous
information in the calculation of VaR.

Instead of starting from model (1), we can also estimate the quantile function
qα(r, x) directly, either by a nonparametric version of the Koenker-Bassett (1978)
regression quantile approach exploiting that

qα(r, x) = arg min
q∈R

E

(
|Rt+1 − q|α

∣∣∣∣→R(p)

t = r, Xt = x

)
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with |y|α = (1 − α)y− + α y− or by first estimating the conditional distribution

function F (y|r, x) = E(1(−∞,y](Rt+1)|
→
R

(p)

t = r, Xt = x) nonparametrically and
inverting it. Again, we get consistent nonparametric estimates q̂α(r, x) based on
neural networks (Diagne, 2002) or on local smoothing (Abberger, 1996, Franke
and Mwita 2003) if we assume the returns to follow a quantile ARX-model

(2) Rt+1 = qα(Rt, . . . , Rt−p+1, Xt) + ηt+1.

The innovations ηt may depend on the past Rn, n < t, and may have infinite
variance, and, in contrast to the VaR estimates based on (1), we do not have to
assume their distribution to be known. To get a notion of local variability like
volatility which does not require moment assumptions we may specify (2) to the
following quantile ARX-ARCHX-model

Rt+1 = qα(Rt, . . . , Rt−p+1, Xt) + σα(Rt, . . . , Rt−p+1, Xt)Wt+1

where the α - scale of Rt+1 given
→
R

(p)

t = r, Xt = x is the α - quantile of |Rt+1 −
qα(r, s)|α. The i.i.d. innovations Wt are standardized to have α - quantile 0 and
α - scale 1 (compare also Koenker, 1999). Similar as in the familiar model (1),
qα(r, x) and σα(r, x) may be estimated simultaneously (Mwita, 2003).
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Gibbs Sampling for State Space Modelling of Time Series of Counts
Sylvia Frühwirth-Schnatter

(joint work with Helga Wagner)

For applied statisticians it is not unusual to have to deal with time series of
counts. As such data are necessarily non-negative integers, it is often appropriate
to assume the observed process yt follows a Poisson distribution: yt ∼ Poisson(λt).
To capture the effect of exogenous variables zt, for independent observations a log-
linear model could be applied where λt = exp(z

′
tβ), with λt being the mean of the

time series observation yt given β, and β being a vector of unknown coefficients
to be estimated from the data.

To account for the dependency likely to be present in time series data of counts,
various extensions of the log-linear model have been suggested which, following Cox
(1981), may be classified into parameter-driven and observation-driven models. In
an observation driven model the conditional distribution of yt is specified as a
function of the past observations yt−1, yt−2, . . ., see for instance Kaufmann (1987).
While observations-driven models are easy to estimate, their theoretical properties
can be difficult to derive in comparison to parameter-driven models.

Here we consider parameter-driven models, where the conditional distribution
of yt is allowed to change over time and this change is driven by a latent process.
This latent process could be a hidden Markov chain as in Leroux and Puterman
(1992), or random effects as in Albert (1992). Smooth changes of the conditional
distribution of yt through state-space models have been considered e.g. in West et
al. (1995) and Harvey and Fernandes (1989), whereas a latent stationary autore-
gressive process has been introduced into the generalized linear model by Zeger
(1988).

Estimation of parameter-driven Poisson time series models is known to be a
challenging problem. In fact, estimation of these models using maximum likeli-
hood estimation is hampered by the fact that the marginal likelihood, where the
latent process is integrated out, is in general not available in closed form. Each
evaluation of the likelihood function requires to use some numerical method for
solving the necessary high-dimensional integration. One particular useful method
in this respect is importance sampling which was applied in Durbin and Koopman
(2000) to state space modelling of counts data.

Alternatively, estimation of these models is also feasible within a Bayesian
framework using data augmentation as in Tanner and Wong (1987) and Markov
chain Monte Carlo (MCMC) methods, as illustrated first by Zeger and Karim
(1991). Since this seminal paper, a number of authors have contributed to MCMC
estimation of these models. We mention here in particular Shephard and Pitt
(1997) and Gamerman (1998) for non-Gaussian time series models based on distri-
butions from the exponential family, and Chib et al. (1998) and Chib and Winkel-
mann (2001) for more general count data models.

A major difficulties with any of the existing MCMC approaches is that practical
implementation requires the use of a Metropolis-Hastings algorithm at least for
part of the unknown parameter vector, which in turns make it necessary to define
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suitable proposal densities in rather high-dimensional parameter spaces. Single-
move sampling for this type of models is known to be potentially very inefficient,
see e.g. Shepard and Pitt (1997). The main contribution of this article is to show
that straightforward Gibbs sampling of all parameters, involving only sampling
from simple distributions such as multivariate normal, inverse Gamma, exponen-
tial and low-dimensional discrete distributions, is feasible for practical Bayesian
estimation of most of the parameter-driven models for time series of counts sug-
gested in the literature so far. This rather unexpected result is achieved by intro-
ducing two additional sequences of latent variables through data augmentation.
One of these sequences are the unobserved inter arrival times of the events under
investigation. The introduction of this first sequence eliminates the non-linearity
of the observation equation whereas the non-normality of the error term remains
which follows a log exponential distribution. As the mean of the exponential dis-
tribution is equal to 1, this distribution is independent of any parameter and may
be approximated by a mixture of normal distribution in a similar way as in Kim et
al. (1998) who used a mixture approximation to the density of a log χ2-distribution
in the context of stochastic volatility models. By introducing the component indi-
cator as a second sequence of missing data, the resulting model may be thought of
a partially Gaussian state space model as in Shephard (1994). This is particularly
useful for state space models for Poisson time series, as multi-move-sampling of the
whole state process through forward-filtering backward sampling as in Frühwirt-
Schnatter (1994), Carter and Kohn (1994) and de Jong and Shephard (1995) is
now possible.
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Estimation and Change Point Detection
with a Hidden Markov Model in Finance

X. Guo

Consider a probability space (Ω,F , P ) and t ∈ [0, T ] for some T > 0. Suppose
that α(t) is a finite-state continuous time Markov process with state space M =
{z1, . . . , zm} and generator Q = (qij) ∈ Rm×m.

Assume that the Markov process α(t) is observed with the process y(t) such
that

(1)
{

dy(t) = µα(t)dt + σα(t)dw(t),
y(0) = 0 w.p. 1,

where w(·) is a standard one-dimensional Brownian motion independent of α(t),
and the drift µ and diffusion σ take different values when α(t) is in different states.

Given Eq. (1), we are primarily interested in the parameter estimation prob-
lem that is motivated by checking the validation of this Markov modulated (or
regime switching) model in the financial time series data. The critical issue is the
identification of the Markov chain α(·)

The problem is trivial when σ’s are all distinct and the observation is contin-
uous: the quadratic variation of Ito’s calculus will easily reveal the state of α(t).
Therefore, we are mostly interested in two cases: (A) when σ’s are independent of
α(t) and the observation is continuous, and (B) when the observation is discrete.
In a joint work with G. Yin [2], we address (A) under the (more general) framework
of Wonham filters; In a joint work with D. Chan (included in the summary report
[3]), we address (B) and propose a statistical estimation method for applying this
regime switching model to analyze financial time series data. Here, we suggest a
notion of “regime shift” and a detection method based on a case study of AT&T
stock price.

The optimality of Wonham filter is a direct corollary of a result of independent
interest concerning the relationship between choices of error functions and the
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optimality of conditional expectations. This is joint work with A. Banerjee and
H. Wang [1].

1. Wonham filters

Assume that the Markov process α(t) is observed with the process y(t) such
that

(2)
{

dy(t) = α(t)dt + σ(t)dw(t),
y(0) = 0 w.p. 1,

as in Eq. (1) where σ(·) : R �→ R, is a continuously differentiable function with
σ(t) ≥ c for all t ∈ [0, T ] and some c > 0.

In this framework, suppose we assume that the values of the states z1, · · · , zm

and the generator Q are known a priori and fixed. Then, a classical result states
that the posterior probability p(t) = (p1(t), . . . , pm(t)) ∈ R1×m, with pi(t) =
P (α(t) = zi|y(s), 0 ≤ s ≤ t), pi(0) = pi

0, (i = 1, . . . , m) satisfies the following
system of stochastic differential equations:

(3)
dpi(t) =

∑m
j=1 pj(t)qjidt − σ−2(t)α(t)[zi − α(t)]pi(t)dt

+σ−2(t)[zi − α(t)]pi(t)dy(t), i = 1, . . . , m.

Here, α(t) = 〈z, p(t)〉, z = (z1, . . . , zm)′, and v′ denotes the transpose of v. This
is known as the Wonham filter, which is the first finite dimensional filter for non-
Gaussian processes. It is known to be optimal under the mean square error.

1.1. Optimality of conditional expectation as BLFs. We first show the opti-
mality of Wonham filter under a general class of loss functions known as Bregman
loss functions (BLFs) (including L2-loss functions). This is a direct corollary of
our study [1], where we provide necessary and sufficient conditions for general loss
functions under which the conditional expectation is the unique optimal predictor.

Theorem 1 (Optimality Property). Let φ : Rd �→ R be a strictly convex, differ-
entiable function. Let (Ω,F , P ) be an arbitrary probability space and G a sub-σ-
algebra of F . Let X be any F-measurable random variable taking values in Rd for
which both E[X ] and E[φ(X)] are finite. Then

arg min
Y ∈G

E[Dφ(X, Y )] = E[X |G].

Theorem 2 (Exhaustiveness of BLFs). Let F : R × R �→ R be a non-negative
function such that F (x, x) = 0, ∀x ∈ R. Assume that F and Fx are both continuous
functions. If for all random variables X, E[X |G] is the unique minimizer for
E[F (X, Y )] over random variables Y ∈ G, i.e., argminY ∈G E[F (X, Y )] = E[X |G],
then F (x, y) = Dφ(x, y) for some strictly convex, differentiable function φ : R �→
R.

Here the BLF Dφ : Rd × Rd �→ R is defined as Dφ(x, y) = φ(x) − φ(y) − 〈x −
y,∇φ(y)〉, for any (strictly) convex and differentiable function φ : Rd �→ R.

For further properties of BLFs and corresponding exhaustiveness results for
higher dimensions, see [1].
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1.2. Wonham filter with random parameters. Now, assume that zi’s (or
(qij)) are not available, and that only their noisy/corrupted measurements/obser-
vations/distributional information are at our disposal. We propose approximated
(suboptimal) filters and prove their (exponential rate) of convergence to the desired
Wonham filter under simple ergodic conditions.

For instance, if we assume that a sequence of observations of the form ẑn =
(ẑ1

n, . . . , ẑm
n )′ ∈ Rm×1 such that Eẑn = z can be obtained, then by defining

zn = 1
n

∑n
j=1 ẑj , we can construct a sequence of approximations pn(t) by

(4){
dpn(t) = pn(t)Qdt − σ−2(t)αn(t)pn(t)An(t)dt + σ−2(t)pn(t)An(t)dy(t),
pn(0) = p0,

where αn(t) = 〈pn(t), zn〉, An(t) = diag(z1
n − αn(t), . . . , zm

n − αn(t)).
Let en(t) = pn(t) − p(t). Now, if we assume that {ẑn} is a stationary ergodic

sequence with Eẑn = z, uniformly bounded, and that the sequence {ẑn} is inde-
pendent of α(·) and the Brownian motion w(·), then we have:

Theorem 3. As n → ∞, sup0≤t≤T E|en(t)|2 → 0.

Theorem 4.

(5) sup
0≤t≤T

E|eκ
n(t)|2 =

{
o(1), 0 < κ < 1/2,
O(1), κ = 1/2,

as n → ∞.

Theorem 5. (i) For any positive integer � > 1,

(6) sup
0≤t≤T

E|eκ
n|2� =

{
o(1), 0 < κ < 1/2,
O(1), κ = 1/2,

as n → ∞.

(ii) As n → ∞, sup0≤t≤T E exp(|e1/2
n (t)|) = O(1).

Similar results are obtained for the error bound estimates in the case when the
generator Q is not known a priori. For more details, see [2].

2. Statistical estimation and change point detection in financial

time series data

Given discrete feature of financial time series data, a natural statistical problem
is the estimation of the states of the Markov chain α(t) when the stock price is
observed at discrete time intervals t = 1, 2, . . . , n, i.e.,

yt = µα(t) + σα(t)et, et ∼ N(0, 1),(7)

In statistical literature, a model of the above form falls under the umbrella of a
more generic class of models called hidden Markov models (HMMs). Within a
Bayesian framework, we propose a recursive approach for parameter estimation,
together with model selection strategies.

A case study of AT&T stock price data indicates that in the financial markets,
a given pattern change is more gradual and takes time before its pattern is more
sustainable. In this regard, the regime switching model captures this feature well;
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our recursive algorithm can be a promising tool in identifying this type of regime
change.

For more details of the estimation procedure and on the pros and cons of regime
switching models, together with related research problems, see [3].
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Estimation in Discretely Observed Diffusions:
Two Examples of Using Small ∆-Optimality

M. Jacobsen
(joint work with M.L. Østerdal)

Consider a d-dimensional diffusion,

dXt = bθ (Xt) dt + σθ (Xt) dBt

driven by a standard d-dimensional Brownian motion and with bθ a d-dimensional
drift function and σθ a d × d-matrix valued diffusion function, where both bθ

and Cθ := σθσ
T
θ are allowed to depend on an unknown p-dimensional parame-

ter θ ∈ Θ. It is assumed that for all θ ∈ Θ, X has an invariant distribution µθ

and is ergodic and suitably ‘nice’. The task is then to estimate θ based on the
observation of Xt1 , . . . , Xtn where 0 < t1 < · · · < tn. With the likelihood func-
tion typically untractable, this may be done using unbiased estimating functions
gt,θ (x, y) =

(
gk

t,θ (x, y)
)

1≤k≤p
where the gt,θ are given in an explicit analytic form

and unbiasedness means that (the µθ signifying that X0 has distribution µθ)

Eµθ
gk

t,θ′ (X0, Xt) = 0 iff θ = θ′.

The estimator θ̂n for θ is now found by solving the equations Gk
n (θ) = 0 (1 ≤ k ≤ p) ,

where

Gk
n (θ) =

n∑
i=1

gk
∆i,θ

(
Xti−1 , Xti

)
,

writing ∆i = ti − ti−1. If ti = i∆ for some ∆ > 0, it often holds that if θ is the
true parameter value, then

√
n
(
θ̂n − θ

)
converges in distribution as n → ∞ to a

Gaussian limit N (0, var∆,θ (g)) . Good choices for gt,θ are obtained by minimising
the asymptotic covariance matrix var∆,θ (g) in a suitable sense.
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Some basic examples of unbiased estimating functions are (i) the simple esti-
mating functions, see Kessler (2000),

gk
t,θ (x, y) = Aθh

k
θ (x) ,

with Aθ =
∑d

i=1 bi
θ ∂xih + 1

2

∑d
i,j=1 Cij

θ ∂2
xixj

h the infinitesimal generator for X,

and (ii) the martingale estimating functions introduced by Bibby and Sørensen
(1995),

gk
t,θ (x, y) =

r∑
�=1

φk�
θ (x)

(
f �

θ (y) − πt,θf
�
θ (x)

)
.

where πt,θf
�
θ (x) = Eθ

[
f �

θ (Xt) |X0 = x
]

is known explicitly. The number r is the
dimension of the base

(
f �

θ

)
for the estimating functions.

The concept of small ∆-optimality (S∆-O), Jacobsen (2001, 2002), aims at
minimising var∆,θ (g) as ∆ → 0: (I) if Cθ does not depend on θ, typically

var∆,θ (g) = ∆−1v−1,θ (g) + O (1)

and there is a universal lower bound for v−1,θ and g is S∆-O if it achieves this
lower bound. With g simple, this is possible only if X is reversible (automatic for
d = 1); for g a martingale estimating function, S∆-O may be obtained using a
base of dimension r = d. (II) By contrast, if Cθ depends on all the p parameters,

var∆,θ (g) = ∆−1v−1,θ (g) + v0,θ (g) + O (∆)

and g is S∆-O provided v−1,θ (g) = 0 (!) and v0,θ (g) attains its universal lower
bound. In this case (II) it is not possible to find simple g that are S∆-O and mar-
tingale estimating functions that are S∆-O require a base of dimension d (d + 3) /2,
e.g. f � (x) of the form xi for 1 ≤ i ≤ d and xixj for 1 ≤ i ≤ j ≤ d.

The purpose of the present study is to find S∆-O estimation functions that
combine ‘simple’ with ‘martingale’ estimating functions,

(1) gk
t,θ (x, y) = tAθh

k
θ (x) +

d∑
i=1

φki
θ (x) (yi − πt,θxi)

for models where the first order conditional moments are known explicitly, i.e.
typically bθ an affine function of x. Such g are S∆-O provided there are functions
Φk

θ such that

hk
θ = Φk

θ , φki
θ = ∂xiΦ

k
θ ,(2)

∂2
xi,xj

Φk
θ =

d∑
i′,j′=1

(
∂θk

Ci′j′
θ

)(
Ci′i

θ

)(−1) (
Cj′j

θ

)(−1)

.

(Warning: for d ≥ 2, a special structure for C and its inverse is of course required
for Φk

θ that satisfy the last condition to exist at all!)
S∆-O estimating functions of the form (1) are simpler in structure and may be

easier to find than the pure martingale estimating functions needed for models of
type (II). To illustrate this, two examples are considered:
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Example 1. A model suggested in the finance literature as a generalization of the
Cox-Ingersoll-Ross process: let d = 1, p = 4, with b(x) = a + bx, σ (x) = σxγ .
Here πt,θx is known but not πt,θx

2, which makes it difficult to obtain S∆-O when
estimating σ2 and γ. But

(
g1

θ , g2
θ

)
of the form (1) with the hk

θ and φki
θ as in (2) is

S∆-O provided

∂xΦ1
θ (x) = x1−2γ , ∂xΦ1

θ (x) = x1−2γ ((1 − 2γ) log x − 1) .

Whether this works in practice, is currently being tested! For estimating a and
b also (type (I) model), one may combine with a S∆-O martingale estimating
function with base f1 (x) = x of dimension 1.

Example 2. Let d ≥ 2 and consider the d-dimensional Ornstein-Uhlenbeck process
with b(x) = bx, C(x) ≡ C. Here θ = (b, C) where b ∈ Rd×d while C ∈ Rd×d is
positive definite. The transition function and therefore the likelihood function is
known explicitly, but for ti that are not equidistant becomes most unpleasant to
maximize. Again, for estimating C, one may use (2) to find gi0j0 of the form (1)
that are S∆-O, viz.

Φi0j0
θ (x) =

∑
1≤i≤j≤d

xixj

[
C

(−1)
i0i C

(−1)
j0j + C

(−1)
i0j C

(−1)
j0i

]
.

For estimating b, combine with the S∆-O martingale estimating function for type
(I) models with base f i (x) = xi of dimension d: this still gives quite an unpleasant
set of equations for estimating the bij , but it is certainly simpler than the likelihood
equations.
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Lévy Copulas for General Lévy Processes
Jan Kallsen

(joint work with Peter Tankov)

Copulas constitute a popular tool to model the dependence of multivariate
random variables e.g. in financial and actuarial applications. By virtue of Sklar’s
theorem, the dependence structure can be considered completely separately from
the marginal laws. Various parametric families of Archimedean copulas allow for
flexible and parsimoneous modelling (cf. e.g. Nelsen 1999).
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In a continuous-time setup, Lévy processes are often applied successfully in
order to describe in particular univariate data in finance and insurance. Parametric
multivariate Lévy models, however, are scarce and typically very limited as far as
the dependence between the components is concerned.

This suggests to transfer the notion of copulas to Lévy processes. In order to ob-
tain a time-independent concept one works with the Lévy-Khinchine triplet. Since
the correlation structure of the Brownian motion part is completely determined
by the covariance matrix, it remains to consider the Lévy measure.

Tankov (2003) introduced a notion of copulas on the level of Lévy measures for
multivariate processes with only positive jumps. In Kallsen and Tankov (2004)
this concept of Lévy copulas is generalized to general Lévy processes X . Similarly
as for random vectors, they are defined as tail integrals of measures with uniform
marginals. An analogue of Sklar’s theorem states that the Lévy measure can be
recovered from the Lévy copula and the marginal Lévy measures. Conversely,
any Lévy copula and any univariate Lévy measures can be combined to yield a
Lévy measure. Archimedean Lévy copulas as e.g. the Clayton family are defined
similarly as in the case of random vectors.

Finally, two limit theorems are discussed which show how to obtain the Lévy
copula and also the Gaussian copula corresponding to the Brownian motion part
of X as a limit of properly rescaled copulas of the random vectors Xt for t → 0.
The proof of these results relies on a characterization of weak convergence in terms
of copula convergence by Lindner and Szimayer (2004).
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Forecasting Daily Variability of the S&P 100 Stock Index Using
Historical, Realised and Implied Volatility Measurements

Siem Jan Koopman
(joint work with Borus Jungbacker and Eugenie Hol)

abstract

The increasing availability of financial market data at intraday frequencies has
not only led to the development of improved volatility measurements but has also
inspired research into their potential value as an information source for volatility
forecasting. In this paper we explore the forecasting value of historical volatility
(extracted from daily return series), of implied volatility (extracted from option
pricing data) and of realised volatility (computed as the sum of squared high fre-
quency returns within a day). First we consider unobserved components and long
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memory models for realised volatility which is regarded as an accurate estimator of
volatility. The predictive abilities of realised volatility models are compared with
those of stochastic volatility models and generalised autoregressive conditional het-
eroskedasticity models for daily return series. These historical volatility models
are extended to include realised and implied volatility measures as explanatory
variables for volatility. The main focus is on forecasting the daily variability of the
Standard & Poor’s 100 stock index series for which trading data (tick by tick) of
almost seven years is analysed. The forecast assessment is based on the hypothesis
of whether a forecast model is outperformed by alternative models. In particular,
we will use superior predictive ability tests to investigate the relative forecast per-
formances of some models. Since volatilities are not observed, realised volatility is
taken as a proxy for actual volatility and is used for computing the forecast error.
A stationary bootstrap procedure is required for computing the test statistic and
its p-value. The empirical results show convincingly that realised volatility models
produce far more accurate volatility forecasts compared to models based on daily
returns. Long memory models seem to provide the most accurate forecasts.

Description of paper

Modelling and forecasting volatility in financial markets has gained much inter-
est in the financial and economic literature. The seminal paper of Engle (1982) has
started the development of a large number of so-called historical volatility models
in which a time-varying volatility process is extracted from financial returns data.
Most volatility models can be regarded as variants of the generalised autoregressive
conditional heteroskedasticity (GARCH) models of Bollerslev (1986), see Boller-
slev et al. (1994) for a review. A rival class of volatility models is associated with
the stochastic volatility (SV) model, see Taylor (1986) and Harvey et al. (1994).
The overviews presented in Shephard (1996) and Ghysels et al. (1996) provide
an excellent introduction to historical volatility models. A more recent review of
volatility models together with an assessment of their forecasting performances is
given by Poon and Granger (2003).

Both GARCH and SV models are regularly used for the analysis of daily, weekly
and monthly returns. ¿From a theoretical perspective these models can also be
applied to returns data measured at higher frequencies (intraday). However, it
is learned from empirical studies that these models can not accomodate all infor-
mation in high frequency returns. The initial work of Andersen and Bollerslev
(1998) and Barndorff-Nielsen and Shephard (2001) show that realised volatility
(a daily volatility measure) as computed by the cumulative sum of squared intra-
day returns is less subject to measurement error and therefore less noisy. This
empirical fact is supported by the theory that the measurement noise contained
in daily squared returns prevents the observation of the volatility process while it
is reduced as the sampling frequency of the return series from which volatility is
calculated is increased, see Andersen, Bollerslev, Diebold and Labys (2001) and
Barndorff-Nielsen and Shephard (2001, 2002). These results also justify the ear-
lier work of French et al. (1987), amongst others. Andersen and Bollerslev (1998)
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show that daily forecasts of exchange rates based on GARCH models, when eval-
uated against realised volatility, are far more accurate than had been previously
assumed. These findings were subsequently confirmed with regards to stock in-
dex data by Blair et al. (2001) and Hansen and Lunde (2003) who examined the
predictive accuracy of volatility forecasts based on GARCH models.

Volatility can be extracted from returns data but it can also be derived from
option pricing data in combination with an option pricing model. Early empiri-
cal studies have indicated that implied volatility, when compared with historical
standard deviations, can be regarded as a good predictor of future volatility. Im-
plied volatility is often referred to as the market’s volatility forecast and is said
to be forward looking as opposed to historical based methods which are by defi-
nition backward looking. Recent study by Blair et al. (2001) shows that accurate
volatility forecasts for returns on stock indices are often based on implied volatil-
ity. Moreover, their research strongly suggests that daily returns contain little or
no incremental information about future volatility.

In this paper we investigate the potential gains of different measures of volatility
and different ways of modelling these data for the purpose of volatility forecasting.
For example, it is suggested to incorporate realised volatility as an explanatory
variable in the variance equation of a daily GARCH model. They found a consid-
erable improvement in the forecasting performance in this way. Another possible
explanatory variable for volatility is implied volatility. We will explore this op-
tion further by incorporating such explanatory variables in both GARCH and SV
models.

Realised volatility can also be modelled directly which is reminiscent of the
methods adopted for monthly volatility in a number of earlier studies. The fore-
casting performance of realised volatility models has been studied, amongst oth-
ers, by Andersen, Bollerslev, Diebold and Ebens (2001) and Barndorff-Nielsen and
Shephard (2004). In the first paper, it is stressed that long memory features are
present in the logarithms of realised volatility and that the autoregressive frac-
tionally integrated moving average (ARFIMA-RV) model is effective in empirical
modelling. The second paper builds on Barndorff-Nielsen and Shephard (2002)
where volatility is represented as a continuous time series process, the sum of in-
dependent Lévy driven Ornstein-Uhlenbeck (OU) processes. This approach forms
the basis of an unobserved components (UC-RV) model for realised volatility that
consists of independent ARMA components with restricted parameters.

The empirical investigation is for the Standard & Poor’s 100 (S&P 100) stock
index series over the period 6 January 1997 to 14 November 2003 with 1725 trading
days. Opening and closure prices for all trading days in the sample are available
in this period together with all price quotes within the days (tick by tick). Further
we have obtained the S&P 100 implied volatility index from the Chicago Board
Options Exchange Market volatility index (VIX) which is known to be a highly
liquid options market. The forecasting performance of various volatility models
for the last 525 days of the data set is the focus of the empirical study. We com-
pare the forecasts of ARFIMA-RV, UC-RV, SV and GARCH volatility models;
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the latter two models are considered with and without explanatory variables. The
forecasts are generated by a rolling-window of 1200 observations through the last
525 daily observations. Forecast comparison is based on four different loss func-
tions including the mean squared error and the mean absolute error statistics.
The fact that a particular loss criterion is smallest for a particular model does
not provide any information about its forecast superiority in other samples of the
data set and in future samples of the data. The results in White (2000) and the
important refinements in Hansen (2001) constitute a framework that constructs
a formal test for superior prediction ability (SPA) of a benchmark or base model
relative to a set of rival models. Since volatility can never be observed, realised
volatility is taken as a proxy for actual volatility and used for determining the
forecast error. This may introduce inconsistencies in the ranking of forecast mod-
els but it is argued that the occurrence of such inconsistencies are unlikely in our
study. The method of computing the SPA test statistic and its p-value requires
bootstrap samples obtained by, for example, the stationary bootstrap procedure
of Politis and Romano (1994). The construction of the test and some details of
implementation are discussed.

The findings of this extensive empirical study are presented by reporting a se-
lection of the most interesting results. The maximum likelihood estimates for the
coefficients of the considered models are reported for the full sample. Although
these estimates are not used for forecasting since all models are re-estimated for
each rolling window sample (starting from 17 October 2001), the reported estima-
tion results provide insights about the S&P 100 data set and the effectiveness of
models to capture volatility information from the data. A selection of the fore-
casting results is also presented but most attention is paid to the SPA results.
It has become clear that the realised volatility models are overwhelmingly supe-
rior and therefore making comparisons between, say, GARCH and ARFIMA-RV
is not useful. We therefore concentrate on the comparison of models within the
two classes of realised volatility models and historical volatility models. It will be
concluded that both the ARFIMA-RV and the SV model with realised volatility
as the explanatory variable are superior within their classes for the forecasting of
S&P 100 volatility. To get some insight in how forecasts evolve over time in our
study, in Figure 1 we present one-step ahead forecasts for the S&P 100 volatility
between 9 September 2002 and 18 November 2002 (51 trading days).
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Figure 1. Realised volatility (as dots) and one-day ahead volatil-
ity forecasts from (i) GARCH (solid) and GARCH with RV
(dashed), (ii) SV (solid) and SV with RV (dashed), (iii) UC-RV1
(solid) and UC-RV2 (dashed) and (iv) ARFIMA-RV (solid) and
log ARFIMA-RV (dashed) models for the period between 9 Sep-
tember 2002 and 18 November 2002 (day 225 to 275).
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Leroux’s method for General Hidden Markov Models
and Stochastic Volatility Models

Catherine Larédo
(joint work with Valentine Genon-Catalot)

Parametric inference for Hidden Markov Models (H.M.M.) has been widely in-
vestigated, especially in the last decade. The observed process (Zn) is modelled
via an unobserved Markov chain (Un). When studying the statistical properties of
H.M.M.s, a difficulty arises since the exact likelihood cannot be explicitly calcu-
lated. As a consequence, many authors have studied approximations by means of
numerical and simulation techniques (see for instance Del Moral et al., 2001; Pitt
and Shephard, 1999; Durbin and Koopman, 1997).

The theoretical study of the exact maximum likelihood has been investigated
for finite state space (see Leroux, 1992; Bickel and Ritov, 1996; Bickel et al., 1998)
and for compact state space (see Jensen and Petersen, 1999; Douc and Matias,
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2001). In previous papers (Genon-Catalot et al., 1998, 1999, 2000, 2003), we have
investigated some statistical properties of discretely observed Stochastic Volatility
models (S.V.). When the sampling interval is fixed, stochastic volatility models
are H.M.M.s, for which the hidden chain has non-compact state space.

We extend here a method of Leroux (1992) to study the likelihood and related
contrast processes for general hidden Markov models. We define the entropy asso-
ciated to these models and characterize the limit of the loglikelihood and related
processes, under specific assumptions.

Generic examples of such processes are obtained setting Zn = G(Un, εn), where
G : U ×Rl → R is a known function, (Un) is a strictly stationary Markov chain on
U , and (εn) a sequence of i.i.d random variables on Rl, independent of (Un) with
known density. These methods are applied to the Kalman filter (G(u, v) = u + v
and (Un) is AR(1)), to stochastic volatility models (G(u, v) =

√
u × v and (Un) a

Markov chain in R2), and to the multiplicative explicit filter proposed by Genon-
Catalot and Kessler (2004).

This research was supported in part by Dynstoch European Network.
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A Continuous Time GARCH(1,1) Process
Alexander Lindner

(joint work with Claudia Klüppelberg and Ross Maller)

1. Introduction

Discrete time GARCH(1,1) models are commonly used to model financial time
series like asset prices and exchange rates. They capture many of the so-called styl-
ized features such as heavy tails and uncorrelatedness without being independent.
The latter is e.g. manifested in the nonzero autocorrelation of the squared sequence.
Various attempts have been made to capture these features in a continuous time
model such as diffusion approximations (see e.g. Duan (1996) or Nelson (1990))
and other stochastic volatility models, as e.g. in Anh et al. (2002) or Barndorff-
Nielsen and Shephard (2001). These models have in common that they are driven
by two random processes. Here, we propose a continuous time GARCH(1,1) model
with only one source of randomness, capturing the stylized features by the depen-
dence structure alone. The talk is based on results of Klüppelberg et al. (2004).

2. From discrete to continuous GARCH

The discrete time GARCH(1,1) process is given by

Yn = σnεn, n ∈ N0, where σ2
n = β + λY 2

n−1 + δσ2
n−1

with constants β, δ > 0, λ ≥ 0 and an iid sequence (εn)n∈N0 , independent of σ2
0 .

Then σn can be written as

σ2
n = β

n−1∑
i=0

n−1∏
j=i+1

(δ + λε2
j ) + σ2

0

n−1∏
j=0

(δ + λε2
j)

= β

∫ n

0

exp

 n−1∑
j=�s	+1

log(δ + λε2
j)

 ds + σ2
0 exp

n−1∑
j=0

log(δ + λε2
j )

 , n ∈ N.(1)

This suggests, in continuous time, to replace the noise variables εn by the incre-
ments ∆Lt = Lt−Lt− of a Lévy process (Lt)t≥0. Keep β, δ > 0, λ ≥ 0, and define
the process (Xt)t≥0 by

Xt = −t log δ −
∑

0<s≤t

log(1 +
λ

δ
(∆Ls)2), t ≥ 0.

Then, in analogy with (1), for a finite random variable σ0 ≥ 0, independent of
(Lt)t≥0, define the left-continuous volatility process (σt)t≥0 by

(2) σ2
t =

(
β

∫ t

0

eXsds + σ2
0

)
e−Xt , t ≥ 0,
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and the continuous time GARCH (“COGARCH”) process (Gt)t≥0 as the cádlág
process satisfying

(3) dGt = σt dLt, t ≥ 0, G0 = 0.

Thus G jumps as the same times as L does, and has jumps of size ∆Gt = σt∆Lt.

3. Properties of the model

In this section we give some of the properties of model (2), (3). First, we note
that (Xt)t≥0 defines a spectrally negative Lévy process of bounded variation with
drift γX,0 = − log δ. For the volatility process, it holds:

Proposition 1. The process (σ2
t )t≥0 satisfies the stochastic differential equation

dσ2
t+ = βdt + σ2

t eXt−d(e−Xt) , t > 0 ,

and we have

σ2
t = βt + log δ

∫ t

0

σ2
sds + (λ/δ)

∑
0<s<t

σ2
s(∆Ls)2 + σ2

0 , t ≥ 0.

Denote by ΠL the Lévy measure of (Lt)t≥0, and assume that it is nonzero.
Then we can give necessary and sufficient conditions for strict stationarity of the
volatility process (σ2

t )t≥0.

Theorem 2. The volatility process (σ2
t )t≥0 is a time homogeneous Markov process.

The random variable σ0 can be chosen such that (σ2
t )t≥0 is strictly stationary, if

and only if ∫ ∞

−∞
log(1 +

λ

δ
y2)ΠL(dy) < − log δ.

In that case, for any k ∈ N, σ2
t has finite k’th moment if and only if EL2k

1 < ∞
and

Ψ(k) := k log δ +
∫ ∞

−∞

(
(1 +

λ

δ
y2)k − 1

)
ΠL(dy) < 0.

If EL4
1 < ∞ and Ψ(2) < 0, then the autocovariance function of σ2

t decreases
exponentially with the lag.

Using Theorem 2, it can be shown that for any Lévy process (Lt)t≥0 the station-
ary version of the volatility process (σ2

t )t≥0 has certain infinite moments. In that
sense, the volatility process is heavy tailed. For the COGARCH process (Gt)t≥0

itself, we have:

Theorem 3. Assume (σ2
t )t≥0 is the strictly stationary volatility process. Then

the integrated GARCH(1,1) process (Gt)t≥0 has stationary increments. Assume
further that EL8

1 < ∞ and Ψ(4) < 0, that (Lt)t≥0 is a quadratic pure jump process
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(i.e. has no Gaussian component) and that EL1 = 0,
∫

R
y3ΠL(dy) = 0. Let r > 0

be fixed. Then there exists a positive constant Cr such that for any t ≥ 0 and
h ≥ r:

Cov(Gt+r − Gt, Gt+r+h − Gt+h) = 0,

Cov((Gt+r − Gt)2, (Gt+r+h − Gt+h)2) = Cre
hΨ(1).

Theorem 3 shows, in analogy with the discrete time GARCH model, that the
increments of (Gt)t≥0 are uncorrelated, but that their squares are not.
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The Large-Sample Distribution of the Sharpe Ratio
R. A. Maller

1. Introduction and Summary

In the Markowitz efficient portfolio paradigm, we maximise the expected return
on a portfolio of assets for a given level of “risk”, as measured by the standard
deviation of the portfolio return. Among the set of portfolios derived in this way,
we can select the one which has the maximum return to risk tradeoff, as measured
by the ratio of expected return (excess over the risk-free rate) to standard deviation
of return, that is, the portfolio with maximum Sharpe ratio. This portfolio has
desirable optimality properties and is important both for purposes of allocation of
resources and for the performance evaluation of portfolios.

Given sample estimates of the mean vector and covariance matrix of the excess
returns which are asymptotically normally distributed, we might expect to get as-
ymptotic normality of the maximised Sharpe ratio. But because the maximisation
procedure means that we are not dealing with just a simple ratio of mean to stan-
dard deviation, this is not true in general, though it is in some cases. We are able
to give a complete description of the large-sample behaviour of the Sharpe ratio for
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a wide class of portfolios, and (when there are restrictions on short-selling), a par-
tial solution which still covers some useful situations – but we merely summarise
the results here. (For details see Maller, 2004.)

Although not always asymptotically normal, the Sharpe ratio is in the domain
of attraction of the normal in the cases we study, so the usual kinds of statistical
analyses which are applied to the Sharpe ratio are valid, at least in large samples.

2. Background – the Markowitz paradigm

We are given a d–vector µ̃ of expected asset returns and an associated d × d
positive definite covariance matrix Σ. The excess returns are:

µ = µ̃ − ri,

where r is the risk-free rate and i is a d-vector each of whose elements is 1. The
optimisation problem is to choose a d–vector x of asset weights such that the
portfolio standard deviation

σp =
√

xT Σx

is minimised for a specified expected return,

µp = xT µ

(or, equivalently, µp is maximised for a specified level of risk, σp.) ¿From pairs
(µp, σp) constructed in this way we can trace out an efficient frontier, representing
portfolios whose return/risk tradeoff is optimal in the mean–variance sense.

The vector x will be further restricted to a class C, say, which must include
{iT x = 1} (the “total allocation constraint”). We only consider C of the form

CA = R
d ∩ {x : iT x = 1

}
,

or
C+ = R

d ∩ {x : x ≥ 0, iT x = 1
}

.

In CA, the components of x may be negative – short sales of assets are allowed. In
C+, the components of x are non-negative – short sales of assets are not allowed.

The Sharpe ratio (SR) of a portfolio (or a single asset) is its expected (ex-
cess) return divided by its standard deviation. We ask for the portfolio with the
maximum SR along the efficient frontier. This is the portfolio with the highest
return/risk tradeoff achievable from the assets: the optimal risky portfolio.

The basics of the optimisation problem have been well understood since the
seminal work of Markowitz (1952, 1991). When short sales are allowed and

(1) iT Σ−1µ > 0,

the optimal risky portfolio is located at the point of tangency of a line from the
origin (since we have excess returns) to the efficient frontier. But when

(2) iT Σ−1µ < 0

following this method gives a portfolio with the minimum SR. Maller and Turk-
ington (2002) showed how to find the portfolio with the maximum SR achievable
in this case. The case in (2) is not by any means pathological.
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Suppose first that C = CA, so we wish to maximise the function

f(x) =
xT µ√
xT Σx

for variations in x, under the sole constraint that iT x = 1. An easy analysis gives

sup
iT x=1

|f(x)| ≤
√

µT Σ−1µ,

and, supposing now that (1) holds, we get

sup
iT x=1

f(x) = +
√

µT Σ−1µ.

This is achieved for the allocation

xmax =
Σ

−1
µ

iT Σ−1µ
.

This is a textbook solution (e.g., Elton and Gruber, 1995).
By contrast, when (2) holds, the maximum of f(x) occurs at infinite values of

x, having value (Maller and Turkington, 2002)

(3) +
√

µT Σ−1µ − (iT Σ−1µ)2/iT Σ−1i.

The term under the square root sign of (3) is non-negative, and is zero if and only
if µ is proportional to i, i.e., if the excess returns of all N assets are equal. Thus
we can expect to achieve a positive SR regardless of the value of iT Σ−1µ.

3. Sample Statistics

In practise we will have estimates

µ̂n = (µ̂n1, . . . , µ̂nd),

of the mean (excess) returns calculated from a sample of size n, and an estimate
Σ̂n = (σ̂nij) of a positive definite matrix. We carry out a Markowitz (1952) optimal
allocation of funds among the securities. For our analysis Σ̂n need not be related
to the covariance matrix of the returns, though in practise it usually is. (We keep
d ≥ 2 from now on.)

The sample Sharpe ratio is defined as

ŜRn = sup
x∈C

 xT µ̂n√
xT Σ̂nx

 .

Note that we maximise the ratio with regard to sign, as advocated, eg. by Sharpe
(1994), rather than taking the absolute value or square, as is occasionally done.
The statistic ŜRn provides one way of summarising the risk/return tradeoff of
the optimal portfolio. Comparisons between portfolios can be made by comparing
their Sharpe ratios. So it’s natural to ask how the precision of estimation of µ̂n

and Σ̂n is transferred to ŜRn.
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It is relatively easy to show that the estimator is consistent for any choice of
C if based on consistent estimators of µ and Σ. (This is not quite trivial to prove
since the supremum can occur at infinite values of x. But we omit details here.)
We might further guess that asymptotic normality of µ̂n and Σ̂n, i.e., assuming

√
n
(
µ̂n − µ, vech(Σ̂n − Σ)

)
D→ N(0, ζ),

where ζ is a positive definite matrix, will imply asymptotic normality of ŜRn.
This is not the case in general, even for the class CA, though it is sometimes.
Specifically, when C = CA = Rd ∩ {iT x = 1

}
, and µ �= 0, then we can show that,

as n → ∞, √
n(ŜRn − SR) D→ N(0, σ2

CA
)

for some σ2
CA

> 1 (depending on µ, Σ, and ζ), where SR is the population Sharpe
ratio. When µ = 0 the limit of

√
n(ŜRn − SR) can be explicitly worked out for

CA, and is not normal (in fact it is a non-negative random variable and depends
on the unknown Σ). Heuristically, what happens when µ = 0 is that the sample
estimate µ̂ can oscillate around zero, alternately bringing into play the situations
in (1) and (2).

Finally, when C = C+, and further assuming that Σ is diagonal, the limit of√
n(ŜRn−SR) can again be worked out, and again is not normal in all situations.

Especially, the case µ = 0 leads to non-normality, but so do some other values of
µ, in the C+ case.

Although not always asymptotically normal, the Sharpe ratio is in the domain
of attraction of the normal in the cases we study. Details of these results, together
with some practical implications of the analyses, are in Maller (2004).
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The t Copula and Related Copulas
Alexander J. McNeil

(joint work with Stefano Demarta)

The t copula (see for example Embrechts et al. (2001) or Fang and Fang (2002))
can be thought of as representing the dependence structure implicit in a multi-
variate t distribution. It is a model which has received much recent attention,
particularly in the context of modelling multivariate financial return data (for ex-
ample daily relative or logarithmic price changes on a number stocks). A number
of recent papers such as Mashal and Zeevi (2002) and Breymann et al. (2003)
have shown that the empirical fit of the t copula is generally superior to that of
the so-called Gaussian copula, the dependence structure of the multivariate nor-
mal distribution. One reason for this is the ability of the t copula to capture better
the phenomenon of dependent extreme values, which is often observed in financial
return data.

The objective of this talk is to bring together what is known about the t copula,
particularly with regard to its extremal properties, to present some extensions of
the t copula, and to describe copulas that are related to the t copula through
extreme value theory.

The two new extensions of the t copula are known respectively as the skewed
(or asymmetric) t copula and the grouped t copula. Both are constructed by
generalising the Gaussian mixture construction of the multivariate t distribution.
The skewed t copula is obtained as the copula of a mean-variance mixture of
multivariate normals using an inverse gamma mixing distribution, and is a member
of the family of generalised hyperbolic copulas. The grouped t copula is the copula
of a distribution that is obtained by mixing different subvectors of a Gaussian
vector with different inverse-gamma distributed mixing variables, all of which are
perfectly positively dependent. Both copulas are interesting for applied work as
they suggest ways of incoporating more heterogeneity into the modelling of tail-
dependent risks.

The two new copulas arising from extreme value theory are known as the t
extreme value (t-EV) copula and the t lower tail limit copula. The former is the
limiting copula of componentwise maxima of t distributed random vectors; the
latter is the limiting copula of bivariate observations from a t distribution that are
conditioned to lie below some joint threshold that is progressively lowered. Both
these copulas may be approximated for practical purposes by simpler, better-
known copulas, these being the Gumbel and Clayton copulas respectively. They
are thus of more theoretical than practical interest.

The finding that the Clayton copula may successfully approximate the t lower
tail copula provides some support for the empirical finding by Breymann et al. (2003)
that bivariate exchange rate return data are consistent with a t copula as over-
all model and a Clayton copula for the most extreme negative returns at many
different sampling frequencies.
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Stable Limits for GARCH Parameter Estimation
Thomas Mikosch

(joint work with Daniel Straumann)

This talk is based on joint work with Daniel Straumann (ETH Zurich); see [9].
We consider a GARCH(p, q) (generalized autoregressive conditionally hetero-

scedactic process of order (p, q)) given by the equations

Xt = σt Zt , Xt = α0 +
p∑

j=1

αj X2
t−j +

q∑
k=1

βk σ2
t−k , t ∈ Z ,(1)

for non-negative coefficients αj and βk. This process is one of the standard models
for returns of speculative prices. It is a well-known empirical fact that returns are
heavy-tailed. The GARCH model allows for modeling those tails either by heavy
tails of the σ- or Z-processes.

Regular variation and stochastic recurrence equations

A theoretical means to describe heavy tails in the univariate and multivariate
cases is regular variaton: a random vector X ∈ Rd and its distribution are regularly
varying with index α ≥ 0 if there exists Θ ∈ Sd−1 such that for any t > 0, S ⊂ Sd−1

with P (Θ ∈ ∂S) = 0,

lim
x→∞

P
(
|X| > tx , X̃ ∈ S

)
P (|X| > x)

= t−α P (Θ ∈ S) ,

where x̃ = x/|x|. The limiting distribution PΘ is the spectral measure of X.
The notion of multivariate regular variation is a very natural one. It is used

as necessary and sufficient domain of attraction condition for partial sums of iid
random vectors with infinite variance stable weak limits ([12]) and for component-
wise maxima of iid random vectors ([11]). Moreover, under mild conditions on the
sequence of iid non-negative random vectors ((Ai ,Bi)), the stationary solution
(Xt) to the stochastic recurrence equation

Xt = At Xt−1 + Bt , t ∈ Z .(2)
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is regularly varying in the sense that

P ((x̃ ,X) > x) ∼ c(x̃)x−α , x → ∞, , x̃ ∈ S
d−1 ,(3)

for some α > 0 ([7]). It is not difficult to verify that the vector

Xt =
(
σ2

t+1, . . . , σ
2
t−q+2, X

2
t , . . . , X2

t−p+2

)′
,

which is constructed from the GARCH(p.q) process (1) satisfies (2) and, hence, (3)
applies. See [8] for a review on GARCH models, regular variation and stochastic
recurrence equations.

Gaussian maximum likelihood estimation with heavy-tailed

innovations

Gaussian maximum likelihood for the GARCH parameters αi and βj is based on
the maximization of the log-likelihood function of a sample X1, . . . , Xn (assuming
the Zt’s iid standard normal)

Ln(θ) = − 1
n

n∑
t=1

[log(σ2
t (θ)) +

σ2
t (θ0)Z2

t

σ2
t (θ)

] ,

with respect to the GARCH parameter θ, where θ0 is the true parameter of the
GARCH model, underlying the observations, and θ̂n is the resulting Gaussian
maximum likelihood estimator. Taylor expansion of L′

n(θ̂n) at θ0 yields

θ̂n − θ0 = −(L′′
n(θn))−1 L′

n(θ0) ,

for some θn with |θ0 − θn| ≤ |θ0 − θ̂n|. By the ergodic theorem, L′′
n(θn) → B0 a.s.

for some deterministic matrix B0, and therefore weak limit theory for θ̂n reduces
to

L′
n(θ0) =

1
n

n∑
t=1

(σ2
t (θ0))′

σ2
t (θ0)

(Z2
t − 1) =

1
n

n∑
t=1

Gt Yt .

If EZ4
1 < ∞ the CLT for stationary ergodic martingale differences ([3]) gives

asymptotic normality for θ̂n

√
n (θ̂n − θ0)

d→ N(0,−E(Z4
1 − 1)B−1

0 ) .(4)

This was proved in [2]. An interesting observation as regards (4) is that the
GARCH structure is not essential for the limit theorem (4): as long as Gt =
(σ2

t (θ0))′/σ2
t (θ0) is stationary ergodic and predictable, and E|G0Y0|2 < ∞ the

CLT applies. In the GARCH context it is remarkable, that G0 has finite moments
of all orders (see [2]) and therefore the regular variation of the Xt’s (see the previous
section) is not essential for the asymptotic theory of θ̂n, even if var(X0) = ∞.

Recently, [6] have extended (4) to the case when EZ4
1 = ∞. Assuming that

Z1 is regularly varying with index α ∈ (2, 4), they show that infinite variance
stable limits appear in (4). In the paper [9] it is shown that such limits appear for
general models Xt = σtZt, if (σt) is predictable, stationary ergodic, β-mixing with
geometric rate, (Zt) is an iid sequence and regularly varying with index α ∈ (2, 4)
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and if E|G0|(α/2)+δ < ∞ for some δ > 0. The latter conditions are satisfied for
the GARCH model.

The results of [9] are based on an analogue to the CLT for stationary ergodic
sequences in the case of infinite variance summands Xt which was proved in [4, 5].
Assuming that (Xt) satisfies a mild mixing condition (milder than strong mixing)
and that its finite-dimensional distributions are regularly varying with index κ ∈
(0, 2), a−1

n

∑n
t=1 Xt (suitably centered) weakly converges to a stable limit, where

P (|X0| > an) ∼ n−1.
In particular, it applies to summands of the form Xt = GtYt for vector-valued

predictable stationary ergodic Gt with E|G0|κ+δ < ∞, some δ > 0, and reg-
ularly varying Zt with index α = 2κ ∈ (2, 4). Indeed, then regular variation
of the finite-dimensional distributions is conveniently verified. If one has a par-
ticular structure such as GARCH, the verification of the β-mixing condition for
Gt = ((σ2

t (θ0))′/σ2
t (θ0)) can be derived from β-mixing for ((σ2

t )′, σ2
t ). In the

GARCH case, this condition can be verified by applying a result of [10] on mixing
properties of solutions to stochastic recurrence equations (2): then (σ2

t , (σ2
t )′) can

be embedded in such a stochastic recurrence equation.
The CLT for the GARCH Gaussian maximum likelihood estimator of θ0 when

EZ4
1 < ∞ has

√
n-rates of convergence. This is in contrast to the case when

Z1 is regularly varying with index α ∈ (2, 4), where the rate of convergence is of
the order n1−2/α. This means that slow rates of convergence and unusually wide
confidence bands for the parameter estimators appear.
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The Effects of Random and Discrete Sampling when Estimating
Continuous-Time Diffusions

Per Mykland
(joint work with Yacine Äıt-Sahalia)

Diffusion models, and their extensions such as jump-diffusions and Markov mod-
els driven by Lévy processes, are essential tools for much of theoretical asset pric-
ing. Estimating these models from discrete time observations has become in recent
years an active area of research in econometrics and statistics. Beyond the choice
of inference strategy, an important debate in this area concerns the question of
what sampling scheme to use, if a choice is available, and in any event what to
do with the sampling times. The most straightforward thing to do, in accordance
with the usual low-frequency data collection procedures in finance, is to view the
sampling as occurring at fixed discrete time intervals, such as a day or a week.
In many circumstances, however, this is not realistic. In fact, all transaction-level
data are available at irregularly and randomly spaced times.

Not only are the data randomly spaced in time, but whenever a theoretical
model is spelled out in continuous time, its estimation necessarily relies on dis-
cretely sampled data. By now, there is a good understanding in the literature of
the implications of sampling discreteness, and how to design estimation methods
that correct for it. The objective in this work is to understand the additional
effect that the randomness of the sampling intervals might have when estimating
a continuous-time model with discrete data. Specifically, we seek to disentangle
the effect of the sampling randomness from the effect of the sampling discreteness,
and to compare their relative magnitudes. We also examine the effect of simply
ignoring the sampling randomness. We achieve this by comparing the properties
of three likelihood-based estimators, which make different use of the observations
on the state process and the times at which these observations have been recorded.
We design these estimators in such a way that each one of them is subject to a
specific subset of the effects we wish to measure. As a result, the differences in
their properties allow us to zero in and isolate these different effects.

Our main conclusion is that the loss from not observing, or not using, the sam-
pling intervals, will be at least as great, and often substantially greater, than the
loss due to the fact that the data are discrete rather than continuous. While cor-
recting for the latter effect has been the main focus of the literature in recent years,
our results suggest however that empirical researchers using randomly spaced data
should pay as much attention, if not more, to sampling randomness as they do to
sampling discreteness.

The second paper develops tools for analyzing similar problems in the context of
non-likelihood inference (estimating or moment equations), and studies specifically
the effect of using approximations such as the Euler scheme.

A further contribution of the work is the development of a set of tools that
allows these calculations to be performed in closed form.
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Tail Behaviour of the Stationary Distribution
of a Random Coefficient Autoregressive Model

Serguei Pergamenchtchikov
(joint work with Claudia Klüppelberg)

We consider the following autoregressive process with ARCH errors.

(1) xn = a1xn−1 + · · · + aqxn−q +
√

1 + σ2
1x2

n−1 + · · · + σ2
qx2

n−q εn , n ∈ N ,

where (εn) are i.i.d. N (0, 1). We are interested in the existence of a stationary
version of the process (xn)n∈N, represented by a random variable (rv) x∞ and its
properties. We investigate the tail behaviour

(2) P(x∞ > t) as t → ∞ .

This is, in particular, the first step for an investigation of the extremal behaviour
of the corresponding stationary process. For q = 1 the model (1) was investigated
in Borkovec and Klüppelberg [3] by direct analytic methods. For the general case
q > 1 it is not possible to apply this approach since in this case the model (1) is
a non-linear equation with respect to xn. One can, however, show (see Lemma
2.7 in [12]) that this model is in distribution equivalent to a random coefficient
autoregressive process

(3) yn = α1nyn−1 + · · · + αqnyn−q + ξn , n ∈ N ,

where the independent coefficient sequences (αin , n ≥ 1) are i.i.d. and αin ∼
N (ai, σ

2
i ) for each 1 ≤ i ≤ q. Moreover the noise variables (ξn)n∈N are an i.i.d.

N (0, 1) sequence independent of (αin , n ≥ 1)1≤i≤q. Consequently, the problem
(2) is equivalent to the investigation of the tail behaviour of a stationary version
of the process (3) represented by a random variable y∞.

To obtain the asymptotic behaviour of the tail of y∞ we embed (yn)n∈N into a
multivariate set-up.

Set Yn = (yn, . . . , yn−q+1)′. Then the multivariate process (Yn) can be consid-
ered in the much wider context of random recurrence equations of the type

Yn = AnYn−1 + ζn , n ∈ N ,(4)

where ζn = (ξn, 0, . . . , 0)′ and

(5) An =
(

α1n · · · αqn

Iq−1 0

)
, n ∈ N ,

where Iq−1 denotes the identity matrix of order q − 1.
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Such equations play an important role in many applications as e.g. in queueing;
see Brandt, Franken and Lisek [4] and in financial time series; see Engle [7]. See
also Diaconis and Freedman [5] for an interesting review article with a wealth of
examples.

If the Markov process defined in (4) has a stationary distribution and Y has
this stationary distribution, then certain results are known on the tail behaviour
of Y . In the one-dimensional case (q = 1) Goldie [8] has derived the tail behaviour
of Y in a very elegant way by a renewal type argument: the tail decreases like a
power-law. For the multivariate model for the matrix An with positive elements
Kesten [9] shows that for each non-zero vector x ∈ Rq there exists some λ > 0
such that limt→∞ tλ P(x′Y > t) < ∞.

However, our model (4) does not satisfy the positivity condition on the matrices
An. Consequently, we derived a new limiting theorem for the model (4) with the
matrix of special form (5) in the spirit of Kesten’s results. The following is our
main result.

Theorem 1. We assume that the eigenvalues of the matrix EA1⊗ A1 have moduli
less than one and a2

q + σ2
q > 0. Then the stationary distribution Y of the process

(4) satisfies

lim
t→∞ tλP(x′Y > t) = h(x) , x ∈ S = {z ∈ R

q : |z| = 1} .

The function h(·) is strictly positive and continuous on S and the parameter λ is
given as the unique positive solution of

(6) κ(λ) = 1 ,

where for some probability measure ν on S

κ(λ) := lim
n→∞

(
E|A1 · · ·An|λ

)1/n
=
∫

S

E |x′A1|λ ν(x. ) ,

and the solution of (6) satisfies λ > 2.
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Multivariate Extremes, Max-Stable Processes and Financial Risk
Richard L. Smith

1. Introduction

Extreme value theory has become increasingly applied in mathematical finance,
especially in conjunction with “Value at Risk”calculations (Embrechts et al. 1997,
Finkenstädt and Rootzén, 2003). Univariate extreme value theory is fairly well
understood by now, with extensive development of the threshold approach, which
is based on the Generalized Pareto distribution (GPD) fitted to exceedances over
some high threshold (Davison and Smith 1991, Coles 2001). These methods are
applicable to financial time series provided some account is taken of volatility. One
approach to that is due to McNeil and Frey (1999), who proposed fitting a GARCH
model to financial time series with residuals from an unknown distribution, whose
tail was analyzed using threshold methods.

However, there has been relatively less work on dependence in the extremes,
by which we mean both temporal dependence in a single time series, and cross-
dependence between time series. Multivariate extreme value theory and its gener-
alization, the theory of max-stable processes, are natural candidates to model the
joint extremal behaviour of several financial time series. This is the subject of the
present paper.

2. Multivariate Extreme Value Theory

Suppose Yi = (Yi1, ...., YiD), i = 1, 2, ... is an i.i.d. sequence of D-dimensional
random vectors. For each d ∈ {1, ..., D}, let Mnd = max{Yid, 1 ≤ i ≤ n}.

If normalizing constants and, bnd and a D-dimensional distribution function G
exist such that as n → ∞,

Pr
{

Mnd − bnd

and
≤ xd, 1 ≤ d ≤ D

}
→ G(x1, ..., xD)

then G is called a multivariate extreme value distribution.
There are various representations of multivariate extreme value distributions

due to Pickands, de Haan and Resnick, Deheuvels, etc. (Resnick (1987) has a
comprehensive account) but these are too general to be directly applicable to
statistics. Some authors (e.g. Tawn, Coles) have used parametric subfamilies
while others (e.g. de Haan) used nonparametric approaches, but it is not easy to
apply any of the existing methods to series in very high dimensions. This motivates
an alternative approach.
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3. Max-Stable Processes

Max-stable processes are the infinite-dimensional generalization of multivariate
extreme value distributions. They are a natural framework within which to study
extremal properties of multivariate time series.

Suppose {Yid, i = 0,±1,±2, d = 1, ..., D} is a D-dimensional time series with
discrete time index i. Without loss of generality, we may assume Pr{Yid ≤ y} =
e−1/y for 0 < y < ∞ (the unit Fréchet distribution). In practice, this would be
achieved only above a given threshold, by first fitting a univariate threshold model
to the marginal distributions.

The process is max-stable if for any n ≥ 1, N ≥ 1, yid ≥ 0 for i = 1, ..., n, d =
1, ..., D,

PrN {Yid ≤ Nyid, 1 ≤ i ≤ n, 1 ≤ d ≤ D} = Pr {Yid ≤ yid, 1 ≤ i ≤ n, 1 ≤ d ≤ D} .

A subclass of max-stable consists of multivariate maxima of moving maxima
(M4 for short) defined by

Yid =
∞

max
�=1

∞
max

k=−∞
a�,k,dZ�,i−k,

where Z�,i are independent unit Fréchet for all �, i; a�,k,d ≥ 0; and∑∞
�=1

∑∞
k=−∞ a�,k,d = 1, d = 1, ..., D. For this process,

Pr {Yid ≤ yid, i = 1, ..., n, d = 1, ..., D} = exp

(
−

∞∑
�=1

∞∑
m=−∞

n−m
max

k=1−m

D
max
d=1

a�,k,d

ym+k,d

)
.

Smith and Weissman (1996), generalizing Deheuvels (1983), showed that subject
to some non-degeneracy conditions, any max-stable process may be approximated
arbitrarily closely by an M4 processes.

Statistically, however, these processes are hard to estimate, because of the pres-
ence of “signature patterns” of the form

Yid = a�∗,i−m∗,dZ�∗,m∗ , i = 1, ..., n, d = 1, ..., D,

which arise when a single very large value Z�∗,m∗ dominates all its neighbors. If
these relations hold, it is possible to derive very precise estimates of the coeffi-
cients (Zhang and Smith, 2004a) but this approach is not robust against even tiny
deviations from the model. For this reason, it is not a practical approach with real
data.

Some alternative estimation strategies include
(a): estimation based on the empirical distribution function (Hall, Peng and

Yao, 2002; Zhang and Smith, 2004b);
(b): assuming the observed process is of the form Xid = Yid + εid with

Y an M4 process and {εid} random noise; it may then be possible to
filter out the noise by Monte Carlo methods. In ongoing PhD research,
Francisco Chamú of the University of North Carolina has been exploring
this approach;
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(c): a more ad hoc method in which observed signature patterns are grouped
into clusters and the coefficients of the M4 process inferred from the cluster
centers (Smith 2003).

PF day 0 v. GE day 0
(35,107)

PF day 0 v. CI day 0
(31,91)

GE day 0 v. CI day 0
(31,122)

PF day 0 v. GE day 1
(35,36)

PF day 0 v. CI day 1
(31,33)

GE day 0 v. CI day 1
(31,47)

PF day 0 v. GE day -1
(35,43)

PF day 0 v. CI day -1
(31,41)

GE day 0 v. CI day -1
(31,42)

PF day 0 v. PF day 1
(35,39)

GE day 0 v. GE day 1
(36,43)

CI day 0 v. CI day 1
(27,35)

Figure 1. Scatterplots of standardized exceedances on unit
Fréchet scale. The three stocks are Pfizer (PF), General Electric
(GE) and Citibank (CI); plotted are the values on the current day
(day 0) versus current day, following day (day 1) and previous day
(day –1). The two numbers displayed on each plot are the actual
number of joint exceedances (second number), and the expected
value of the number of joint exceedances if the two variables were
independent (first number). It can be seen that for all three “day
0 v.day 0” plots, there is substantial dependence between the ex-
tremes of the two series. For plots of day 0 against day 1 or day
–1, however, the evidence for dependence is much less clear-cut.

4. Application to Financial Time Series

We consider 20 years of financial returns data from three stocks (Pfizer, GE and
Citibank). For each series, the GARCH(1,1) model is used to estimate volatility,
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and the process standardized by dividing returns by the estimated volatility. They
are then transformed to unit Fréchet margins (above a threshold) by applying uni-
variate extreme value technology. Pairwise correlation plots of the Fréchet stan-
dardized exceedances (Fig. 1) show substantial dependence among the three series,
which we model using an M4 process. In this application, we estimated coefficients
a�,k,d which are assumed non-zero for � = 1, 2, ..., 25 and k = −2,−1, 0, 1, 2.

Finally, a cross-validation exercise shows that the model provides good estima-
tion of some simple functionals of the joint extremes. One possible functional is
the probability that, over a window of 10 trading days (a typical time window in
Value at Risk calculations), at least one of the three series crosses a given target
value. Fig. 2 shows both an empirical crossing rate and a cross-validated model-
generated crossing rate (Smith, 2003) as the target value increases; the agreement
is excellent until the very highest target values, where neither method can be
expected to give accurate results.

Target Value
0.05 0.10 0.15 0.20

10

50
100

500
1000

Count of Exceedances

Figure 2. Plot of estimated number of expected exceedances of
a given target value for the maximumof the daily returns over
all 3 stocks over a 10-day window. Solid curve: cross-validated
model-based estimate. Dashed curve: empirical value.
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A Flexible Class of Stochastic Volatility Models of the Diffusion-Type
Michael Sørensen

Stochastic volatility models of the type

dXt = (α + βVt)dt +
√

VtdWt,

where Vt is a suitable positive stochastic process, are widely used in finance to
model the logarithm of the price of an asset. Several possible specifications of the
process V have been proposed. Barndorff-Nielsen and Shephard (2001) proposed
to model V as an Ornstein-Uhlenbeck process driven by a Lévy process or a sum
of such processes, which is a very flexible class of models. Here we present a class
of models with a similar flexibility where the volatility process is a sum of mean-
reverting processes driven by Wiener processes. The results given here are based
on the paper Bibby, Skovgaard and Sørensen (2003).

Let f be a given continuous, bounded, and strictly positive probability density
on (0,∞) that is zero when x ≤ 0 and has finite variance. Define a function v by

v(x) =
2θ
∫ x

l (µ − y)f(y)dy

f(x)
, x > 0,

where µ denotes the expectation of f . It is not difficult to see that v(x) > 0 for
x > 0. The stochastic differential equation

dVt = −θ(Vt − µ)dt +
√

v(Vt)dWt, t ≥ 0,

where W denotes a standard Wiener process, has a unique weak solution that is
ergodic with invariant density f . If V0 ∼ f , V is stationary, and its autocorrelation
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function is given by
Corr(Vs+t, Vs) = e−θt, s, t ≥ 0.

The diffusion V is the only ergodic mean-reverting diffusion with invariant density
f .

The function v can be found explicitly for a number of standard distributions on
(0,∞). For the gamma-distribution with shape-parameter α and scale-parameter
β

v(x) = 2θβx.

In this case the volatility model is the square root process, and the corresponding
volatility model is the Heston (1993) model. For the inverse Gaussian distribution
with density

f(x) =
(

λ

2π

) 1
2

x− 3
2 exp

(
−λ(x − µ)2

2µ2x

)
, x > 0,

we find that

v(x) = 4θµ

√
2π

λ
eλ/µx3/2 exp

(
λ

2µ2
x +

λ

2
x−1

)
Φ

(
−
√

λ

x
−
√

λx

µ2

)
,

where Φ is the standard normal distribution function.
Usually, the correlation function e−θt is too simple to fit the autocorrelation of

the volatility observed in financial time series. Therefore the following construction
is useful. Let f be a strictly positive, infinitely divisible probability density on
(0,∞) that is zero when x ≤ 0, and let C(t) denote the characteristic function of f .
Suppose the positive real numbers ϕi, i = 1, . . . , m, satisfy that ϕ1 + · · ·+ϕm = 1.
Then the functions C(t)ϕi , i = 1, . . . , m, are characteristic functions too. Assume
that the corresponding density functions fi, i = 1, . . . , m, satisfy the conditions
imposed on f earlier, and define

vi(x) =
2θi

fi(x)

∫ x

0

(ϕiµ − y)fi(y)dy.

Then the process
Vt = V

(1)
t + · · · + V

(m)
t ,

where

dV
(i)
t = −θi

(
V

(i)
t − ϕiµ

)
dt +

√
vi

(
V

(i)
t

)
dB

(i)
t ,

with B(1), . . . , B(m) denoting independent standard Wiener processes, has mar-
ginal density f , provided that V

(i)
0 ∼ fi, i = 1, . . . , m. The autocorrelation func-

tion of V is given by

Corr(Vs+t, Vs) = ϕ1 exp(−θ1u) + · · · + ϕm exp(−θmu).

For the gamma-distribution with shape-parameter α and scale-parameter β

vi (x) = 2βθix,
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and for the inverse Gaussian distribution

vi(x) = 4θiµ

√
2π

λ
eϕiλ/µx3/2 exp

(
λ

2µ2
x +

ϕ2
i λ

2
x−1

)
Φ

(
−ϕi

√
λ

x
−
√

λx

µ2

)
.

For distributions where the fi cannot be found explicitly, an approximation to vi

can be found in Bibby, Skovgaard and Sørensen (2003).
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Adaptive Estimation for a Varying Coefficient GARCH Model
Vladimir Spokoiny

(joint work with Jörg Polzehl)

Financial time series are often modelled by parametric ARCH or GARCH mod-
els under the assumption of stationarity. This approach is not flexible enough to
incorporate models with structural breaks and time varying parameters. This pa-
per presents a unified approach for modeling non (local) stationary time series
including change point and smooth transition models. The procedure is based on
the Adaptive Weights idea from Polzehl and Spokoiny (2000, 2002, 2003). The
paper discusses important theoretical properties of the method and illustrates its
numerical performance by mean of simulated examples and applications to real
data.
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Is GARCH(1,1) as good a model as the Nobel prize accolades would
imply

Cătălin Stărică

1. Abstract

This paper investigates the relevance of the stationary, conditional, parametric
ARCH modeling paradigm as embodied by the GARCH(1,1) process to describing
and forecasting the dynamics of returns of the Standard & Poors 500 (S&P 500)
stock market index.

A detailed analysis of the series of S&P 500 returns featured in Section 3.2 of
the Advanced Information note on the Bank of Sweden Prize in Economic Sciences
in Memory of Alfred Nobel reveals that during the period under discussion, there
were no (statistically significant) differences between GARCH(1,1) modeling and
a simple non-stationary, non-parametric regression approach to next-day volatility
forecasting.

A second finding is that the GARCH(1,1) model severely over-estimated the
unconditional variance of returns during the period under study. For example, the
annualized implied GARCH(1,1) unconditional standard deviation of the sample is
35% while the sample standard deviation estimate is a mere 19%. Over-estimation
of the unconditional variance leads to poor volatility forecasts during the period
under discussion with the MSE of GARCH(1,1) 1-year ahead volatility more than
4 times bigger than the MSE of a forecast based on historical volatility.

We test and reject the hypothesis that a GARCH(1,1) process is the true data
generating process of the longer sample of returns of the S&P 500 stock market
index between March 4, 1957 and October 9, 2003. We investigate then the alter-
native use of the GARCH(1,1) process as a local, stationary approximation of the
data and find that the GARCH(1,1) model fails during significantly long periods
to provide a good local description to the time series of returns on the S&P 500
and Dow Jones Industrial Average indexes.

Since the estimated coefficients of the GARCH model change significantly
through time, it is not clear how the GARCH(1,1) model can be used for volatility
forecasting over longer horizons. A comparison between the GARCH(1,1) volatil-
ity forecasts and a simple approach based on historical volatility questions the
relevance of the GARCH(1,1) dynamics for longer horizon volatility forecasting
for both the S&P 500 and Dow Jones Industrial Average indexes.

2. Figures

Figure 1 displays the estimated α1 +β1 under the assumption of non-stationary
data. The Garch(1,1) model has been initially estimated on the first 2000 ob-
servations of the sample corresponding roughly to the period 1957-1964, then
re-estimated every 50 observations on a sample containing 2000 past observations.



Statistics in Finance 171

The graph shows that the IGARCH effect significantly1 affects the GARCH(1,1)
models (estimated on a sample that ends) during the period 1997-20032. This fact
at its turn, is likely to cause the explosion of the estimated unconditional variance
of the GARCH(1,1) processes fitted on samples that end during this period.
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Figure 1. Top: Estimated α1+β1. Bottom: Estimated GARCH
(1,1) sd (dotted line) together with sample sd (both estimates are
annualized) (full line) for the S&P 500 log-returns. The time
mark corresponds to the end of the sub-sample that yields the
two standard deviation estimates. While most of the time the two
curves in the bottom graph are remarkably close to each other,
the GARCH(1,1) variance seems to explode towards the end of
the sample.

1The point estimate is close to 1 and, more importantly, 1 belong to the 95% confidence
interval.

2During the interval 1994-1996, the value 1 is the upper bound of the confidence interval.
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To see that indeed this is the case, let us take look at the bottom graph of
the same Figure 1 where the GARCH(1,1) unconditional sd (broken line) and the
corresponding sample sd (full line) are displayed. The GARCH(1,1) unconditional
sd is obtained from the values of the parameters estimated on a window of size 2000
moving through the data. The graph shows a good agreement between the two
estimates at all times except during the period when the IGARCH effect becomes
strongly statistically significant, i.e. samples that end in the interval 1997-20033,4.

The bottom graph in Figure 1 show that the GARCH(1,1) model fails to provide
a local stationary approximation to the time series of returns on the S&P 500
during significantly long periods.

An explanation for the strong IGARCH effect in the second half of the 90’s
can be the sharp change in the unconditional variance (see Mikosch and Starica
[1]). There it is proved, both theoretically and empirically, that sharp changes in
the unconditional variance can cause the IGARCH effect. Figure 2 displays non-
parametric estimates of the unconditional sd together with the 95% confidence
intervals5 for the S&P 500 returns (top) and the Dow Jones industrial index returns
(bottom). The two graphs show a pronounced increase of the volatility from
around 5% in 1993-1994 to three times as much (around 15%) in the period 2000-
2003.
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Pricing of Contingent Claims When Prices Are Perturbed:
An Elementary Example for Discussion

J. Michael Steele

The basic aim of this talk was to suggest consideration of a class of models
that one may view as perturbations of another (unobserved) price processes which
is either well-understood or which may be blessed with some special theoretical

3The analysis was also performed with smaller sample sizes of 1500, 1250 and 1000. As
expected, the confidence intervals in Figures 1 get wider and hence less meaningful. However,
for every sample sized mentioned, there is always a period between 1997 and 2003 where the
unconditional variance of the estimated model explodes. Estimation based on samples smaller
than 1000 observations is infeasible as it produces extremely unstable coefficients and renders
problematic the use of any asymptotic result.

4Contrast this finding with the statement on page 16 of the Advanced Information note:
“Condition α1+β1 < 1 is necessary and sufficient for the first-order GARCH process to be weakly
stationary, and the estimated model (on the short S&P 500, n.n.) satisfies this condition.”

5The method used to obtain the estimates is that of kernel smoothing in the framework of
non-parametric regression with non-random equi-distant design points. For more details on the
performance of this method on financial data see Mikosch and Starica [2].
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Figure 2. Estimated unconditional standard deviation (annual-
ized) with 95% confidence intervals for the S&P 500 returns. The
shaded areas correspond to bear market periods.

appeal. This discussion is part of a larger program which hopes to explain more
fully the costs and benefits of relying on misspecified models.

The example used in the talk was simply the Black-Scholes model where the
observed log prices are perturbed by a mean-zero mean-reverting process, and,
for specificity, we took the perturbing process to be an independent Ornstein-
Uhlenbeck process. Formally, we considered processes St and Ot which satisfy

dSt = µdt + σdWt and dOt = −αOtdt + εdW̃t

where the process (Wt, W̃t) is an uncorrelated Brownian motion in R2, and we
then considered a price process {Pt} which is specified by setting

(1) Pt = P0 exp(Yt) and Yt = St + Ot.

One reason to consider this model is that it contains as special cases both the
Black-Scholes model and the model of Lo and Wang (1995). Like the Lo and Wang
(1995) model, {Pt} exhibits aspects of predictability, but here it also captures
additional elements of economic reality. Specifically, we view PT

t ≡ exp St as a
“true” (but unobserved) price process, and we posit that market forces will drive
the observed price Pt back to PT

t after any random deviations from PT
t . The

model offers a practical compromise between a theoretically appealing model, and
one which manifests some modest predictability.

On interesting feature of {Pt} is that it is not a Markov process, so a priori one
might not expect that the PDE methods for pricing contingent claims would apply.
Nevertheless, in the case of European call options, easy calculations and ancient
recipes quickly bring one to an almost exact replicate of the Black-Scholes PDE
— only the volatility parameter is changed. Moreover, this heuristic derivation
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turns out to be theoretically justified; risk-neutral pricing theory leads one to the
same valuation formula.

A further instructive feature of the price process {Pt} is its relation to the notion
of viability which Bick (1990) introduced to addresses the consistency of a price
process with a certain economic equilibrium. He and Leland (1993) later developed
a PDE based criterion for viability, and, although it is not strictly applicable here,
one can check that the process {Pt} does not pass the He-Leland test (where, with
eyes closed, we pretend for a moment that {Pt} is Markovian!). It remains to
be seen if {Pt} is viable in the more general framework of Decamps and Lazrak
(2000), this also seems doubtful. Nevertheless, the practical motivation underlying
consideration of the process {Pt} remains in tact; it is, after all, a perturbation of
a process {PT

t } that passes anyone’s test of viability.
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Quasi-Maximum Likelihood Estimation and
Conditional Heteroskedastic Time Series

Daniel Straumann

By exploiting the techniques of stochastic recurrence equations, we develop a
general and unifying limit theory for the maximum likelihood estimator (MLE)
and quasi maximum likelihood estimator (QMLE) in a certain parametric class of
conditionally heteroscedastic processes, which contains widely used financial time
series models: (asymmetric) GARCH(1,1) and EGARCH. Our approach general-
izes and clarifies work of Lumsdaine (1996) and Berkes et al. (2003). We fur-
thermore discuss the issue of misspecification in the MLE and the behaviour of
the QMLE in the presence of a heavy-tailed noise distribution. This complements
work by Newey and Steigerwald (1997) and Hall and Yao (2003).
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A Multinomial Approximation of
American Option Prices in a Lévy Process Model

Alex Szimayer
(joint work with Ross A. Maller and David H. Soloman)

This paper examines the pricing of American options in models where the stock
price follows an exponential Lévy process. We propose a multinomial model ap-
proximating the stock price process which can be viewed as a generalisation of the
binomial model of Cox et al. (1979) adapted from Brownian motion to the broader
class of Lévy processes. Under mild conditions, it is proved that American option
prices obtained under the multinomial model converge to the corresponding prices
under the continuous time Lévy process model. Further, explicit schemes are given
for the jump diffusion model, the variance gamma model.

The Distribution of the LR Test for a Nonlinear Latent Variable
Model of Equity Returns

Mark Van De Vyver
(joint work with Ross A. Maller)

1. Abstract

This paper is devoted to deriving, under quite general conditions, the distribu-
tion of a likelihood ratio statistic for testing whether several versions of a gener-
alized autoregressive conditional heteroscedasticity (GARCH) model are superior
to a general random walk model, in depicting the true (unknown) data generating
process for the natural log of an equity price or their continuously compounded
returns. This is the statistic which the one sided LM test statistic approximates,
and provides a first check as to whether GARCH effects are in fact present in
the data. The application of these results is illustrated using equity market data
(contained in the full paper).

2. Introduction

This paper extends the results of [7] and provides new results in the subject of
latent variable model specification testing in the discrete time, continuous state
setting. Specifically, we consider models that naturally arise in the context of fi-
nancial modelling, and derive the distribution of the deviance statistic (negative
two times the quasi log–likelihood ratio), which is of use in testing for the reduc-
tion of the alternative model to a more parsimonious null model. The deviance
statistic is that which the more commonly used Lagrange Multiplier (LM) statis-
tic approximates ([5]). Initially the alternative model is specified quite generally,
and the parametrization we consider includes the nonlinear GARCH model. The
NGARCH-M model we consider is suitable for option pricing, and belongs to a
class for which [9] have developed an accurate and parsimonious option pricing
algorithm, capable of pricing American and exotic options. While less general, the
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null model is of special interest. This is a random walk with innovations that are
independently and identically distributed. When the innovations have the normal
distribution this model converges to the geometric Brownian motion model that
lies behind the celebrated Black-Scholes and Merton (BSM) option pricing model
([1] and [8]). The following is the model of an asset price series, which incorpo-
rates volatility clustering as well as an asymmetric correlation between returns
and volatility innovations:

(1)
Xi = φXi−1 +

(
µ − 1

2σ2
i + λσi

)
+ εiσi

σi =
√

ω + ασ2
i−1

(
εi−1 − c

)2 + βσ2
i−1.

Here Xi is the natural logarithm of the stock price, µ is a drift parameter that
frequently is interpreted as the risk free rate; φ is an autoregression coefficient (and
we are particularly interested in testing the hypothesis that φ is unity); λ is another
drift term interpreted as the market price of risk; ω is the instantaneous variance
of a Gaussian random walk when there are in fact no ARCH or GARCH effects
present; α and β are, respectively, the ARCH and GARCH terms that feedback
the effects of past observations into the variance equation; c is a generic parameter
in the variance equation which permits an asymmetric correlation between the
returns and volatility process (see [6] and [4]). We refer to the first two equations
as the price (or, when φ = 1, return) equation and volatility equation. We wish
to test two null hypotheses of interest, against different alternatives. Both null
models will have a common feature φ = 1, and α = β = 0. Then σi = σ = ω does
not depend on i and we can write (1) as:

(2) Xi = Xi−1 + µ − 1
2
ω + λ

√
ω + εi

√
ω, i = 1, 2, . . . , n

Notice that the parameter c is not present under the null (the term containing c
disappears from (1) when α = 0), and two other parameters, µ and λ, combine into
a single drift parameter and thus cannot be uniquely determined under the null.
To reflect this we introduce a drift parameter, ψ, in a simple reparameterization,
as ψ = µ + λ

√
ω − 1

2ω. Applying this to (1) introduces an additional parameter
that disappears under the null hypothesis. We handle these parameters using the
methods of [2] and [3].

3. Results

3.1. Testing for GARCH effects alone.

Theorem 1. Assume Xi satisfies (1) and that φ = 1, for i.i.d εi with expectation
0, variance 1 and finite third and fourth moments, µ3 and µ4. Suppose that the
null hypothesis holds; φ = 1, and α = β = 0. When evaluating the null and
alternate models, the deviance statistic, dn, has asymptotic distribution:

d(2)
n (τ)

D→ kN2(0, 1)I
(
N � 0

)
,
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where N is standard normal and k is

(3) k = 1 +
µ4 + 2µ3

(
λ0 −√

ω0

)− 3

2 +
(
λ0 −√

ω0

)2 .

I
(
Z � 0

)
is 1 if Z � 0 and 0 otherwise.

3.2. Testing for GARCH effects and a unit root.

Theorem 2. Assume Xi satisfies (1) for i.i.d εi with expectation 0, variance 1
and finite third and fourth moments, µ3 and µ4. Suppose that the null hypothesis
holds; φ = 1, and α = β = 0. When evaluating the null and alternate models, the
deviance statistic, dn, has asymptotic distribution:

d(1)
n (τ)

D→N2
1 + N2

2 I
(
N2 � 0

)
.

where Ni are normal random variables with some variance-covariance given in the
full paper.

4. Empirical Application

For each company in the S&P 500 index as at 8/8/2003, we select those which
have at least 1000 observations, leaving 481 firms. Using individual company
returns over this period we fit (1) and (2), and calculate the robust deviance as
set out in Theorem 1. The first box plot summarizes the lower range of values
of the robust deviances calculated using the 95% CI of the moments of the QML
estimated resdiuals. The second and third box plots summarize the range of values
of the robust deviance, and it’s upper range of values. The last box plot shows the
two sided lagrange multiplier test statistic’s empirical values. In each plot the box
spans the 25%-75% quantiles, the whiskers cover 3/2 of the interquantile range
from the edges of the box, individual points represent outlying observations and
the dashed line indicates the median value. The two horizontal lines indicate the
one-sided chi-square critical values, with one degree of freedom, at the 5% and
1% levels of significance. The upper and lower robust deviance values reflect the
range of values the deviance may take, using the 95% CI surrounding the null
model residuals’ moments, calculated using QML estimated residuals.
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Figure 1. GARCH vs. random walk hypothesis raw and robust
deviances of 481 companies in the S&P 500 index: 18/8/1999 to
8/8/2003
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Figure 2. ARCH vs. random walk hypothesis raw and robust
deviances of 481 companies in the S&P 500 index: 18/8/1999 to
8/8/2003
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Option Pricing and Statistics Inference for GARCH Models and
Diffusions

Yazhen Wang

Stock market modeling has two types of approaches. One is continuous-time
modeling that assumes a stock price to change with time continuously and obey a
continuous-time stochastic process. Historically continuous-time models based on
stochastic differential equations have been developed in financial economics, and
modern finance theory is much based on the continuous-time modeling. However,
in reality all data are recorded only at discrete intervals. Unknown parameters
in the continuous-time models need to be estimated and tested from the observed
discrete-time data. Due to the difficulty in statistical inference for the continuous
time model based on the discrete data, the validity of the continuous-time modeling
is not straightforward to check. Another approach is discrete-time modeling of
available discrete data. Successful discrete-time models are the autoregressive
conditionally heteroscedastic (ARCH) models. These discrete-time models often
provide parsimonious representations for the observed discrete-time data, and their
statistical inference is relatively much easier. The weak convergence of the discrete-
time ARCH model to continuous-time diffusion established first by D. Nelson in
early 1990 has generated a general belief that the ARCH model and diffusions are
more or less equivalent.

This talk presents asymptotic equivalence of the Garch, discrete stochastic
volatility (SV), and diffusion models with respect to option pricing, implied volatil-
ity, and statistical inferences based on option data (or implied volatility). As
discrete observation intervals shrink to zero, the GARCH and SV models weakly
converge to a bivariate diffusion. First we prove that the GARCH option price
converges to diffusion price at the speed near to the square root of the observa-
tion interval length. Second we show that under the three models, the prices of
a European option and their corresponding implied volatilites are equal up to the
order near to the square root of the observation interval length, and asymptot-
ically option based statistical inferences under the three models are statistically
equivalent. This shows that asymptotically the three models are equivalent in all
aspects regarding to option pricing, implied volatility and statistical inference for
option data. It presents a sharp contrast with nonequivalence of the GARCH and
its diffusion limit regarding to statistical inferences for historical time series price
data.
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Valuation of American Options via Basis Functions
Samuel Po-Shing Wong

(joint work with Tze Leung Lai)

Using the methodology of pricing and hedging American options proposed by
AitSahlia and Lai (2001), we apply the idea of neuro-dynamic programming to
develop

(1) nonparametric pricing formulas for actively traded American options, and
(2) simulation-based optimization strategies for complex over-the-counter op-

tions, whose optimal stopping problems are prohibitively difficult to solve
numerically by standard backward induction algorithms because of the
curse of dimensionality.

An important issue in this approach is the choice of basis functions, for which
some guidelines and their underlying theory are provided.

This paper is going to be published by IEEE Transactions in Automatic Control
in 2004.
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Approximating Volatilities by Asymmetric Power GARCH Functions
Qiwei Yao

(joint work with Jeremy Penzer and Mingjin Wang)

Let {Xt} be a strictly stationary process defined by the volatility model

(1) Xt = σtεt,

where {εt} is a sequence of independent random variables with mean 0, σt ≥ 0 is
Ft−1-measurable, and Ft−1 is the σ-algebra generated by {Xt−k, k ≥ 1}. Further-
more, εt is independent of Ft−1. The conventional ARCH/GARCH formulation
assumes that the conditional standard deviation σt is of the form

σ2
t = Var (Xt|Ft−1) = E(X2

t |Xt−1, Xt−2, · · · )

= c +
p∑

i=1

biX
2
t−i +

q∑
j=1

ajσ
2
t−j .(2)

where c > 0 and bi, aj are non-negative. The above model also implies Var (εt) = 1.
Under the condition

∑
j aj < 1, (2) admits the representation

(3) σ2
t = E(X2

t |X2
t−1, X

2
t−2, · · · ) = d0 +

∞∑
j=1

djX
2
t−j ,

where di ≥ 0 are some constants. This suggests that σ2
t is the autoregressive

function of X2
t on its lagged values X2

t−1, X
2
t−2, · · · .
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On the other hand, there exists the abundance of empirical evidence indicating
that for some financial returns the autocorrelation of the squared returns {X2

t }, al-
though significant, is often not as strong as, for example the autocorrelation of the
absolute returns {|Xt|}. See, for example, Granger et al (1999) and Rydberg (2000)
and the references within. Therefore, instead of modelling the conditional second
moments as in (3), Ding, Granger and Engle (1993) proposed to model the condi-
tional γ-th absolute moment of Xt given Ft−1 by an asymmetric power GARCH
formula, with γ ∈ (0, 2] determined by the data; see (4) below.

In this paper, we do not impose any explicit form on σt which is merely as-
sumed to be Ft−1-measurable. Instead we seek for an index γ ∈ (0, 2] such that
a GARCH-like model for {|Xt|γ} provides the best approximation for σγ

t . More
specifically, we approximate σγ

t by an asymmetric GARCH function

ξt,γ ≡ c +
p∑

i=1

bi{|Xt−i| − diXt−i}γ +
q∑

j=1

ajξt−j,γ(4)

= c +
p∑

i=1

bi|Xt−i|γ{1 − di sgn (εt−i)}γ +
q∑

j=1

ajξt−j,γ ,

for any γ ∈ (0, 2], where the parameters c, bi, aj are non-negative, and di ∈ (−1, 1).
We then choose the γ such that the approximation is optimum in certain sense.
Equation (4) admits a unique strictly stationary solution

ξt,γ =
c

1 −∑q
j=1 aj

+
p∑

i=1

bi|Xt−i|γ{1 − di sgn (εt−i)}γ(5)

+
p∑

i=1

bi

∞∑
k=1

q∑
j1=1

· · ·
q∑

jk=1

aj1 · · ·ajk
|Xt−i−j1−···−jk

|γ(6)

{1 − di sgn (εt−i−j1−···−jk
)}γ

with E(ξt,γ) < ∞, provided that {Xt} is strictly stationary with E|Xt|γ < ∞,
and θ ≡ (c, b1, · · · , bp, a1, · · · , aq, d1, · · · , dp)τ ∈ Θ, where
(7)

Θ =
{

(c, b1, ..., bp, a1, ..., aq, d1, ..., dp)
∣∣∣ c, bi, aj > 0, di ∈ [−1+δ0, 1−δ0],

q∑
j=1

aj < 1
}
,

where δ0 > 0 is a small constant. We restrict di in a closed interval contained in
(−1, 1) for some technical convenience.

First we consider how to estimate θ, for a given γ. To make σt uniquely
defined in (1), we always assume that the median of |εt| is equal to 1, unless
specified otherwise. Now log(|εt|) = log(|Xt|)− γ−1 log(σγ

t ) are i.i.d. with median
0. Therefore it holds that

σγ
t = arg min

a>0
E
{∣∣ log |Xt| − 1

γ
log a

∣∣ ∣∣Ft−1

}
.



182 Oberwolfach Report 2/2004

This leads to an L1 estimator

θ̂1 ≡ θ̂
(γ)

1 = arg min
θ

n∑
t=ν

∣∣∣ log |Xt| − 1
γ

log{ξt,γ(θ)}
∣∣∣.

An approximate (conditional) Gaussian MLEs may also be entertained based on
an additional assumption that εt in (1) are independent N(0, 1) random variables.
This condition implies a different parametrisation since now the median of |εt| is
not 1. Note σt defined in (1) differs under the two parameterisations by a constant
independent of t. This impacts on the parameters in ξt,γ as follows; c and all bi

differ by a common constant under the two parametrisation while di and aj remain
unchanged. The resulting estimator is

(8) θ̂2 ≡ θ̂
(γ)

2 = arg min
θ

n∑
t=ν

[
X2

t /{ξt,γ(θ)}2/γ + 2γ−1 log{ξt,γ(θ)}].
We note that the method is based on approximating σt by ξ

1/γ
t,γ .

Now we consider the problem of estimating the power index γ. Since our goal
is to estimate volatility function σt, a good estimation should ensure the residuals
ε̂t = Xt/σ̂t behave like an i.i.d. sequence, or, contain little information on Ft−1,

where σ̂t denotes an estimator for σt. Let θ̂
(γ)

be a reasonable estimator for the
parameter θ ≡ θγ of ξt,γ . Define residuals

(9) ε̂
(γ)
t = Xt/{ξt,γ(θ̂

(γ)
)}1/γ , t = ν, · · · , n.

If ε̂
(γ)
t is a good estimator for εt, E{ε̂(γ)

t I(Xt−j ≤ x)} ≈ 0 for any j ≥ 1 and x.
This suggests to choose γ̂ ∈ [u0, 2] which minimises

(10) R(γ) ≡
k∑

j=1

sup
x

1
n

∣∣∣ n∑
t=ν

ε̂
(γ)
t I(Xt−j ≤ x)

∣∣∣,
where k ≥ 1 is an integer, u0 > 0 is a small constant. We restrict γ̂ to be bounded
away from 0 for technical convenience. The statistics of this type have been used
for model checking by, for example, Stute (1997) and Koul and Stute (1999). In

practice, we may use either the least absolute deviations estimator θ̂
(γ)

1 or the

Gaussian MLE θ̂
(γ)

2 as θ̂
(γ)

in (9), and we may also standardise ε̂
(γ)
t such that the

sample mean and variance are, respectively, 0 and 1.
Under some regularity conditions, we have establish the asymptotic normality

for the estimators θ̂1 and θ̂2, and the weak consistency for the estimator γ̂. The
method has also been illustrated with four sets of financial return data. It is
interesting to see that the estimated power index γ̂ is often around 1 for those real
data sets, leading to better estimation for the volatility function σt in comparison
with a conventional GARCH fitting.
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A Tale of Two Time Scales:
Determining Integrated Volatility with Noisy High-Frequency Data

Lan Zhang
(joint work with Per A. Mykland and Yacine Äıt-Sahalia)

In the analysis of high frequency financial data, a major problem concerns
the nonparametric determination of the volatility of an asset return process. A
common practice is to estimate volatility from the sum of the frequently-sampled
squared returns. Though this approach is justified under the assumption of a
continuous stochastic model in an idealized world, it meets the challenge from
market microstructure in real applications. We argue that this customary way of
estimating volatility is flawed in that it overlooks observation error. The usual
mechanism for dealing with the problem is to throw away some data, by sampling
less frequently or constructing “time-aggregated” returns from the underlying high
frequency asset prices. We propose here a statistically sounder device. Our device
is model-free, it takes advantage of the rich sources in tick-by-tick data, and to
a great extend it corrects the effect of the microstructure noise on volatility es-
timation. In the course of constructing our estimator, it becomes clear why and
where the “usual” volatility estimator fails when the returns are sampled at high
frequency.

Our interest lies in using high frequency intraday data to estimate the integrated
volatility over some time periods. To fix the ideas, let {St} denote the price process
of a security, and suppose the log-return process {Xt}, where Xt = log St, follows
an Itô process

(1) Xt = µtdt + σtdBt

where Bt is a standard Brownian motion. Typically, σ2
t , the instantaneous vari-

ance (or diffusion coefficient) of the return process {Xt}, will be stochastic. The
parameter of interest is the integrated (cumulative) volatility over one or successive
time periods,

∫ T1

0
σ2

t dt,
∫ T2

T1
σ2

t dt, .... A natural way to estimate the cumulative
volatility over, say, a single time interval from 0 to T , is to use the sum of squared
incremental returns,

(2)
∑
ti

(Xti+1 − Xti)
2 ≈

∫ T

0

σ2
t dt,

where the Xti ’s are all the observations of the return process in [0, T ]. The estima-
tor

∑
ti

(Xti+1 − Xti)2 is commonly used and generally called “realized volatility”
or “realized variance.” For a sample of the recent literature in integrated volatility,
see Hull and White (1987), Jacod and Protter (1998), Gallant et al. (1999), Cher-
nov and Ghysels (2000), Gloter (2000), Andersen et. al. (2001), Barndorff-Nielsen
and Shephard (2001), Mykland and Zhang (2002) and others.
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Under model (1), the approximation in (2) is justified by theoretical results in
stochastic processes which state that

(3) plim
∑
ti

(Xti+1 − Xti)
2 =

∫ T

0

σ2
t dt,

as the sampling frequency increases. In other words, the estimation error of the
realized volatility diminishes. According to (3), realized volatility computed from
the highest frequency data ought to provide the best possible estimate for

∫ T

0
σ2

t dt
the integrated volatility.

However, this is not the general viewpoint from the finance literature. It is
generally held there that the returns process Xt should not be sampled too often,
regardless of the fact that the asset prices can often be observed with extremely
high frequency, such as several times per second. It has been found empirically
that the estimator is not robust when the sampling interval is quite small. Issues
including bigger bias in the estimate and non-robustness to changes in sampling
interval have been reported (see e.g., Brown (1990), Campell et al. (1997), Bai
et al. (2000)). The main explanation for this phenomenon is a vast array of
issues collectively known as market microstructure, such as, but not limited to,
the existence of the bid-ask spread: see Aı̈t-Sahalia et al. (2003) for a description of
these phenomena and their grounding in the vast theoretical literature describing
the frictions inherent in the trading process. When prices are sampled at finer
intervals, microstructure issues become more pronounced. It is then suggested that
the bias induced by market microstructure effects makes the most finely sampled
data unusable for the calculation, and many authors prefer to sample over longer
time horizons to obtain reasonable estimates. The length of the typical choices in
the literature is ad hoc and ranges from 5 to 30 minutes for exchange rate data,
for instance.

This approach to handling the data poses a conundrum from the statistical
point of view. We argue here that sampling over longer horizon merely reduces
the impact of microstructure, rather than quantifying and correcting its effect for
volatility estimation. And it goes against the grain to throw away data. On the
other hand, market microstructure may pose so many problems that subsampling
is the only way out.

In this paper we analyze the trade-offs involved in the choice of sampling fre-
quency and develop a method to estimate integrated volatility in such a way as to
lessen this conflict. Our contention in the following is that the contamination due
to market microstructure is, to first order, the same as what statisticians usually
call “observation error”. We shall incorporate the observation error into the esti-
mating procedure for integrated volatility. In other words, we shall suppose that
the return process as observed at the sampling times is of the form

(4) Yti = Xti + εti .

Here Xt is a latent true, or efficient, return process, and the ε′ti
s are independent

noise around the true return. A similar structure was used in the parametric
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context where σt = σ is constant by Aı̈t-Sahalia et al. (2003). In that paper, due
to the parametric nature of volatility, we proposed likelihood-based corrections for
market microstructure.

We show in the paper that, if the data have a structure of the form (4), ignoring
microstructure noise would have a devastating effect on the use of the realized
volatility. Instead of (2), one gets

(5)
∑

ti,ti+1∈[0,T ]

(Yti+1 − Yti)
2 = 2nV ar(ε) + Op(n1/2)

where the errors εti ’s are i.i.d. with mean 0, and n is the number of sampling
intervals over [0, T ]. As we will show, ignoring market microstructure noise in the
context of stochastic volatility leads to an even more dangerous situation than
when σ is constant and T → ∞. The results from equation (5) suggest that the
realized volatility does not estimate the true integrated volatility, but rather the
variance of the contamination noise. In fact, we will show that the true integrated
volatility, which is Op(1), is even dwarfed by the magnitude of the asymptotically
Gaussian Op(n1/2) term in (5).

Of course, the model (4) may also not be correct. When made the basis of
inference, it could still occur that one does not wish to sample as frequently as the
data would permit. It may, however, make it possible to use substantially larger
amounts of data than what would be possible under (2).

In seeking to create an inference procedure under measurement error, we have
sought to draw some lessons from the empirical practice that one should not use
all the data, while at the same time not violating basic statistical principles. Our
approach is built on separating the observations into multiple “grids”. We found
that the best results can be obtained by combining the usual (“single grid”) realized
volatility with the multiple grid based device. This gives an estimator which is
approximately unbiased. We have also shown how to assess the (random) variance
of this estimator, and how to balance the effect in (5) and an effect due to the
sampling frequencies.

The theory, including asymptotic distributions, is developed mainly in the con-
text of finding the integrated volatility over one time period; at the end, we extend
this to multiple periods. Also, in the case where the noise can be taken to be al-
most negligible, we provide a way of optimizing the sampling frequency if one
wishes to use the classical “realized volatility” or its multi-grid extension.

One important message of the paper: Any time one has an impulse to sample
sparsely, one can always do better with a multi-grid method. No matter what the
model is, no matter what quantity is being estimated.
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Introduction by the Organisers

The topic for the current Mini–Workshop organized by Karl Kunisch (Univ.
Graz), Angela Kunoth (Univ. Bonn) and Rolf Rannacher (Univ. Heidelberg) emer-
ged from the Oberwolfach Workshop “Numerical Techniques for Optimization
Problems with PDE Constraints” which was held February 16–22, 2003. It was
realized that numerically solving control problems which are constrained by time–
dependent nonlinear PDEs (Partial Differential Equations) are particularly chal-
lenging with respect to the complexity of the problem.

Mathematically one has to minimize a functional under PDE constraints and
possibly additional constraints on the state and the control. Standard discretiza-
tions on uniform grids in space and time will only yield solutions where the inherent
structures of the problem (nonlinearity, constraints) are not sufficiently captured.
Certain optimization problems for large coupled systems of partial differential
equations are currently not yet numerically treatable or do not satisfy the time
constraints required in practice. Overcoming this barrier can only be achieved
by designing new mathematically founded algorithmic approaches. The road to-
wards this goal leads to many interesting problems in optimization, linear algebra,
numerics, analysis, and approximation theory.

The conference had 21 participants which represented continuous optimization,
numerical analysis and scientific computing. 18 talks were given. The 10 longer,
overview–style talks were on optimization with PDEs, focussing on

• Modelling and Global Optimization
• Snapshot Selection
• Treatment of State Constraints
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• ODE Techniques for PDEs
• Automatic Differentiation
• Adaptive Finite Elements
• Parameter Estimation
• Adaptive Wavelets.

These talks were intended to bridge the gap between the different research fields
Optimization and Numerics. They were complemented by 8 shorter talks on more
specialized research topics, ranging from efficiency indices for optimization over
iterative methods for the coupled systems and multigrid acceleration to modelling
issues in optimization, and data compression by means of proper orthogonal de-
compositions and central Voronoi tesselations.

Different modern approaches to overcome the complexity issues in numerical
simulations for PDE–constrained optimization have been presented and discussed.
One of the approaches is to employ fast iterative solvers like multigrid on uniform
grids. The methodology which conceptually provides the largest potential is to
introduce adaptivity. This drastically reduces complexity but depending on the
context may require solving an additional problem. Wavelet approaches particu-
larly allow to resolve each of the variables separately and in addition provide a
built–in preconditioning. Yet another approach uses compressed information in
order to efficiently solve the primal–dual system.

All these issues are currently very active research areas. The extensive dis-
cussions held during this workshop have produced a number of new ideas and
connections. It was agreed upon that a mere black–box–style matching of efficient
PDE codes with optimization tool boxes would on one hand remain much below its
potential and on the other hand not help overcoming complexity barriers. Some
concepts from automatic differentiation seem to carry over to adaptive methods.
Even combining adaptivity with proper orthogonal decompositions may be a very
promising direction. The many new ideas discussed during this workshop will have
to be further elaborated in future.
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Abstracts

Adaptivity for Optimization of Time-dependent Partial Differential
Equations

Roland Becker

In this talk, we derive a posteriori error estimators for optimal control problems.
The error estimates are general and apply to Galerkin discretizations of optimiza-
tion problems governed by partial differential equations. In the first part of the
talk we describe some algorithmic aspects of a resulting adaptive algorithm. We
focus on the case of time-dependent partial differential equations, where we want
to adapt the step size and the dynamically varying meshes for space discretiza-
tion. This estimate can be used to derive automatic adaptation of (h, p) × (k, r)
method where h denotes the spatial mesh, p the distribution of polynomial de-
gree in the spatial mesh h, k the temporal mesh, and r the polynomial degree in
time. In order to simplify the situation we focus on the case where only the mesh
h is to be adapted dynamically and the control is frozen, since this seems to be
the difficult part. The goal of our adaptive algorithm is to find a method which
has computing time linear with respect to the overall number of unknowns and
storage requirements proportional to the temporal mean of the employed meshes.
In order to achieve this goal, we have to use a divide-and-conquer algorithm as
the checkpointing/windowing algorithm known from automatic differentiation and
optimal control. The essential additional difficulty in our context is the fact that
we need information about the co-state (solving a backwards-in-time equation)
when computing forward. This is due to the structure of the error estimator.

The second part of the talk describes a posteriori error estimates for optimiza-
tion problems. We consider the following general case: we are interest in com-
puting an interest function I(q, u) which depends on both control q and state
variable u. The interest functional is independent of the optimization problem
which determines q and u. By specialization we obtain estimators for:

• error in the cost functional [2, 3]
• error in a functional of the controls [4]
• error in an independent functional of the state [5]
• norm of the error of controls [1]

Beside the first estimator, the others require the solution of an additional problem
involving the adjoint of the linearized state operator. The right-hand side of this
problem depends on the special context.

In the last part of the talk, we show that the information given by the additional
adjoint problem might be used for further purposes. We employ the well-known
concept of condition numbers in order to produce answers to the following ques-
tions: which parameters have been most important, which measurements have
been most important in computing the solution?
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Fast Integral Equation Solvers and Applications to Problems with
Dynamic Interfaces

George Biros
(joint work with L. Ying and D. Zorin (New York University))

Boundary integral formulations have been extensively used for the analysis and
numerical solution of elliptic partial differential equations. However, with the ex-
ception of problems in inverse scattering, there has been limited work in boundary
integral equation formulations for optimal control and optimal design problems.
There are several reasons for that: prohibitive complexity of efficient implemen-
tations for non-Laplacian kernels, difficulty with distributed force terms, and re-
striction to problems with piecewise constant coefficients.

Recent developments however, indicate integral equation formulations might
have impact to a larger class of problems. We present two new algorithms and two
examples that illustrate the efficiency of the new methods: (1) A fast solver for
Stokes and Navier-Stokes equations, (2) a new kernel-independent fast-multipole
method for kernels related to constant coefficient elliptic PDEs, (3) a three-dimen-
sional rigid body-fluid interaction problem, and (4) a prototypical shape optimiza-
tion problem of a Dirichlet interior Stokes problem.
1. Fast Solvers for Stokes and Navier-Stokes Equations. Our motiva-
tion in designing this method is the design of efficient algorithms for flows with
dynamic interfaces. Solvers for such problems should be built on algorithms that
do not require expensive preprocessing, like unstructured mesh generation, since
the interface is moved to a new location at each time step. The main features of
the method are: It can be applied to arbitrary piecewise smooth geometries; It
does not require mesh generation; It can solve problems with distributed forces;
It is second-order accurate and readily generalizes to arbitrary order of accuracy.
If an optimal boundary integral equation solver is used, the method has O(N)
complexity.

Our method is based on potential theory for linear second-order elliptic oper-
ators. Using an indirect integral formulation, the solution of a Dirichlet problem
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can be written as the sum of a double layer potential and a Newton potential (the
domain convolution of the Green’s function with the distributed force). Under
such a scheme the evaluation of the solution must consist of three steps: (1) com-
putation of the Newton potential, (2) solution of a boundary integral equation
to compute a double layer potential that satisfies the boundary conditions, and
(3) evaluation of a double layer potential everywhere in the domain. Details can
be found in [2] for the Stokes equations and [1] for the unsteady Navier-Stokes
problem.
2. Kernel-independent Fast Multipole Method. The main feature of the
new method is its black-box application to several different non-oscillatory elliptic
kernels. Our algorithm has the structure of the adaptive FMM algorithm [3] but re-
quires only kernel evaluations without sacrificing accuracy and efficiency compared
to the original algorithm. The crucial element of our approach is to replace the an-
alytic expansions and translations with equivalent density representations. These
representations are computed by solving local exterior and interior problems on
circles (2D), spheres or cubes (3D) using integral equation formulations. We have
demonstrated the efficiency of our method in both 2D and 3D for many kernels:
the single and double layer potentials of the Laplacian, the modified Laplacian,
the Navier, the Stokes, and their modified variants. Our method has O(N log N)
asymptotic complexity, whereas for reasonable assumptions on the initial particle
distribution the complexity becomes O(N). Like analytic FMM, our method works
well for nonuniform particle distributions. Details can be found in [4]. We have
also developed an MPI-based parallel version of the method, and have performed
systematic scalability tests. Overall we have achieved very good iso-granular and
fixed-size scalability on up to 3000 processors. A detailed discussion can be found
in [5].
3. Fluid-structure Interaction Formulation. We have developed algo-
rithms to simulate the interaction of rigid bodies of arbitrary geometry with Stoke-
sian fluids, ignoring inertial terms in the fluid and using an integral formulation
for the equations which describe the motion of the dynamics. These equations
are a set of integrodifferential equations the interaction between the fluid and a
rigid object and consist of the linear and angular momentum conservation for the
rigid body and the Stokes equations for the fluid. The coupling is induced by the
requirement of non-slip condition and force balance across the interface. These re-
sults are work in progress. For the fluid-structure interaction runs we are currently
working on convergence studies, and we have not performed systematic scalability
analysis. However, the main cost in these simulations is the solution of the under-
lying integral equations. To this end we are working on efficient preconditioning
schemes.
4. Shape Optimization for Stokes-constrained Systems. We present a
2D shape optimization problem for the interior Dirichlet problem of a Stokesian
fluid. The flow is represented using a second kind integral equation formulation.
The objective function is of tracking type. The boundary is represented using a
periodic B-spline and the optimization variables are the control points. Adjoints
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are used to compute shape sensitivities and the problem is solved using a reduced
space quasi-Newton method globalized by trust-region. The first derivatives of the
adjoint and forward problem involve hypersingular kernels (Hilbert transforms)
which are approximated using an odd-even Nyström integration scheme. The
results, although very preliminary, are very encouraging since only a small number
of quasi-Newton iterations are sufficient for convergence.
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On Space-time Multigrid Solution of Unsteady Optimal Control
Problems
Alfio Borz̀ı

(joint work with K. Kunisch and R. Griesse)

The development and investigation of space-time multigrid schemes for un-
steady reaction diffusion optimal control problems are reported. We focus on the
control of the time evolution of chemical and biological processes characterized by
non-monotone nonlinearities. For benchmarking our algorithms, we propose two
models:

The solid fuel ignition model

−∂ty + δey + ∆y = u, δ > 0,

results in a singular optimal control problem which cannot be solved by any method
based on a free evolution of the state variable.

The lambda-omega system is given by

∂

∂t
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y1

y2

)
=

[
λ(y1, y2) −ω(y1, y2)
ω(y1, y2) λ(y1, y2)
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+ σ ∆
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)

where
λ(y1, y2) = 1 − (y2

1 + y2
2) and ω(y1, y2) = −β(y2

1 + y2
2).

The functional form of λ and ω was proposed in [4] to model chemical turbu-
lence. The evolution into a chaotic state of the λ−ω system can also be observed
from a principal component analysis via proper orthogonal decomposition of its
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snapshots. As the system becomes less ordered, the energy content becomes more
and more evenly distributed among the eigenmodes.

In the first model case, the control, represented by u, is applied to avoid blow-
up or to optimize the combustion process [1]. In the second case the control
(u1, u2) is applied to drive the system from a turbulent to a regular state [2].
The optimality systems characterizing the optimal control solution are solved by
space-time multigrid schemes with typical multigrid efficiency and robustness with
respect to the choice of the optimization parameters. These features are obtained
by developing appropriate collective smoothing schemes.

Using two-grid Fourier analysis, sharp estimates of convergence factors are ob-
tained for linear model problems [3]. Results of numerical experiments demon-
strate that these estimates remain sharp also for the nonlinear cases considered
here.
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Algorithms for Optimization of Time-dependent PDE Systems: Can
We Realize the Same Efficiencies as in the Steady Case?

Omar Ghattas
(joint work with G. Biros (University of Pennsylvania), V. Akcelik, J.

Bielak, and I. Epanomeritakis(Carnegie Mellon University))

The answer to the question posed in the title depends of course on the type of
problem being solved. We begin by recalling some of our earlier work on fast solvers
for optimization problems that are governed by PDEs [1,2,3,4,5]. The method we
developed, which we refer to as Lagrange-Newton-Krylov-Schur (LNKS), solves
the full optimality system consisting of state, adjoint, and control equations using
an inexact preconditioned Newton-QMR method. The preconditioner is a block
factorization that emulates a reduced quasi-Newton SQP method: it approximates
the reduced Hessian via suitably-initialized limited memory BFGS updates while
discarding other second derivative terms, and replaces the exact state and adjoint
solves with application of appropriate preconditioners, e.g. additive Schwarz or
multigrid. If sufficient descent cannot be obtained with a line search, then we drop
down to the reduced space and take a quasi-Newton step. Experiments with this
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method on some problems of optimal control of three-dimensional steady Navier-
Stokes flows via boundary suction/injection demonstrate high parallel scalability,
mesh-independence of Newton iterations, mesh-independence of Krylov iterations
(provided an optimal state preconditioner is available), and solution to optimality
in four times the cost of a flow solution, for a problem with over 600,000 state
and 9000 control variables. This small constant multiple of the state solve cost is
due to iterating in the full space, which folds the iterations (linear and nonlinear)
needed to converge the flow into those required for optimization. LNKS is most
effective when the state equations are difficult to solve, requiring many iterations.

We next discuss an inverse parameter estimation problem governed by earth-
quake modeling via the elastic wave equation. The problem is to find the dis-
tribution of elastic parameters of large sedimentary basins such as Los Angeles,
from surface observations of past earthquakes [6,7]. The forward problem alone
requires terascale computing: our typical earthquake simulations resolve up to 1
Hz ground motion frequencies, involve 100 million grid points and 40,000 times
steps, and require several hours of run time on the 3000 processor AlphaCluster
supercomputer in Pittsburgh. The inverse problem is formulated via output least
squares, regularized by a total variation (TV) functional. TV eliminates oscillatory
components of the material properties, while preserving discontinuities at material
interfaces. The solver is an inexact Newton-CG method in the reduced space, with
the same preconditioning as in LNKS. However, because we iterate in the reduced
space, an exact forward and adjoint solve are required at each CG iteration. Mesh
independence of Newton and CG iterations is observed, and the number of inner
and outer iterations required for convergence is similar to those observed for the
flow control problem. However, the difference here is the requirement for exact
solution of the forward and adjoint wave equation. For the largest inverse prob-
lem we solved, involving 17 million inversion parameters, the product of inner and
outer iterations is such that 800 total forward and adjoint wave propagations are
required. The essentially renders the inverse problem intractable for our goal of
reconstructing the structure of the LA Basin to a 1 Hz frequency resolution.

We conclude the talk with a somewhat pessimistic discussion of several op-
portunities for speeding up the convergence of the earthquake inversion problem.
Additional processors won’t help, since the granularity of the computation is low
to begin with. We could switch from a reduced space solver to a full space LNKS
method, but there is nothing to be gained since the explicit forward solver offers
little opportunity for approximation with a simpler solve. A coarser mesh misses
the finest wavelengths, and a longer time step loses the shorter periods, both of
which contribute importantly to the surface response. Implicit methods are not
useful for wave propagation problems in which the system is responding in all of
its resolvable scales. Adding processors in the time direction is not helpful, since
information propagates at finite speed. Reduced order modeling in the state space
is likely unproductive, since the system is responding at all scales (indeed the mesh
was designed to just resolve the finest scales of interest). Similarly, reduced order
modeling in the parameter space faces the problem of trying to construct a response



201

surface in a very high dimensional (e.g. 10 million) space. Some improvements in
the linear preconditioner can probably be made by exploiting the compact and
differential structure of the reduced Hessian, but since we have typically just 20
CG iterations per Newton iteration, the reduction in iterations must be balanced
against the cost of construction of the preconditioners. Similar statements can be
made about improvements in the nonlinear solver, e.g. through nonlinear precondi-
tioning. We conclude that the inverse earthquake modeling problem to frequencies
of engineering interest remains a major challenge, when measured against the cost
of the forward simulation.
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From Algorithmic Differentiation to Automated Design
Andreas Griewank

To facilitate the transition from simulation to optimization we suppose that
we are provided (only) with an iterative solver for some state equation and a
procedure for evaluating an objective function. This is a realistic scenario in
aerodynamics, where the state equation is some discretized variant of the Navier
Stokes equation governing the flow around a wing, and the objective may be the
drag, which is to be minimized by varying the design of the wing. Since the
state space may have very high dimensionality we prefer not to modify the given
solver but merely assume that it is contractive as an iterative map. However,
using algorithmic differentiation we may derive from it, in an automated fashion,
a fixed point solver for the corresponding adjoint equation and the computation
of an approximate reduced gradient. This methodology had been introduced by
Griewank and Faure under the name of piggy-back differentiation [1].
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In this talk we show first that while the two fixed point iterations converge with
the same asymptotic contractivity rate, the accuracy of succesive approximate
solutions to the adjoint equation lags behind that for the underlying state space
iterates. More specifically, the ratio between the residuals of the two equations at
the k-th, coupled iteration grows linearly with k [2].

Secondly, we examine the choice of a matrix for preconditioning the approximate
reduced gradient in a simultaneous update of the design variables. As it turns out
the seemingly natural choice of the reduced Hessian is not the best choice, but
may lead to divergence. Instead we find that local convergence can be assured
by projecting the Lagrangian Hessian onto another subspace, at least when the
full Hessian is positive definite [3]. These theoretical observation are confirmed
numerically on a 2D test problem provided by Volker Schulz. Either of the two
projected Hessians can also be evaluated by automatic differentiation, so that we
obtain a methodology for optimal design in a fairly automated fashion. Practical
validations on Euler and Navier Stokes codes for 3D and 2D flows are under way.
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Design of Experiments and Snapshot Generation in Reduced-order
Modeling

Max Gunzburger

Reduced-order modeling strategies such as proper orthogonal decomposition
(POD) methods are developed from a set of snapshots. The reduced-order model
cannot contain more information than that contained in the snapshot set. Thus,
the generation of snapshots is crucial to the success of reduced-order models. The
generation of snapshots is an exercise in the design of experiments, i.e., how does
one choose the values of the parameters used to generate the snapshot simulations
or the time instants at which one evaluates the snapshots? We discuss the use of
design of experiment-based strategies for parameter selection for snapshot genera-
tion. Issues that arise in selecting a method for sampling points in parameter space
are considered, and the relative merits of different methods (e.g., quasi-Monte
Carlo sequences, Latin hypercube sampling, centroidal Voronoi tessellation, etc.)
are discussed. Several notions of uniformity for point sets are compared, as are
their effect on deciding which sampling methods are best for specific applications.
Also, the role of known information about the parameters and how to incorpo-
rate this information into the point sampling process for snapshot generation are
considered.
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A major consideration of the talk is a new point sampling strategy that we have
developed that is based on centroidal Voronoi tessellations (CVT’s). These are
special Voronoi tessellations for which the generators of the Voronoi tessellation are
also the centers of mass, with respect to a given density function, of the associated
Voronoi cells. CVT’s have many uses in many applications; in particular, CVT’s
can be used for generating very high-quality point sets in regions and on surfaces.
Using several volumetric measures of uniformity, CVT point samples are shown to
be more “uniform” that those obtained by existing strategies. On the other hand,
CVT point sets do not have good properties when projected onto lower dimensional
surfaces, e.g., the faces of a hypercube. Such a property is desirable in some
applications such as high-dimensional integration. For the latter application, one
can define “Latinized” CVT point sets that possess good projections. For design of
experiment applications relevant to snapshot generation, both CVT and Latinized
CVT point sets are superior to existing points sampling methods. Incidentally,
CVT strategies also offer an alternative to POD as a means for defining a reduced
basis from a set of snapshots.

Various aspects of the talk represent joint work with John Burkardt, Hoa
Nguyen, Janet Peterson, and Yuki Saka (Florida State University) and Hyung-
Chun Lee (Ajou University, Korea).
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Adjoint-based Adaptive Time-stepping for Partial Differential
Equations using Proper Orthogonal Decomposition

Vincent Heuveline
(joint work with M. Hinze (TU Dresden))

We present an effective adjoint-based a-posteriori goal-oriented error control
mechanism [1] for time integration of partial differential equations. The sensitivity
information is obtained from the adjoint of a reduced order model of the full partial
differential equations [2] while the reduced order model is adapted during the error
estimation process. Several numerical examples illustrate the performance of the
method.
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Model Reduction (and Spacetime Multigrid) in Control of
Time-dependent PDEs

Michael Hinze
(joint work with K. Afanasiev (ZIB Berlin) and G. Büttner (TU

Berlin))

We present an effective control method for mathematical models governed by
systems of nonlinear time-dependent partial differential equations. It takes account
of the fact that control inputs may alter the regime of the underlying physical
process. The method in an adaptive manner constructs a hierarchy of appropri-
ate low dimensional approximations to the mathematical model which then are
used as subsidiary condition in the related optimization problem. We discuss dif-
ferent possibilities to construct low dimensional systems and the related modes
(eigenfunctions of stationary problem, eigenfunctions of the linearized model and
snapshot form of proper orthogonal decomposition).

As numerical example we present tracking-type control of the incompressible
Navier-Stokes system as mathematical model for periodic flow around a cylinder.
The numerical results of the adaptive approaches for different modes are compared.
Furthermore they are compared to the result of the optimal control approach
applied to the full Navier-Stokes system. It turns out that the quality of the
controls obtained from the suboptimal approaches compares to that obtained by
optimal control, and the computational costs for the optimal approach are at
least one order of magnitude larger. More specifically, for the numerical example
considered we obtain

Runtime(Optimization) = (6-8) x Runtime(pdesolve),
see [1].

In the second part of the talk we present preliminary results for multigrid in
spacetime following the integral equation approach of Hackbusch. It turns out
that for the numerical solution of linear-quadratic control problems we achieve

Runtime(Optimization) = (7-8) x Runtime(pdesolve),
for the numerical solution of a nonlinear problem with inexact Newton methods
and spacetime multigrid for the Newton defect system we achieve

Runtime(Optimization) = 20 x Runtime(pdesolve),
see [2].
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Adaptive Finite Elements for Inverse Scattering
Claes Johnson

(joint work with L. Beilina)

We apply an adaptive hybrid FEM/FDM method for an inverse scattering prob-
lem for the time-dependent acoustic wave equation in 2D and 3D where we seek to
reconstruct an unknown sound velocity c(x) from measured wave-reflection data.
Typically this corresponds to identifying an unknown object [scatterer] in a sur-
rounding homogeneous medium.

We use an optimal control approach where we seek a sound velocity c[x] which
minimizes the difference between computed and measured output data in a discrete
L2 norm. We solve the optimization problem by a quasi-Newton method where in
each step we compute the gradient by solving a forward [direct] and an backward
[adjoint] wave propagation problem.

To compute the backward and forward wave propagation problems we use an
adaptive hybrid finite element/finite difference method where we exploit the flex-
ibility of mesh refinement and adaption of the finite element method in a domain
covering the object and the efficiency of a structured mesh finite difference method
in the surrounding homogeneous domain. The hybrid scheme can be viewed as
a finite element scheme on a partially unstructured mesh which gives a stable
coupling of the two methods.

We use an adaptive mesh refinement algorithm to improve the accuracy of the
reconstruction and speed up the convergence of the quasi-Newton method.
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Structural Aspects for Numerical Methods in Optimal Control of
Evolution Equations

Karl Kunisch

Motivated by optimal control problems in fluid dynamics describing vortex or
drag reduction I remark in this survey talk on some aspects in open as well as
closed loop numerical optimal control.

In the first part the difference between the optimization based approach and
methods focused on solving the optimality system is explained. Sequential qua-
dratic programming methods are compared to Newtons method. In the former
the linearized state equation in the latter the nonlinear state equations are solved,
resulting in primal feasibility in case of Newtons method [HK2]. In view of time-
stepping techniques which are typically used to integrate the dynamical system,
the numerical cost between the solution of the linearized equation and inexact



206 Oberwolfach Report 3/2004

solutions to the nonlinear equation can be low. This suggests to favor the New-
ton over the SQP method for optimal control of evolution problems. — Finally a
new cost functional for vortex suppression relying on local phase plane analysis is
proposed [SK].

The second part is devoted to feedback control. For linear quadratic problems
feedback control is completely characterized by means of an operator Riccati equa-
tion. In the nonlinear case the feedback control relies on the viscosity solution of a
Hamilton-Jacobi-Bellman equation, which is numerically unfeasible unless the di-
mension of the (discretized) state-space is unreasonably small. For optimal control
of fluid flow this requires the use of approximation strategies (beyond state space
discretization). Here we explain techniques which rely on model reduction based
on proper orthogonal decomposition (POD) combined with numerical solutions of
the HJB-equation for infinite as well as finite horizon problems for the reduced
problem [KV1, KV2, KX]. We also describe receding horizon techniques which
rely on a time domain splitting strategy. To analytically justify their use we con-
sider the stabilization problem of steady states. If a control Ljapunov functional
is used as terminal penalty then the receding horizon control successfully drives
the trajectory to the steady state [IK1, IK2].
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Adaptive Wavelets for Optimal Control Problems
Angela Kunoth

For the fast numerical solution of control problems governed by partial dif-
ferential equations, an adaptive algorithm based on wavelets is proposed. The
framework allows for linear elliptic and parabolic PDEs in full weak space–time
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formulation as constraints as well as for problems with distributed or with Neu-
mann or Dirichlet boundary control.

A quadratic cost functional which may involve fractional Sobolev norms of the
state and the control is to be minimized subject to linear constraints in weak form.
Placing the problem into the framework of (biorthogonal) wavelets allows us to
represent the functional and the constraints in terms of �2–norms of wavelet ex-
pansion coefficients and constraints in form of an �2 automorphism. The resulting
first order necessary conditions are then derived as a (still infinite) system in �2.

Applying the machinery developed in [CDD], we propose an adaptive method
for the coupled system for the state, adjoint and control variables. An essential
ingredient is that the scheme can be interpreted as an inexact gradient descent
method, where in each iteration step the primal and the adjoint system needs to
be solved up to a prescribed accuracy. In particular, the method resolves each of
the involved variables separately, without having to resort to a common underlying
grid.

The convergence analysis of the algorithm is crucially based on the fact that
the wavelet framework allows us to step by step break down an ideal iteration
on the infinite system to computable quantities. Thus, the method captures all
relevant features from the original control problem with respect to infinite function
spaces and specifically resolves any type of singularity coming from the data or
the domain. Consequently, the approximate solutions generated by the adaptive
algorithm can be shown to converge (in the energy norm) to the exact solution
triple (state, adjoint state, control) for any prescribed accuracy.

Moreover, it is shown that the adaptive algorithm is asymptotically optimal,
that is, the convergence rate achieved for computing the solution up to a desired
target tolerance is asymptotically the same as the wavelet–best N–term approx-
imation of the solution, and the total computational work is proportional to the
number of computational unknowns.
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A Paradigm for Adaptivity and Optimal Control
Rolf Rannacher

We present a general approach to “goal-oriented” error estimation and mesh
adaptation in the context of optimal control problems of the abstract form

J(u, q) = min!, A(u, q)(·) = 0,

where the equation constraint is a PDE. The starting point is the first-order opti-
mality condition, the so-called KKT system,

∇u,q,zL(u, q, z) = 0, L(u, q, z) := J(u, q) − A(u, q)(z),

obtained by the classical Euler-Lagrange approach. This set of nonlinear and
strongly coupled PDEs for the primal variable (state) u , the control variable q
(control), and the dual variable z (adjoint) is approximated by a Galerkin finite
element method. The topic of this talk is a strategy for the a posterori construction
of finite element meshes which are most economical for the optimization process.
Exploiting the particular structure of the KKT system an error representation is
derived for the discretization with respect to the cost functional in terms of the
residuals of the computed solution and a remainder term which is cubic in the
approximation errors,

J(u, q)− J(uh, qh) = 1
2∇u,q,zL(uh, qh, zh)(z−ψh, qh−χh, u−φh) + R

(3)
h (eu, eq, ez).

The remainder term is usually neglected. The computational evaluation of the
residual term yields “weighted” a posteriori error estimates of the form

J(u, q) − J(uh, qh) ≈
∑

K∈Th

{
ρu

Kωz
K + ρq

Kωq
K + ρz

hωu
K

}
,

which can guide the mesh adaptation process. In these estimates “primal” resid-
uals and “dual” weights as well as “dual” residuals and “primal” weights are
crosswise multiplied, while in the traditional approach these quantities are added.
Therefore, this approach of mesh adaptation is called “Dual Weighted Residual
(DWR) Method”. The resulting meshes for discretizing the KKT system are most
economical since only that information is represented which is really needed for the
optimization process. When an optimal control qopt

h is determined for this sparse
model, using for instance a Newton-type iteration, a more accurate primal solu-
tion ũopt

h can be generated in a post-processing step by solving the state equation
once again on a finer mesh. The performance of the DWR method is demon-
strated for a simple diffusion-reaction problem with Neumann-boundary control.
The very same approach can also be used in the context of time discretization
and eigenvalue problems, e.g., in the control of the Navier-Stokes equations for
drag minimization and for the stability analysis of the resulting optimal states.
For further information and other classes of applications, we refer to the literature
listed below.
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Modelling and Globalizing Applied to Optimal Control Algorithms
Ekkehard W. Sachs

Various models in algorithms for optimization have led to different strategies of
globalizing optimization methods. The trust region concept is a general globaliza-
tion strategy which can be applied to various model functions.

For an unconstrained optimization problem the trust region strategy defines at
each iteration point uk a nonlinear model function mk(uk + ·) which is minimized
over a ball of radius ∆. The radius is updated according to the accuracy of the
value of the model function in comparison to the value of the true function at the
candidate at the next iteration point. The trust region is updated in a similar
fashion. These strategies together with a condition on a sufficient descent for a
function value yield a global convergence statement.

The linear model leads to the well known Armijo step size rule, whereas the
quadratic model yields a smooth transition from steepest descent to the Newton
step. It is less known that the trust region method can also be applied to nonlinear
models as pointed out by Toint [4].

The training of neural networks is one area where these techniques have been
applied successfully for large scale problems.

Another application is reduced order modelling, in particular, proper orthog-
onal decomposition for the optimal control of Navier-Stokes equation. Afanasiev
and Hinze [1] also use adaptive techniques to adjust the POD model during the it-
eration. In Arian, Fahl, Sachs [2, 3] the trust region approach is utilized to control
the adaption of the POD model. In this case the differential equation is replaced
by a reduced order model of smaller size. In this case the original function f(y(·))
is replaced by the model function mk(uk + ·) = f(yPOD,uk

(·)).
Numerical examples are given for an example of the control of a driven cavity

flow problem.

References

[1] K. Afanasiev, M. Hinze, Adaptive control of a wake flow using proper orthogonal decompo-
sition, Lecture Notes in Pure and Applied Mathematics 216 (2001).



210 Oberwolfach Report 3/2004

[2] E. Arian, M. Fahl, and E.W. Sachs, Trust-region proper orthogonal decomposition for flow
control, ICASE Report 2000-25, ICASE, NASA Langley Research Center, Hampton, 2000.

[3] E. Arian, M. Fahl and E.W. Sachs, Managing POD Models by optimization methods, IEEE
CDC Conference Proceedings, Las Vegas, 2002.

[4] P.L. Toint, Global convergence of a class of trust region methods for nonconvex minimization
in Hilbert space, IMA J. Num. Anal., 8 (2) 231-252 (1988).

ODE Concepts for PDE Optimization
Volker H. Schulz

(joint work with S. Hazra (U Trier))

In this talk, we exploit algorithmic concepts from the ODE world for the solution
of optimization problems with PDE constraints. In particular, methodological
results for two specific application problems are reported.

In the first application problem, we solve parameter identification problems for
instationary multiphase flow in the subsurface. Multiple shooting in combination
with a reduced Gauss-Newton approach, due to Bock and Schloeder (1981-), yields
an efficient and robust algorithm with low storage requirements (cf. [1] and several
subsequent papers).

In the second application problem, we study shape optimization for the de-
sign of parts of the surface of airplanes under drag optimization. First results
regarding a new collaborative project together with DLR Braunschweig, Airbus
Germany, EADS and others, which has started recently, are reported. The al-
gorithmic workhorse is a generalization of reduced SQP techniques to continuous
reduced SQP techniques in a pseudo-timestepping framework.

Both applications show that one can profit from knowledge of ODE concepts
for optimization problems also in a PDE context.
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On Optimal Control Problems with Pointwise State Constraints
Fredi Tröltzsch

We consider the parabolic optimal control problem with pointwise constraints
on the control and the state,

min J(y, u) =
1
2
‖y(T ) − yd‖2

L2(ω) +
ν

2
‖u‖2

L2(Q)

subject to
yt − ∆y + d(y) = u in Q = Ω × (0, T )
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with homogeneous Neumann boundary condition and initial condition y(0) = y0.
Moreover, pointwise constraints are imposed on the control u ∈ L∞(Q) and the
state y ∈ Y := W (0, T ) ∩ C(Q̄),

0 ≤ u(x, t) ≤ b(x, t)
0 ≤ c(x, t) + γ y(x, t),

(x, t) ∈ Q. The following data are given: A bounded domain Ω ⊂ R
N with C1,1-

boundary Γ, functions yd, y0 ∈ C(Ω̄), b, c ∈ C(Q̄), d ∈ C2,1(R) with d′(y) ≥ 0,
and γ > 0, ν > 0. For all u ∈ L∞(Q), a unique state y = y(u) exists in Y .
Let ū be locally optimal in the sense of L∞(Q) and define ȳ = y(ū). Then the
associated first order necessary optimality conditions can be formulated on using
the Lagrange functional

L(y, u, p, µ) = J(y, u) −
∫
Q

[(yt + d(y) − u)p + ∇y · ∇p] dxdt −
∫
Q

(y + c) dµ(x, t),

where p stands for the adjoint state and µ ∈ C(Q̄)� is the Lagrange multiplier asso-
ciated with the state constraints. If a constraint-qualification is satisfied at (ȳ, ū),
then a non-negative Borel measure µ exists such that the first order necessary
optimality conditions

∂L
∂y (ȳ, ū, p, µ) y = 0 ∀ y ∈ W (0, T ) with y(0) = 0

∂L
∂u (ȳ, ū, p, µ)(u − ū) ≥ 0 ∀u ∈ L∞(Ω) with 0 ≤ u ≤ b∫

Q

(y + c) dµ = 0

are satisfied. This follows from results [2] and [5]. Assume conversely that a pair
(ȳ, ū) is given that satisfies all constraints and the first-order necessary conditions.
One might expect that the following standard condition is sufficient for local op-
timality of ū:
(SSC) There is δ > 0 such that

L′′(ȳ, ū, p, µ)(y, u)2 = ‖y(T )‖2
L2(Ω) + ν‖u‖2

L2(Q) −
∫
Q

d′′(ȳ)p y2 dxdt ≥ δ ‖u‖2
L2(Q)

holds for all pairs (y, u) ∈ Y × L∞(Q) satisfying the state equation linearized at
(ȳ, ū).

Then ū is expected to be locally optimal with respect to the L2-topology. This
holds true, if the mapping u 
→ y(u) is continuous from L2 to C(Q̄), i.e. for
N = 1 in our parabolic example with distributed control. For the case of Neumann
boundary control, this is not true.

If, however, the state-constraints are deleted, then (SSC) is sufficient for local
optimality in the L∞-topology for all N .

Unfortunately, we have not been able to prove the same result with pointwise
state constraints. Local optimality can still be shown in the sense of L∞ for N = 2.
For N > 2 we cannot prove that (SSC) is really sufficient for local optimality. The
obstacle is the need to estimate L′′(ȳ, ū, p, µ)(y, u)2 against the L2-norm of u. Due
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to the presence of the measure µ in the right-hand side of the adjoint equation, p
is not bounded in the case of state-constraints. Therefore, the estimation of the
third quantity in the expression for L′′ causes troubles.

The situation is even worse, if (SSC) is weakened by considering also strongly
active state-constraints. Then only for N = 1 the local optimality can be shown in
the case of distributed control, while boundary controls cannot be handled at all.
We refer to [6]. The results are slightly better for elliptic problems. L2-optimality
can be shown for N ≤ 3 and distributed control (since H2(Ω) ⊂ C(Ω̄)) and N = 2
for Neumann boundary control (H3/2−ε(Ω) ⊂ C(Ω̄)), [3]. To overcome these
difficulties, a Lavrentiev type regularization is suggested. Consider the mixed-
pointwise control-state constraints

−ε u(x, t) ≤ c(x, t) + γ y(x, t).

In this case, the existence of an associated regular Lagrange multiplier µ ∈ L∞(Q)
can be shown, [1]. Moreover, this concept is useful for numerical approximations.
For ε ↓ 0, the associated optimal control converges to ū. This is demonstrated for
linear-quadratic elliptic problems with N = 2, [4].
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Optimal Control of Nonlinear Parabolic Systems by Second Order
Methods

Stefan Volkwein

In the talk three different optimal control problems for nonlinear parabolic
systems are considered.

The first example is concerned with optimal boundary control of an instationary
reaction-diffusion system in three spatial dimensions. This problem involves a
coupled nonlinear system of parabolic differential equations with bilateral as well
as integral control constraints. We include the integral constraint in the cost by
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a penalty term whereas the bilateral control constraints are handled explicitly. A
primal-dual active set strategy is utilized to compute optimal solutions numerically.
The algorithm is compared to a semi-smooth Newton method.

As a second example an optimal control boundary problem for the Stefan prob-
lem is considered. Here, an inexact Newton method is applied with quasi-Newton
approximations for the Hessian. To ensure positivity of the Hessian, a line search
based on the Wolfe-Powell conditions is utilized.

Finally, laser surface hardening of steel is formulated in terms of an optimal
control problem, where the state equations are a semilinear heat equation and an
ordinary differential equation, which describes the evolution of the high tempera-
ture phase. To avoid the melting of the steel we have to impose state constraints
for the temperature. Including the state constraints into the cost functional by a
penalty term, a globalized SQP method with a reduced Hessian is applied to solve
the control problem numerically. To ensure the convergence of the algorithm a
numerically inexpensive globalization strategy is used.
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Interior–Point Methods for Optimization Problems with PDE
Constraints

Beate Winkelmann
(joint work with R.E. Bank and Ph.E. Gill)

Methods are proposed for the numerical solution of optimal control problems
with partial differential equation (PDE) constraints and inequality constraints on
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the control variable. The general form of the problem is:

minimize
y,u

ρ(y, u) =
∫

Ω

p1(y,∇y, u) dx +
∫

∂Ω

p2(y,∇y, u) ds

subject to 〈E(y, u), v〉 = 0, ∀v ∈ H,

u ≤ u(x) ≤ u,

where Ω ⊂ R
d, d ∈ {1, 2}, y is the state variable, u is the control variable, H is

an appropriate function space, and 〈E(y, u), v〉 = 0 is the weak form of a partial
differential equation in divergence form. State and control variables are discretized
using an adaptive finite-element approach. Algorithms for optimization and PDEs
are combined to solve a discretized optimization problem over a sequence of adap-
tive meshes.

An interior-point method is used for the optimization part of the algorithm.
The two main types of interior-point method are primal methods and primal-dual
methods. As the names suggest, primal methods iterate over the primal variables
only, while primal-dual methods iterate over the primal and dual variables simulta-
neously. However, both methods approach the solution by following a continuous
path that approaches the solution from the interior of the set of admissible solu-
tions. For a primal method the path is the trajectory of solutions of a sequence
of equality-constrained problems parameterized by a scalar µ. Primal-dual meth-
ods define the path as the trajectory of points satisfying the perturbed first-order
optimality conditions for the constrained problem.

Primal-dual methods are usually preferred for general constrained optimization
because of their rapid convergence near the solution. However, in the PDE context,
the use of a primal-dual method requires the adaptive discretization of both the
primal and dual variables, which can lead to serious numerical difficulties if the
dual variables are not sufficiently smooth. It is shown that these difficulties may
be avoided if the primal method is implemented using an extrapolation scheme for
the parameter µ.

Regardless of the particular choice of interior-point method, the linear sys-
tems to be solved at each iteration are large, symmetric and have PDE-like struc-
ture. These systems also become increasingly ill-conditioned as the solution is
approached. In order to handle the size and sparsity of these systems, a precon-
ditioned Krylov-space method is used. The choice of preconditioner is crucial for
the performance of the optimization since the cost of solving the linear system
dominates the overall cost of the computation. A good preconditioner lowers the
cost of solving the linear systems significantly. The aim is to incorporate as much
information as possible into the preconditioner without dramatically increasing the
cost of the computation. To this end, the preconditioner has the same block struc-
ture as the original system and existing multilevel PDE preconditioners are used
for some of the blocks. In particular, an algebraic multigrid preconditioner with
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ILU smoothing is used for the PDE constraint blocks, and a symmetric Gauss-
Seidel preconditioner is used for the control block and the full linear system. The
preconditioner is fully parallel.

The PDE part of the algorithm uses adaptive mesh refinement based on an
a posteriori hierarchical basis error estimator for the state variables. The path-
following parameter µ and the PDE parameters are chosen to allow the discretiza-
tion error and optimization error to go to zero at the same rate. An error estimator
based on the state variable allows the mesh to be adaptively refined and unrefined
without the additional cost of solving the adjoint equation.

These ideas are illustrated in the context of the elliptic finite-element PDE
package PLTMG. Numerical results are presented for a particular optimal control
problem involving an elliptic PDE constraint. The adaptive refinement algorithm
requires the solution of an optimization problem with up to 22.5M variables. This
problem was solved on a 256 processor Beowulf cluster in approximately 8 minutes.
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Introduction by the Organisers

Thin film epitaxy is a modern technology of growing single crystals that inherit
atomic structures from substrates. Various mathematical models and numerical
algorithms are proposed to be used for describing epitaxial growth processes. Due
to the underlying multiscale phenomena, which range from the interaction of single
atoms at steps up to an engineering scale, on which the transport of material to
the surface in a MBE (molecular beam epitaxy) furnace needs to be described, the
models can be distinguished by the relevant length scales they are living on

(a) discrete atomic models: Individual atoms are the basic degrees of freedom
and single hoppings to neighbouring lattice sites are simulated by kinetic
Monte Carlo methods. A n example are the so-called Solid-on-Solid mod-
els.

(b) discrete-continuous models: The atomic distance in the growth direction is
discrete, but the atomic distance in the lateral direction is coarse grained.
The steps are assumed to be smooth curves and serve as free boundaries
for an adatom diffusion equation on terraces. These models are known as
Burton-Cabrera-Frank models.

(c) continuous models: The atomic processes at steps are neglected , the
overall surface is assumed to be smooth and phenomenological equations
describe directly the height of the growing film. An example is the Villain
equation.
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The main goal in modelling epitaxial growth is to bridge the gap between these
different models and to describe growth process on a continuous scale by incorpo-
rating atomic effects. The focus of this workshop was to bring together materials
scientists, theoretical physicists and applied mathematicians to exchange ideas on
the three different regimes (a),(b) and (c). The mini-workshop consisted of three
introducing lectures, one for each approach and several lectures which focus on con-
nections both in an analytical and numerical fashion. The contributions ranged
from quantum-chemistry, molecular dynamics and kinetic Monte Carlo to step
flow and continuum models. Several multiscale approaches have been considered
to combine at least two of these models.

Besides the mathematical aspects of modelling epitaxial growth also the connec-
tion to experimental results was dealt with in order to drive the recent theoretical
developments into a direction which is relevant for a large variety of industrial
applications. The mini-workshop was also used to give young researchers the op-
portunity to be introduced into such an actual interdisciplinary field.
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Abstracts

Fronttracking for Epitaxial Growth by a Cellular Automaton
Algorithm

Rainer Backofen
(joint work with Frank Haußer, Axel Voigt)

The description of steps is a crucial part in the numerical modelling of step flow
or island growth. There are a lot of different methods, e.g. level sets, parametric
finite elements or phasefield methods. Each of them have their advantages and
disadvantages. But for all this methods faceting of the steps or strong anisotropic
properties are numerically hard to treat1.
In cases of strong anisotropic growth laws Gandin and Rappaz [1] introduced a
cellular automata (CA) algorithm for the description of grain growth in metallur-
gical solidification.We present first steps to adapt this algorithm to epitaxial island
growth.

In the presence of strong anisotropies the growth of an island is limited by its
slowest growing directions. In these directions the island form facets. A complete
representation of such an island is given by the normal directions of the facets
and their distances from a central point. A set of facet normals together with a
distance to a point defines an evolution element. In order to take into account
local effects such as island impingement or spatially varying growth velocities, a
local description of the island is needed. Thus the step or island boundary is
approximated by a set of local evolution elements defined at points near the step.
In figure 1 the evolution algorithm is shown.

a) b) c)

Figure 1. a) An island is nucleated in a cell and succes-
sively grows until adjacent cells are inside the envelope.
b) Adjacent cells are infected, that is, the island is repre-
sented by a evolution element defined at the new infected
cell. c) The whole island is now locally defined by evolu-
tion elements defined in cells nearby

The CA uses a regular structured grid. Every grid cell has a state, ξi : terrace,
no terrace or boundary. In the boundary cells are additionally evolution elements
defined to track the step.

1at least compared to a isotropic case
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The driving force for the step evolution is derived by a standard Burton-
Cabrera-Frank (BCF) type model [1]. The adatom density ρi at the terrace Ωi of
atomic height is described by the diffusion equation

ρi − D∆ρi = F − τ−1ρi in Ωi(t)(1)

where F and τ−1ρi model the flux onto the surface and evaporation. The steps
(terrace boundaries) Γi are free boundaries with normal velocity vi governed by
the adatom fluxes toward the steps and edge diffusion.

vi = −D∇ρi · �ni − ρvi + D∇ρi−1 · �ni + ν∂ssκi(2)

Until now we use thermodynamic boundary conditions at the steps

ρi = ρi = ρeq(1 + µκi) on Ωi(3)

To solve this set of equations, we use a operator splitting approach, as in Bänsch
et al. [2]. The step evolution is modelled with the CA, which is coupled to the
FEM algorithm for adatom diffusion, see figure 2.

As a first test case a circular island is treated. To approximate an isotropic
situation evolution elements with 90 facets are used, see figure 3 a),b).

The instabilities of the island growth is triggered by the approximation of the
step by a polygon. For a slightly tilted evolution element with five facets the insta-
bilities are clearly caused by the prescribed anisotropy of the growth algorithm,see
figure 3 c).

The next major step will be to connect the anisotropy of the growth algorithm
to physical situations.
Another important issue is the effective derivation of a smooth and nearly equidis-
tant polygon from the CA description of the island. Since the implementation of
topological changes and incorporation of faceting is very natural, the algorithm
seems to be worth further considerations.
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Lattice Gas Models and Kinetic Monte Carlo Simulation of Epitaxial
Crystal Growth
Michael Biehl

A brief introduction is given to the Kinetic Monte Carlo (KMC) simulation of
epitaxial crystal growth. Molecular Beam Epitaxy (MBE) serves as a particularly
clear-cut prototype situation, but many of the aspects discussed here would carry



Multiscale Modelling in Epitaxial Growth 225

CA 2+1 D

a)

layer

FEM 2 D

b)

steps and heights

CA FEM 

mass flux

Figure 2. a) For each atomic layer a CA grid is defined.
In each layer the islands of the corresponding height are
defined. The steps are then transferred as polygons to the
FEM calculation of adatom diffusion, the FEM algorithm
then calculates the growth velocity of the steps, b).

over to other techniques. MBE has become a standard experimental setup for
the production of high quality crystals, such as thin magnetic films or nano-scale
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Figure 3. a) Envelope of the island. Curvature effects
are not taken into account, so the growth is instable for
small islands. The instability is driven by fluctuations in
the definition of the steps. b) Overall mass conservation
is 3%. c) Five sided evolution element. The instability
is triggered by the anisotropy of the evolution element.
(mass conservation ≈ 10%) .

semiconductor structures. At the same time it provides a framework in which to
develop theoretical and computational concepts for the description of growth and
more general non-equilibrium processes.

Different approaches to the modelling and simulation of MBE and similar
growth techniques have been applied. They range from the full microscopic quan-
tum mechanics treatment of the dynamics to the coarse grained description in
terms of, for instance, stochastic differential equations. Here, the focus will be
on discrete models such as lattice gas and Solid-On-Solid (SOS) models and the
corresponding Kinetic Monte Carlo techniques. Various levels of simplification or
sophistication have been employed in this context, depending on the precise goal
of the investigation.

This contribution is far from giving an exhaustive review of the field. It is in-
tended to provide a brief discussion of the basic concepts of KMC simulations and
their strengths and limitations in the modelling of crystal growth processes. The
following example books and review articles give a detailed and more complete
overview of, both, the physics of epitaxial growth and the KMC method. They
also provide plenty of further references.

A.-L. Barabasy and H.E. Stanley, Fractal concepts in surface growth
Cambridge University Press, Cambridge (UK) 1995.

A. Pimpinelli and J. Villain, Physics of Crystal Growth
Cambridge University Press, 1998.

M.E.J. Newman and G.T. Barkema, Monte Carlo methods in statistical physics
Clarendon Press, Oxford 1999.
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P. Politi, G. Grenet, A. Marty, A. Ponchet, and J. Villain, Instabilities in crys-
tal growth by atomic or molecular beams, Physics Reports 324 (2000) 271.

M. Kotrla, N.I. Pananicolaou, D.D. Vvedensky, and L.T. Wille (eds.), Proc. of
the NATO Advanced Research Worshop on Atomistic Aspects of Epitaxial Growth
Kluwer, Dordrecht 2001.

T. Michely and J. Krug, Islands, mounds and atoms
Springer, Heidelberg 2004.

Off-lattice Kinetic Monte Carlo Simulation of strained hetero-epitaxial
growth

Michael Biehl

An off-lattice, continuous space Kinetic Monte Carlo algorithm is introduced
and discussed [1, 2, 3, 4], which allows to study various phenomena known from
strained, hetero-epitaxial crystal growth [5, 6].

As a starting point, we study a simplifying, 1+1 dimensional model with Lennard-
Jones interactions. It exhibits, for instance, the appearance of misfit dislocations
at a characteristic layer thickness [6, 3].

The focus of this talk is on the appearance of strain induced multilayer islands or
dots upon a persisting wetting layer, i.e. the so-called Stranski-Krastanow growth
mode [5, 7, 8, 9]. The transition from monolayer to multilayer islands occurs at
a critical film thickness. Its dependence on the model parameters (lattice misfit,
growth rate, and temperature) is investigated quantitatively. We find that for
sufficiently large deposition rates the properties of the mounds is governed by the
lattice mismatch only [8, 9].

The method is also applied in the context of surface alloy formation of im-
miscible metals on appropriate substrates. Two competing mechanisms for the
emergence of nano-scale stripe structures are investigated [10].
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A Multiscale Approach to the Modelling of Chemical Vapor
Deposition

Carlo Cavallotti

Computational material science of thin solid films has undergone great ad-
vancements in the last years. Significant progress has been made not only in the
prediction and description of the surface and bulk properties of the materials, but
also, from an engineering point of view, in the comprehension of the influence that
the operating conditions of the growth process have on the desired material prop-
erties. An approach that has recently proved successful in the description of the
thin film deposition processes is the multiscale modeling approach. It is based on
the fact that growth of materials with well controlled morphological and composi-
tional properties is a processes complicated by chemical and physical phenomena
that occurs on time and length scales that can differ even by several orders of
magnitude. I present a multiscale approach that has been developed to investi-
gate the Chemical Vapor Deposition of epitaxial thin films at different time and
length scales. The multiscale approach here outlined is designed to investigate
the influence that gas phase and surface reactions have on the morphological and
compositional evolution of thin solid films deposited by chemical vapor deposition.
Atomic scale energetic and kinetic parameters, when not available from the liter-
ature, are estimated by means of quantum chemistry computations. The local gas
phase composition, fluid dynamic and thermal fields are evaluated by integration
of mass, energy and momentum equations at the reactor scale using kinetic and
thermodynamic data calculated with quantum chemistry. The morphology of the
film is finally investigated using 3 dimensional Kinetic Monte Carlo, which inputs
are the gas phase fluxes calculated at the reactor scale and the kinetic parameters
determined at the atomic scale. The calculation of kinetic parameters for CVD
processes by means of quantum chemistry is usually performed by means of den-
sity functional theory (DFT). DFT calculations can be essentially of two different
types, depending on the choice of the basis set between plane waves and Gaussian
basis functions. While the first type of calculations has the advantage of treating
more correctly systems with delocalized electrons, such as metals, the second offers
the possibility to systematically increase the dimension of the basis set used for the
calculations, and thus describe in higher detail the electronic density distribution.
Since our analysis is focused mainly on semiconductors, in which electrons are usu-
ally localized within covalent bonds and atomic orbitals, we choose to perform our
atomic scale calculations using gaussian basis functions with gradient corrected
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functionals, such as B3LYP [1]. Surface processes are studied using clusters of
different dimension to represent the surface structure. We choose to investigate
the morphology evolution of the thin solid films with 3 Dimensional Kinetic Monte
Carlo, that has the advantage over other mesoscale models to require as inputs
kinetic constants or diffusion parameters that can be directly calculated by means
of quantum chemistry. Our implementation of KMC follows the theory outlined
by Weinberg [2], with direct tracking of real time and a rejection free choice of the
random transition. The starting conditions of the KMC simulation are the surface
structure at time 0, the surface temperature and the fluxes of gas phase species
towards the surface. The output of a KMC simulation consists in the detailed
surface morphology of the film after the deposition of a certain amount of layers.
It is thus possible to determine the growth regime of the film, be it 3 dimensional,
terrace step flow or 2 dimensional. The reactor scale modeling of CVD processes
can nowadays be considered as a mature field. Several commercial CFD codes
dedicated to CVD are in fact available and have been tested in many different
occasions against experimental data. However, being the focus of our research the
integrated multiscale modeling of the CVD process, we still rely on the use of our
codes when the intent is that of linking together consistently KMC and reactor
scale models [3]. The multiscale approach here proposed was used to investigate
the epitaxial CVD of Si and ZnSe and the selective Metal Organic CVD of AlGaAs
and InP [4, 5]. The results of the calculations were compared with experimental
data with the aim of improving our understanding of the growth process.
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Configurational continuum modelling of crystal surface evolution
Navot Israeli

(joint work with Daniel Kandel)

We propose a novel approach to continuum modelling of dynamics of crystal sur-
faces. Our model follows the evolution of an ensemble of step configurations,
which are consistent with the macroscopic surface profile. Contrary to the usual
approach where the continuum limit is achieved when typical surface features con-
sist of many steps, our continuum limit is approached when the number of step
configurations of the ensemble is very large. The model is capable of handling sin-
gular surface structures such as corners and facets and has a clear computational
advantage over discrete models.
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Thermal decay and Ostwald ripening in homoepitaxy
Frank Haußer

(joint work with Axel Voigt)

The thermal relaxation of isolated (single layer) homoepitaxial islands and craters
and of isolated nanomounds is simulated using a 2+1 dimensional step flow model.
Numerical simulations based on adaptive finite elements are used to study decay
rates of these structures in the diffusion limited and attachment-detachment lim-
ited regime under the influence of anisotropic effects.

Configurational continuum modelling of crystal surface evolution
Navot Israeli

(joint work with Daniel Kandel)

The behavior of classical physical systems is typically described in terms of
equations of motion for discrete microscopic objects (e.g. atoms). The dynamics of
the microscopic objects is usually very erratic and complex. Nevertheless, in many
cases a smooth behavior emerges when the system is observed on macroscopic
length and time scales (e.g. in fluid flow through a pipe). A fundamental problem
in physics is to understand the emergence of the smooth macroscopic behavior
of a system starting from its microscopic description. A useful way to address
this problem is to construct a continuum, coarse-grained model, which treats the
dynamics of the macroscopic, smoothly varying, degrees of freedom rather than
the microscopic ones. The derivation of continuum models from the microscopic
dynamics is far from trivial. In most cases it is done in a phenomenological manner
by introducing various uncontrolled approximations.

In this work we address the above problem in the context of the dynamics of
crystal surfaces. The evolution of crystal surfaces below the roughening transition
proceeds by the motion of discrete atomic steps which are separated by high sym-
metry orientation terraces. One can model step motion by solving the diffusion
problem of adatoms on the terraces with appropriate boundary conditions at step
edges. This approach was introduced long ago by Burton, Cabrera and Frank [1],
and was further developed by other authors [2]. The resulting models are capa-
ble of describing surface evolution on the mesoscopic scale with significant success
[3, 4]. However, such models pose a serious challenge for numerical computations,
and can be solved only for small systems.

Several attempts were made to construct continuum models for stepped surfaces
[5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17], in order to understand their large scale
properties. The general idea behind these attempts is that step flow can be treated
continuously in regions where every morphological surface feature is composed of
many steps. If we label surface steps by the index n, the continuum limit in these
models is obtained by taking n to be continuous. The outcome of these attempts
are partial differential equations for surface evolution. Such continuum models are
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fairly successful in describing the evolution of smooth surfaces with very simple
morphologies. However, they suffer from fundamental drawbacks, which do not
allow generalizations to more complex and realistic situations.

The most severe drawback is that below the roughening temperature, crystal
surfaces have singularities in the form of corners and macroscopic facets. The
latter are a manifestation of the cusp singularity of the surface free energy at high
symmetry crystal orientations. The assumption that every surface feature is com-
posed of many steps clearly breaks down on macroscopic facets where there are
no steps at all. Thus, existing continuum models fail conceptually near singular
regions. Several authors have tried to overcome this problem by solving a contin-
uum model only in the non-singular parts of the surface and then carefully match
the boundary conditions at the singular points or lines[11, 12, 13, 14]. In most
cases however it is not at all clear how these matching conditions can be derived.
Another approach is to round the surface free energy cusp [15, 16, 17], replacing
true facets by relatively flat but analytic regions. This method implicitly assumes
that the surface free energy derived for non singular orientations determines the
dynamics on facets as well. This assumption is often found to be false because
steps near facet edges obey different dynamics than steps in the sloping parts of
the surface[12, 13].

In this work we propose a conceptually new definition of the continuum limit,
which we term Configurational-Continuum[18]. Configurational-Continuum allows
construction of continuum models, which are free of all the limitations of standard
continuum models discussed above. It provides a rigorous way of deriving the
continuum model directly from the discrete step equations of motion. Like other
continuum models, Configurational-Continuum has a clear computational advan-
tage over the discrete step model due to the small number of discretization points
it requires for the description of smooth surface regions in a numerical scheme.

Our key observation in deriving Configurational-Continuum is that a continuous
surface height profile defines an ensemble of microscopic step configurations which
are all consistent with the continuous profile. The continuous profile in this picture
evolves as the upper envelope of the ensemble with each configuration obeying the
microscopic step dynamics. We derive the envelope equation of motion in the
continuum limit when the number of configurations in the ensemble is very large.
In contrast to the situation in standard continuum models, this Configurational-
Continuum limit is exact.
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Universality classes for step bunching?
Joachim Krug

(joint work with V. Tonchev, S. Stoyanov)

In a remarkable recent paper [1], Pimpinelli and coworkers proposed a classifica-
tion of step bunching instabilities in terms of scaling exponents characterizing the
shape of the bunches and the time evolution of their size. The scaling exponents
α, β and γ are defined through the relations

(4) N ∼ Wα, lmin ∼ N−γ , N ∼ L ∼ tβ

between the number of steps N in a bunch, the width W of the bunch, the min-
imal terrace size lmin in the bunch and the spacing L between bunches. The
second and third of theses scaling relations have been observed experimentally in
electromigration-induced step bunching on surfaces vicinal to Si(111) [2, 3].

Pimpinelli et al. derive the scaling exponents by dimensional analysis of a
continuum height equation of the generic form

(5)
∂h

∂t
= − ∂

∂x

[
Bmρ + K

∂2

∂x2
mn

]
,

where m = ∂h/∂x > 0 is the slope of the surface, assumed to be positive, the
exponent ρ characterizes the instability mechanism and n is the exponent of the
step-step interactions (usually n = 2). In this talk I address two questions: First,
how can equations of the form (5) be derived from the underlying step dynam-
ics? Second, are the scaling exponents correctly given by the dimensional analysis
employed in [1]?

With regard to the first question, we show that an equation of the form (5)
with ρ = −1 follows whenever the destabilizing part of the step dynamics can be
assumed to be linear in the step spacings [4]. Examples for such kind of linear
step dynamics include growth with strong inverse Ehrlich-Schwoebel barriers [5], as
well as sublimation with conventional Ehrlich-Schwoebel barriers [6], and surface
electromigration [7], provided attachment to the steps is slow. The latter implies
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an additional mobility factor 1/m in front of the coefficient K of the stabilizing
term in (5) [8, 9]. In a well-defined sense, these three problems therefore belong
to the same universality class. The corresponding prediction of the theory of [1]
for the scaling exponents is

(6) α = 1 +
2
n

, γ =
2

2 + n
, β =

1
2
.

To address the second question, we have analyzed the stationary solutions of (5),
which are characterized by the condition of constant current. For the universality
class of interest it reads

(7) J =
B

m
+

K

m

d2

dx2
mn ≡ J0.

Interpreting mn as a particle coordinate, this is Newton’s equation for motion in a
one-dimensional potential. The bunch shape corresponds to a trajectory starting
at and returning to m = 0.

In analyzing this problem, it is important to realize that the mean current J0

is not an adjustable integration constant; instead, it is forced by the microscopic
boundary conditions to remain at the value J0 = B/m0 that it would have on
the initial undisturbed vicinal surface of slope m0 [6, 7]. For large bunches (large
slopes) this implies that the mean current J0 much exceeds the destabilizing part
B/m inside the bunch, which is therefore irrelevant for the shape of the bunch. The
latter is instead determined by the balance between the stabilizing step-step inter-
action term and the mean current. This problem was first analyzed by Nozières
[8]. It gives rise to a bunch profile with the characteristic Pokrovsky-Talapov
singularity

(8) h(x) − h(x0) ∼ (x − x0)3/2

near the edges x0 of the bunch. The scaling exponent for the minimal terrace
size (i.e., the maximum value of the slope) turns out to be γ = 2/(n + 1), in
contradiction to (6). This is because the relevant part of the current is in fact
independent of the slope, so that the dimensional analysis should be carried out
with ρ = 0 rather than with ρ = −1.

Numerical integration of the step dynamical equations shows good agreement
with the expression for the minimal terrace size lmin derived through the above
analysis, with regard to the scaling exponent γ as well as with regard to the
prefactor in the scaling law [6, 10]. Similar agreement is found for the size l1
of the first terrace in the bunch. On the other hand, the numerics indicates
that the exponents α and β, which describe, in a sense, the global properties of
bunches, are correctly given by the expressions (6) derived by dimensional analysis
assuming ρ = −1. In particular, the scaling relation γ = 1 − 1/α suggested by
trivial geometric considerations seems to be violated. We conjecture that this is
related to the distinctly asymmetric bunch shape, which is not captured by the
(manifestly symmetric) solutions of (7). In particular, the scaling of the size of
the last terrace in the bunch (which is in fact hard to unambiguously identify) is
completely different from that of the first terrace. Qualitatively, the asymmetry in
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the bunch shape is related to the drift of bunches and the exchange of steps between
bunches. Further work is needed to clarify to what extent these phenomena, and
thus, the overall scaling of the bunch morphology, can be captured by continuum
height equations.

The talk is based on joint work with Vesselin Tonchev and Stoyan Stoyanov.
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Surface Electromigration of single Islands
Philipp Kuhn

(joint work with Joachim Krug)

Surface electromigration is the biased diffusion of adatoms in the presence of an
electric field. In order to understand the influence of this effect on the morphol-
ogy of the surface we investigate the motion of a single island on a flat surface.
We utilise a continuum approach where the island edge is treated as a continu-
ous curve which evolves due to the competition between capillary forces and the
electromigration force. We present an exact solution for the case without capillar-
ity, and show numerical evidence for an oscillatory instability induced by crystal
anisotropy in the step edge mobility.

Upper bounds on coarsening rates
Felix Otto

(joint work with Robert Kohn)

We consider two standard models of surface-energy-driven coarsening: a constant-
mobility Cahn-Hilliard equation, whose large-time behaviour corresponds to Mul-
lins-Sekerka dynamics; and a degenerate-mobility Cahn-Hilliard equation, whose
large-time behaviour corresponds to motion by surface diffusion. Arguments based
on scaling suggest that the typical length scale should behave as l(t) ≈ t1/3 in the
first case and l(t) ≈ t1/4 in the second. We prove a weak, one-sided version of this
assertion – showing, roughly speaking, that no solution can coarsen faster than
the expected rates. Our results constrains the behaviour in a time-averaged sense
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rather than pointwise in time, and it constrains not the physical length scale but
rather the perimeter per unit volume.

Discretization and numerical tests of a diffuse-interface model with
Ehrlich-Schwoebel barrier

Patrick Penzler, Tobias Rump
(joint work with Felix Otto)

We consider a step–flow model for epitaxial growth, as proposed by Burton,
Cabrera and Frank. This type of model is discrete in the growth direction but
continuous in the lateral directions. The effect of the Ehrlich–Schwoebel barrier,
which limits the attachment rate of adatoms to a step from an upper terrace, is
included. Mathematically, this model is a 2+1–dimensional dynamic free bound-
ary problem for the steps. In [Nonlinearity 17, 477(2004)] a diffuse–interface ap-
proximation which reproduces an arbitrary Ehrlich–Schwoebel barrier has been
proposed. It is a version of the Cahn–Hilliard equation with variable mobility. In
this talk, we propose a discretization for this diffuse–interface approximation. Our
approach is guided by the fact that the diffuse–interface approximation has a con-
served quantity and a Liapunov functional. We obtain an implicit finite volume
discretization of symmetric structure. We test the discretization by comparison
with the matched asymptotic analysis. We also test the diffuse–interface approxi-
mation itself by comparison with theoretically known features of the original free
boundary problem. More precisely, we investigate quantitatively the phenomena
of step–bunching and the Bales–Zangwill instability.

Phase field models for step flow growth
Olivier Pierre-Louis

The relation between phase field and discontinuous models for crystal steps is
analyzed. - Different formulations of the kinetic boundary conditions of the dis-
continuous model are first presented. We show that: (i) step transparency, usually
interpreted as the possibility for adatoms to jump through steps, may be seen as
a modification of the equilibrium concentration engendered by step motion. (ii)
The interface definition (i.e. the position of the dividing line) intervenes in the
expression of the kinetic coefficients only in the case of fast attachment kinetics.
(iii) We also identify the thermodynamically consist ent reference state in the ki-
netic boundary conditions. - Asymptotic expansions of the phase field models in
the limit where the interface width is small, lead to various discontinuous models:
(1) A phase field model with one global concentration field and variable mobility
is shown to lead to a discontinuous model with fast step kinetics. (2) A phase field
model with one concentration field per terrace allows one to recover arbitrary step
kinetics (i.e. arbitrary strong Ehrlich-Schwoebel effect and step transparency). -
Quantitative agreement is found in the linear and nonlinear regimes, between the
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numerical solution of the phase field models and the analytical solution of the
discontinuous model.

Phase-field models for epitaxial growth
Andreas Rätz

(joint work with Axel Voigt)

Different phase field models are proposed as an approximation of classical sharp in-
terface models of Burton-Cabrera-Frank type. The motion of island boundaries of
discrete atomic layers is determined by the time evolution of an introduced phase-
field variable. In order to describe attachment-detachment kinetics in epitaxial
growth a reduced mobility is applied for the modelling of the asymmetry in the
kinetic boundary conditions, while an increased mobility is used for the approxi-
mation of edge diffusion along the free boundary. We apply matched asymptotic
expansion to determine the asymptotic limit of vanishing interfacial thickness and
show the reduction to classical sharp interface models. Furthermore an adaptive
finite element discretization and numerical results are shown.

Continuum (”height”) models for surface growth, an overview
Martin Rost

In crystal growth models the surface is often represented by a height field h(x,t).
Its dynamics can be derived on heuristic grounds yielding equations of the form
ht(x,t) =3D =85, where the growth velocity above the substrate point x and at
time t depends on the present surface configuration h. This talk attempts to
give an introductory overview on the use of continuum height field dynamics for
crystal growth focussing on three key issues: (i) thermodynamic and kinetic basis
for its derivation, (ii) symmetries and conserved quantities, also in connection to
analogous approaches in other fields, and (iii) typical applications and results, also
linking it to more detailed crystal growth models.

Quasicontiuum Monte Carlo: A computational method for surface
growth calculations

Peter Smereka
(joint work with Jason Devita, Giovanni Russo, Len Sander)

Epitaxial growth on surfaces is of central importance both for applications and
as a very interesting example of statistical processes out of equilibrium. This
growth process is commonly modeled by Kinetic Monte Carlo (KMC) and con-
tinuum models. In KMC each adatom is represented individually; therefore, it
automatically includes internal noise processes. However, when there are many
adatoms, (e.g. close to equilibrium) these simulations slow down considerably.
A deterministic continuum model which represents the adatoms as a continuous
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fluid does not have this problem, and should be much faster. There has been
considerable work in the development of such models for epitaxial growth (see [1]
references therein). In some cases they have been quite successful, but in other
cases they have failed to reproduce the structures seen in experiment. One rea-
son for such problems is that deterministic continuum models neglect important
fluctuations. In this talk we present a method of dealing with some fluctuations
without giving up the advantages of a continuum treatment. We call this approach
Quasi-Continuum Monte Carlo (QCMC). The most important use of this method
will be in cases where fluctuations are important, but which would be difficult to
treat with KMC because of the presence of a large number of adatoms.

The first version of our QCMC algorithm goes as follows: we treat the islands
on the surface as crystals containing discrete atoms which occupy the sites of a
lattice. To illustrate the method we use a square lattice. On the other hand, the
adatoms are treated as a continuum whose density, ρ, is governed by:

(9) ∂tρ = D∇2ρ + F.

In practice, we solve this equation numerically on a discrete grid which is commen-
surate with the crystal lattice. On the surface of the island, we include boundary
conditions that model both attachment and detachment processes. We then com-
pute the velocity of the interface as one would have for a continuum model. How-
ever, in QCMC we interpret this in a way that includes fluctuations. For example,
when attachment is the only process we compute the total flux onto the island
boundary and when the total flux exceeds one atom, then one or more adatoms
are attached to the boundary at random with the probability proportional to the
normal speed. For more details see [4]. We have shown that this method agrees
quite well with KMC and retains the advantages of a continuum method. This
approach is similar to the dielectric breakdown model[3] which can be considered a
generalization of diffusion limited aggregation[2]. Our method has been extended
to multi-layer growth including nucleation in [5].
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Semi-implicit level set methods for curvature and surface diffusion
motion

Peter Smereka

We introduce semi-implicit methods for evolving interfaces by mean curvature flow
and surface diffusion using level set methods.

Regularized anisotropic curve shortening flow
Axel Voigt

(joint work with Frank Haußer)

Realistic interfacial energy densities are often non convex, which results in back-
ward parabolic behaviour of the corresponding anisotropic curve shortening flow,
thereby inducing phenomena such as the formation of corners and facets. Adding
a term being quadratic in the curvature to the interfacial energy yields a regular-
ized evolution equation for the interface, which is fourth order parabolic. Using
a semi-implicit time discretization, we present a variational formulation of this
equation, which allows the use of linear finite elements. The resulting linear sys-
tem is shown to be uniquely solvable. We also present numerical examples. The
described algorithm can also be used to solve Willmore flow.

A general finite element framework for Burton-Cabrera-Frank
equations
Axel Voigt

(joint work with Eberhard Bänsch, Frank Haußer)

An adaptive finite element method is presented for step flow models in homoepitax-
ial growth. Such problems consist of an adatom (adsorbed atom) diffusion equa-
tion on each terrace; boundary condition on steps between the terraces including
thermodynamic or kinetic conditions; and a normal velocity law for the motion of
the steps, which is determined by a two-sided flux, together with edge-diffusion.
Mathematically speaking it is a 2+1 model and it is solved using independent
meshes, a two-dimensional mesh for the adatom diffusion and a one-dimensional
mesh for the boundary evolution. The diffusion equation is discretized using lin-
ear composite finite elements in space and an implicit scheme in time in the case
of attachment limited growth (kinetic boundary conditions). For diffusion lim-
ited growth (thermodynamic boundary conditions) a penalty method is applied.
The evolution of the steps included surface diffusion, curvature flow and forcing
terms. Its governing equation is solved by a semi-implicit front-tracking method
using linear parametric finite elements. Simple adaptive techniques are employed
in solving the adatom diffusion equation as well as the boundary motion problem.
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Levelset formulation for fourth order geometric evolution problems
Ulrich Weikard

(joint work with Ulrich Clarenz, Frank Haußer, Axel Voigt)

A level set formulation of anisotropic surface diffusion is derived using the gradient
flow perspective. Starting from single embedded surfaces and the corresponding
gradient flow, the metric is generalized to sets of level set surfaces using the iden-
tification of normal velocities and variations of the level set function in time via
the level set equation. The approach in particular allows to identify the natural
dependent quantities of the derived variational formulation. Furthermore, spatial
and temporal discretization are discussed and some numerical simulations in two
and three dimensions are presented.

Reporter: Axel Voigt
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Introduction by the Organisers

The workshop Wave Motion that took place in the period January 25–31, 2004 was de-
voted to the study of nonlinear wave phenomena. The modelling of waves leads to a va-
riety of difficult mathematical issues, involving several domains of mathematics: partial
differential equations, harmonic analysis, dynamical systems, topological degree theory.

The progam of the workshop consisted in 18 talks, presented by international specialists
in nonlinear waves coming from England, France, Germany, Japan, Norway, Sweden,
Switzerland, U.S.A., and by three discussion sessions on the topics "Open Problems in
PDEs", "Stability Phenomena in the Theory of Nonlinear Waves", and "Geodesic Flows
and Fluid Mechanics". Moreover, several doctoral and post-doctoral fellows participated
in the workshop and did benefit from the unique academic atmosphere at the Oberwolfach
Institute.

The proceedings of the workshop "Wave Motion" will appear as a special issue of the
Journal of Nonlinear Mathematical Physics.
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Abstracts

Nonlinear water waves and spatial dynamics
MARK D. GROVES

The water-wave problem is the study of the three-dimensional irrotational flow of a
perfect fluid bounded below by a rigid horizontal bottom {y = 0} and above by a free
surface {y = h + η(x, z, t)} subject to the forces of gravity and surface tension. This
remarkable problem, first formulated in terms of a potential function φ by Euler (Figure
1), has become a paradigm for most modern methods in nonlinear functional analysis
and nonlinear dispersive wave theory. Its mathematical study has historically called upon
many different approaches (iteration methods, bifurcation theory, complex variable meth-
ods, PDE methods, the calculus of variations, positive operator theory, topological degree
theory, KAM theory, symplectic geometry, . . . ). In this talk I would like to illustrate the
role of the water-wave problem as a paradigm in the theory of Hamiltonian systems and
conservative pattern-formation problems.
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φy = 0, y = 0,
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FIGURE 1. Euler (1707–1783), who first formulated the water-wave
problem (left)

Travelling water waves are solutions of the water-wave problem which are stationary
in a uniformly translating reference frame, so that η(x, z, t) = η(ξ, z), where ξ = x− ct.
The resulting time-independent problem can be approached using the method of spatial
dynamics, which was devised by K. Kirchgässner specifically with water waves in mind
and has now found applications in a huge range of other problems (reaction-diffusion
equations, spiral waves, mathematical biology, . . . ). The idea is to formulate a stationary
problem as an evolutionary equation in which an unbounded spatial coordinate plays the
role of the time-like variable. In the travelling water-wave problem one can take any
horizontal direction X = sin θ2 ξ − cos θ2 z as the time-like variable and formulate the
equations as an evolutionary equation

(1) uX = Lu + Nu, u ∈ X ;
the infinite-dimensional phase space X is constructed to contain functions which are, for
example, 2π/ν-periodic in a second, different horizontal direction Z = sin θ 1 ξ−cos θ1 z.
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The evolutionary equation (1) is found by performing a Legendre transform upon the
classical variational principle
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for the desired wave motions. In many cases equation (1) can be treated using an invariant-
manifold theory due to A. Mielke, which was again developed with this problem in mind,
but is now used in a wide variety of problems (elasticity, solid mechanics, . . . ). This
theory shows that all small, bounded solutions lie on a finite-dimensional invariant man-
ifold and thus reduces the water-wave problem to a locally equivalent finite-dimensional
Hamiltonian system; the dimension and character of this reduced system depend upon the
values of the physical parameters (gravity g, surface tension σ, wave speed c, water depth
h).

Two-dimensional i.e. z-independent travelling waves lend themselves naturally to an
application of the spatial dynamics method with X = ξ. B. Buffoni, M. D. Groves
& J. F. Toland showed that in a certain parameter regime the invariant manifold is four
dimensional and controlled by the Hamiltonian equation

u′′′′ + Pu′′ + u − u2 = 0, P ∈ (−2,−2 + ε).

Amazingly, this equation turns up in many, seemingly unrelated problems in applied sci-
ence, for example in nonlinear elasticity, nonlinear optics and now nonlinear water waves.
One of its most interesting features is that it exhibits chaotic behaviour: there is a Smale-
horseshoe structure in its solution set. As a consequence, it has infinitely many homoclinic
solutions, that is solutions which decay to zero as the time-like variable tends to infinity.
The corresponding solutions of the water-wave problem are called solitary waves and de-
cay to the undisturbed state of the water as ξ → ±∞. This result shows that there are
infinitely many of them; they are waves of depression with 2, 3, 4, . . . large troughs sepa-
rated by 2, 3, . . . small oscillations, and their oscillatory tails decay exponentially to zero.
Two waves from this family are sketched in Figure 2.

FIGURE 2. Two of the multi-troughed solitary waves found by B. Buf-
foni, M. D. Groves & J. F. Toland on a four-dimensional invariant man-
ifold with the depicted eigenvalue structure.
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The study of two-dimensional solitary waves was continued by G. Iooss & K. Kirchgäss-
ner and B. Buffoni & M. D. Groves, who noticed that there are parameter values for
which the invariant manifold is four-dimensional and a Hamiltonian-Hopf bifurcation
takes place (two nonsemisimple imaginary eigenvalues become complex as a parameter
is varied). Hamiltonian-Hopf bifurcations are well-known to researchers in the field of
celestial mechanics, where they occur in the restricted three-body problem for the planar
motion of a light body orbiting the centre of mess of two heavy bodies; the Hamiltonian-
Hopf bifurcation occurs for a certain value of the mass ratio of the two heavy parti-
cles (Routh’s ratio). Iooss & Kirchgässner used the Birkhoff normal form to show that
Hamiltonian-Hopf bifurcations generate homoclinic solutions which take the form of pe-
riodic wave trains modulated by exponentially decaying envelopes (Figure 3). Buffoni
& Groves showed that there are in fact infinitely many such solutions which resemble
multiple copies of Iooss & Kirchgässner’s solutions; their proof is based upon modern
methods from the calculus of variations (mountain-pass arguments and the concentration-
compactness principle) and the topological degree. These results are not restricted to the
water-wave problem in which they emerge; they provide dramatic new solutions to the
three-body problem and indeed Hamiltonian-Hopf bifurcations have been detected in a
range of situations (Taylor-Couette flows, nonlinear elasticity,. . . ).

FIGURE 3. Two of the multi-packet solitary waves found by B. Buf-
foni & M. D. Groves on a four-dimensional invariant manifold with the
depicted eigenvalue structure.

M. D. Groves & M. Haragus have recently classified all the possible bifurcation sce-
narios for three-dimensional travelling waves using the spatial dynamics method. In par-
ticular, they compiled a catalogue of three-dimensional waves which have solitary-wave
or generalised solitary-wave profiles in a distinguished horizontal direction (the time-like
direction); these profiles decay respectively to zero and to a periodic wavetrain at large
distances. Some of the waves are rather exotic, as Figure 4 shows.

Groves & Haragus also examined doubly periodic travelling waves using spatial dy-
namics. Periodicity in the Z-direction is built into the method, so that doubly periodic
waves are found as solutions of the reduced Hamiltonian system which are periodic in the
time-like direction X . Such solutions are found using the classical Lyapunov centre theo-
rem, and depending upon the physical parameters one encounters all possible cases: non-
resonant eigenvalues, semisimple eigenvalue resonances, nonsemisimple eigenvalue res-
onances and equal or opposite Krein signatures! Doubly periodic surface waves (Figure
5) and periodic motion of heavenly bodies (the n-body problem in celestial mechanics)
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are, according to the above observations, two aspects of the same mathematical theory,
namely finite-dimensional Hamiltonian systems and the Lyapunov centre theorem.

x

z

X Z

x

z

X Z

x

z

X Z

FIGURE 4. Three examples from the catalogue of three-dimensional
travelling waves compiled by M. D. Groves & M. Haragus. These
waves have the profile of (a) a one-pulse solitary wave, (b) a two-pulse
solitary wave and (c) a generalised solitary-wave in one distinguished
spatial direction (X) and are periodic in another (Z); they move with
constant speed and without change of shape in the x direction (ar-
rowed).
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x

z

Z

X

FIGURE 5. The doubly periodic wave on the left is constructed using
the Lyapunov centre theorem on a four-dimensional invariant manifold.
Hexagonal doubly periodic waves are often seen in nature, as this ariel
photograph on the right shows; they can be explained mathematically
by this procedure.

Corner defects in almost planar interface propagation
MARIANA HARAGUS

(joint work with Arnd Scheel)

We study existence and stability of almost planar interfaces in reaction-diffusion sys-
tems. Almost planar here refers to the angle of the interface at each point, relative to a
fixed planar interface. Most of the interfaces that we construct are planar at infinity, with
possibly different orientations at +∞ and −∞ in an arclength parameterization. We refer
to all these types of interfaces as corner defects. According to their angles at ±∞ we
distinguish between interior corners, exterior corners, steps and holes.

We construct corner defects as perturbations of a planar interface. Assumptions are
solely on the existence of a primary planar travelling-wave solution and spectral properties
of the linearization at the planar wave. All interfaces that we construct are stationary or
time-periodic patterns in an appropriately comoving frame. The corner typically but not
always points in the direction opposite to the direction of propagation. In addition, we give
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stability results which show that “open” classes of initial conditions actually converge to
the corner-shaped interfaces we constructed before. The results are stated for reaction-
diffusion systems but the method is sufficiently general to cover different situations, as
well. In particular we do not rely on monotonicity arguments or comparison principles
such that we can naturally include the case of interfaces separating patterned states from
spatially homogeneous states.

The method we use is based on the (essentially one-dimensional) dynamical systems
approach to the existence of bounded solutions to elliptic equations in cylinders intro-
duced by Kirchgässner. The main idea is to consider an elliptic equation, posed on the
(x, y)-plane in a neighborhood of an x-independent wave q ∗(y) as a dynamical system
in the x-variable and rely on dynamical systems tools such as center-manifold reduc-
tion and bifurcation theory to construct bounded solutions to the elliptic equation in a
neighborhood of the original wave. Nontrivial, that is non-equilibrium, x-“dynamics”
then correspond to nontrivial x-profiles. In the present work, we extend these ideas, in-
corporating the shift of the y-profile q∗(y) into the reduced dynamics. We then respect
this affine action of the symmetry group in the construction and parameterization of the
center-manifold such that the reduced equations take a skew-product form. The reduced
ordinary differential equation can be viewed as the travelling-wave equation to a viscous
conservation law or variants of the Kuramoto-Sivashinsky equation.

Invariance principle and the inverse problems for the periodic Camassa-Holm
equation

EVGENI KOROTYAEV

Consider the nonlinear mapping F : H1 → H given by

F (y) = y′ + u1(y) + u2(Jy) − u0(y, y′), Jy =
∫ x

0

y(s)ds, y ∈ H1

where the Hilbert spaces H = {q : q ∈ L2
R(T),

∫ 1

0 q(x)dx = 0} and H1 = {y, y′ ∈ H}.
Here the functions u1, u2 are real analytic and u′

2(y) ≤ 0: the constant u0 is such that
F (y) ∈ H . We prove that the map F is a real analytic isomorphism. Furthermore, a
priori two-sided estimates of norms of F (y), y are obtained. We apply these results to
the inverse problems for the Schrödinger operators S = −d 2dx2 + F (y) in L2(R) with
a 1-periodic potential F (y). The inverse problem for the operator S 0S = −d2dx2 + p,
(p is periodic) is the well known fact. Thus we have the factorization, which yields the
solution the inverse problem for S, with "variable" y. We call these result invariance
principle since the results about the inverse problems depend on only the large conditions
on the functions u1, u2.

In the second part we use this result to study the Camassa-Holm equation. We consider
the periodic weighted operator Ty = −ρ−2(ρ2y′)′ + 14ρ−4 in L2(R, ρ2dx) where ρ is a
1-periodic positive function satisfying q = ρ ′/ρ ∈ L2(0, 1). The spectrum of T consists
of intervals separated by gaps. Using the Liouville transform we get the Schrödinger
operators −d2dx2 + F , where F = q′ + q2 + u2(Jq) − u0, i.e.,in this case u1(q) =
q2, u2(Jq) = 14e−4Jq. Firstly, we construct the Marchenko-Ostrovski mapping q →
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h(q) and solve the corresponding inverse problem. For our approach it is essential that the
mapping h has the factorization h(q) = h0(F (q)), where q → F (q) is a certain nonlinear
mapping and V → h0(F ) is the Marchenko-Ostrovski mapping for the Hill operator.
Secondly, we solve the inverse problem for the gap length mapping and we obtain the
trace formula for T .

Noncommutative Deformation of Solitons
OLAF LECHTENFELD

A noncommutative (Moyal) deformation of a function space over R 2n is achieved for-
mally by subjecting the coordinate functions (xµ)µ=1,...,2n to the (Heisenberg) algebra

xµ 
 xν − xν 
 xµ = iθµν ,

where ‘
’ denotes the deformed product and (θ µν) is a constant antisymmetric matrix.
This induces an associative product on C∞(R2n) involving arbitrary powers of a bidif-
ferential operator. A convenient realization of the deformed function algebra trades the
coordinate dependence (and the deformed product) for operator valuedness (and the stan-
dard compositional product), the operators acting on an auxiliary Fock space such as
L2(Rn). The model is quantum mechanics.
The generalization of integrable differential equations, for instance the sine-Gordon equa-
tion, to the noncommutative setup is ambiguous, but a distinguished choice arises from
demanding the existence of a noncommutative Lax pair. The rewriting of the nonlinear
differential equation as the compatibility condition of a linear system does not notice the
noncommutative deformation since one is already dealing with matrix-valued, i.e. non-
commuting, objects. Likewise, established methods for generating solutions to the linear
system, e.g. the dressing method, can be deformed painlessly.
We demonstrate this stategy for the example of the U(m) principal chiral (or nonlinear
sigma-)
model in two dimensions which allows for solitonic solutions to its equation of motion.
The dressing method reduces the task to solving an eigenvalue problem for a linear dif-
ferential operator which in the noncommutative situation is realized by a simple linear
operator in L2(R). After picking a basis in this Fock space, the noncommutative defor-
mation formally amounts to replacing n×n matrices by semi-infinite ones. It is therefore
not surprising to find not only smooth deformations of the commutative solitonic solu-
tions but also a class of new solitons (even for the U(1) case!) which display a singular
commutative (θ → 0) limit.
Like in the commutative case, all known integrable equations in 3, 2, and 1 dimensions
descend from the four-dimensional self-dual Yang-Mills equations by dimensional reduc-
tion and specialization. The noncommutative deformation, however, is not compatible
with picking any subgroup of U(m). Nevertheless, the method presented here can be ap-
plied to any integrable system, such as NLS, KdV, KP, Burgers, Boussinesq, sine-Gordon,
or Camassa-Holm. The resulting noncommutative equations will be nonlocal (featuring
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an infinite number of derivatives) but of a controlled kind; their solutions will have many
properties in common with the standard solitons.
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Renormalized entropy solutions for quasilinear anisotropic degenerate parabolic
equations

KENNETH HVISTENDAHL KARLSEN

(joint work with Mostafa Bendahmane)

We consider the Cauchy problem for quasilinear anisotropic degenerate parabolic equa-
tions with L1 data. This convection–diffusion type problem is of the form

(1) ∂tu + divf(u) = ∇ · (a(u)∇u) + F, u(0, x) = u0(x),

where (t, x) ∈ (0, T ) × Rd; T > 0 is fixed; div and ∇ are with respect to x ∈ Rd; and
u = u(t, x) is the scalar unknown function that is sought. The (initial and source) data
u0(x) and F (t, x) satisfy

(2) u0 ∈ L1(Rd), F ∈ L1((0, T ) × Rd).

The diffusion function a(u) = (aij(u)) is a symmetric d × d matrix of the form

(3) a(u) = σ(u)σ(u)� ≥ 0, σ ∈ (L∞
loc(R))d×K , 1 ≤ K ≤ d,

and hence has entries

aij(u) =
K∑

k=1

σik(u)σjk(u), i, j = 1, . . . , d.

The inequality in (3) means that for all u ∈ R
d∑

i,j=1

aij(u)λiλj ≥ 0, ∀λ = (λ1, . . . , λd) ∈ Rd.

Finally, the convection flux f(u) is a vector–valued function that satisfies

(4) f(u) = (f1(u), . . . , fd(u)) ∈ (Liploc(R))d
.

It is well known that (1) possesses discontinuous solutions and that weak solutions are
not uniquely determined by their initial data (the scalar conservation law is a special case
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of (1)). Hence (1) must be interpreted in the sense of entropy solutions [15, 19, 20]. In
recent years the isotropic diffusion case, for example the equation

(5) ∂tu + divf(u) = ∆A(u), A(u) =
∫ u

0

a(ξ) dξ, 0 ≤ a ∈ L∞
loc(R),

has received much attention, at least when the data are regular enough (say L 1 ∩ L∞) to
ensure ∇A(u) ∈ L2. Various existence results for entropy solutions of (5) (and (1)) can
be derived from the work by Vol’pert and Hudjaev [20]. Some general uniqueness results
for entropy solutions have been proved in the one-dimensional context by Wu and Yin [21]
and Bénilan and Touré [2]. In the multi-dimensional context a general uniqueness result
is more recent and was proved by Carrillo [6, 5] using Kružkov’s doubling of variables
device. Various extensions of his result can be found in [4, 12, 13, 14, 16, 17, 18], see
also [7] for a different approach. Explicit “continuous dependence on the nonlinearities”
estimates were proved in [10]. In the literature just cited it is essential that the solutions
u possess the regularity ∇A(u) ∈ L2. This excludes the possibility of imposing general
L1 data, since it is well known that in this case one cannot expect that much integrability.

The general anisotropic diffusion case (1) is more delicate and was successfully solved
only recently by Chen and Perthame [9]. Chen and Perthame introduced the notion of
kinetic solutions and provided a well posedness theory for (1) with L 1 data. Using their
kinetic framework, explicit continuous dependence and error estimates for L 1 ∩ L∞ en-
tropy solutions were obtained in [8]. With the only assumption that the data belong to L 1,
we cannot expect a solution of (1) to be more than L 1. Hence it is in general impossible
to make distributional sense to (1) (or its entropy formulation). In addition, as already
mentioned above, we cannot expect

√
a(u)∇u to be square-integrable, which seems to

be an essential condition for uniqueness. Both these problems were elegantly dealt with
in [9] using the kinetic approach.

The purpose of the present paper is to offer an alternative “pure” L 1 well posed-
ness theory for (1) based on a notion of renormalized entropy solutions and the classical
Kružkov method [15]. The notion of renormalized solutions was introduced by DiPerna
and Lions in the context of Boltzmann equations [11]. This notion (and a similar one
called entropy solutions) was then adapted to nonlinear elliptic and parabolic equations
with L1 (or measure) data by various authors. We refer to [3] for some recent results in
this context and a list of relevant references. Bénilan, Carrillo, and Wittbold [1] intro-
duced a notion of renormalized Kružkov entropy solutions for scalar conservation laws
with L1 data and proved the existence and uniqueness of such solutions. Their theory
generalizes the Kružkov well posedness theory for L∞ entropy solutions [15].

Motivated by [1, 3] and [9], we introduce herein a notion of renormalized entropy
solutions for (1) and prove its well posedness. Let us illustrate our notion of an L 1 solution
on the isotropic diffusion equation (5) with initial data u| t=0 = u0 ∈ L1. To this end, let
Tl : R → R denote the truncation function at height l > 0 and let ζ(z) =

∫ z

0

√
a(ξ) dξ.

A renormalized entropy solution of (5) is a function u ∈ L∞(0, T ; L1(Rd)) such that (i)
∇ζ(Tl(u)) is square–integrable on (0, T ) × Rd for any l > 0; (ii) for any convex C 2

entropy-entropy flux triple (η, q, r), with η ′ bounded and q ′ = η′f ′, r′ = η′a, there exists
for any l > 0 a nonnegative bounded Radon measure µ l on (0, T )×Rd, whose total mass
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tends to zero as l ↑ ∞, such that

∂tη(Tl(u)) + divq(Tl(u)) − ∆r(Tl(u))

≤ −η′′(Tl(u)) |∇ζ(Tl(u))|2 + µl(t, x) in D′((0, T ) × Rd).
(6)

Roughly speaking, (6) expresses the entropy condition satisfied by the truncated function
Tl(u). Of course, if u is bounded by M , choosing l > M in (6) yields the usual entropy
formulation for u, i.e., a bounded renormalized entropy solution is an entropy solution.
However, in contrast to the usual entropy formulation, (6) makes sense also when u is
merely L1 and possibly unbounded. Intuitively the measure µ l should be supported on
{|u| = l} and carry information about the behavior of the “energy” on the set where |u|
is large. The requirement is that the energy should be small for large values of |u|, that is,
the total mass of the renormalization measure µ l should vanish as l ↑ ∞. This is essential
for proving uniqueness of a renormalized entropy solution. Being explicit, the existence
proof reveals that µl((0, T ) × Rd) ≤ ∫

{|u0|>l} |u0| dx → 0 as l ↑ ∞.
We prove existence of a renormalized entropy solution to (1) using an approximation

procedure based on artificial viscosity [20] and bounded data. We derive a priori estimates
and pass to the limit in the approximations.

Uniqueness of renormalized entropy solutions is proved by adapting the doubling of
variables device due to Kružkov [15]. In the first order case, the uniqueness proof of
Kružkov depends crucially on the fact that

∇xΦ(x − y) + ∇yΦ(x − y) = 0, Φ smooth function on Rd,

which allows for a cancellation of certain singular terms. The proof herein for the second
order case relies in addition crucially on the following identity involving the Hessian
matrices of Φ(x − y):

∇xxΦ(x − y) + 2∇xyΦ(x − y) + ∇yyΦ(x − y) = 0,

which, when used together with the parabolic dissipation terms (like the one found in (6)),
allows for a cancellation of certain singular terms involving the second order operator in
(1). Compared to [9], our uniqueness proof is new even in the case of bounded entropy
solutions.
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Perturbations of gradient flow / real Ginzburg-Landau systems
JOHN NORBURY

Suppose we are given the (smooth or C 1) functions k(x), f(x), g(x) which are strictly
positive in the closure of the bounded connected domain Ω, and we are given the constants
ε > 0 and α ∈ (0, 1). Then we consider the parabolic system of partial differential
equations (henceforth PDEs)

(P )

{
ε∂u

∂t = ε2

2 div(k∇u) + f 2u[g2 − u2 − αv2] = −ε δEε

δu ,

ε∂v
∂t = ε2

2 div(k∇v) + f 2v[g2 − v2 − αu2] = −ε δEε

δv ,

for x ∈ Ω, where

Eε(u, v) =
∫

Ω

ε

4
(|∇u|2 + |∇v|2) +

1
ε
W (x, u, v)dx

for u, v ∈ H1(Ω), with u, v satisfying homogeneous Neumann boundary conditions
∂u
∂n = ∂v

∂n = 0 on ∂Ω (which is sufficiently smooth, say C 2, for the derivatives to ex-
ist). We are interested in the longtime behaviour of the solutions u(., t), v(., t) of such
systems, when ε is small, and in particular the solutions with changing signs in Ω. Thus
we define

A1 = A1(û) = {x : û(x) = g(x)/
√

1 + α}, A2 = A2(v̂) = {x : v̂(x) = g(x)/
√

1 + α}
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and describe the curves Ci := ∂Ai (i=1,2) as the nodal curves of the solution. These
curves Ci define the pattern of the solution because they separate Ω into subdomains
Ai(ε), Ω\Ai(ε) =: Ac

i (ε) such that, if Ai(ε) → Ai(0) as ε → 0, then u
g
√

1+α
, v

g
√

1+α
→

±1 for x ∈ Ai(0) or for x ∈ Ai(0)c := Ω \ Ai(0). See Figures 6 and 7. The
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FIGURE 6. Steady solutions to problem (P ), with Ω = (0, 1) ×
(0, 1), α = 0.9, ε = 1

200 , f ≡ k ≡ 1, and g(x, y) ={
1 − 3 cosh(πr)2 exp(− 1

1−r ) exp(− 1
r ) if r :=

√
x2 + y2 ≤ 1;

1 otherwise.
(Steady limit of a numerical simulation of the time-dependent gradient
system showing that these local minimisers act as stable attractors for a
wide range of initial data with appropriate sign changes.)
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FIGURE 7. Another (stable) solution (with two interfaces) to the same
problem as in Figure 6.

talk described the Γ-convergence limit E0(u, v) of the functional Eε(u, v) extended to
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u, v ∈ L1(Ω) by defining Eε(u, v) = ∞ for u, v ∈ L1(Ω) \ H1(Ω). In fact, as a simple
one-dimensional example for the steady solutions of the following nonlinearly forced heat
equation in one space dimension with boundary conditions u x(−1) = 0 = ux(1), shows,
u(x) tends to a bounded discontinuous limit as ε → 0, and so for appropriate initial data
(which of necessity must change sign in Ω), the corresponding time dependent problem

εut =
ε2

2
uxx + u[g2 − u2]

will have attracting steady states which become discontinuous in Ω in the limit ε →
0. Hence this example (embedded using the appropriate symmetrical domain Ω) shows
that in general the Γ-limit E0(u, v) cannot be defined on elements u, v in the (Banach)
space H1(Ω), but may be bounded in the Banach space of functions of bounded variation
BV (Ω), where ‖w‖BV := ‖w‖L1(Ω) +

∫
Ω
|Dw|

and
∫

Ω

|Dw| := sup
{∫

Ω

w div φ dx : φ ∈ C1
0 (Ω, R2), |φ| ≤ 1

}
< ∞.

In fact we can show that the ε → 0 limits of solutions u, v of our problem always lie in
the subspace SBV (Ω) (where H 1(Ω) ⊂ SBV (Ω) ⊂ BV (Ω) ⊂ L1(Ω)), the subspace
of special functions of bounded variation that possess no Cantor part in the measure val-
ued derivative (in other words, the singular measure in the generalised derivative always
consists of a bounded jump u−(x) < u+(x) for x ∈ J(u), the jump set of Hausdorff
dimension one in Ω; note that this jump set has a generalised normal ν and belongs to a
generalised curve in the geometric measure theory sense, see [1], [2]).

The key result of Girardet and Norbury [3], that

E0(u, v) = K(α)
{∫

Ω

√
kfg3|DχA1 | +

∫
Ω

√
kfg3|DχA2 |

}
for u, v ∈ SBV (Ω), is interpreted as an equation for extremal geodesics C(0) ⊂ Ω
that may act as stable attractors for our time dependent dynamical system problem when
C(0) are isolated local minimisers of E0(u, v) in SBV (Ω)×SBV (Ω). These (extremal)
geodesics for the domain Ω are calculated from the equation

κ(x) = − ∂

∂n
ln h(x)

for x ∈ C(0) ⊂ Ω, where κ(x) is the (Gaussian) mean curvature of C(0) at the point x
and ∂

∂n is the normal derivative to C(0) (given the direction of an increasing arc length
parameter as the direction of the tangent, and with the normal then making the usual sense
to the tangent), and where the metric h(x) :=

√
k(x)f(x)g(x)3 for x ∈ Ω, is smooth

(C1(Ω̄)) and strictly positive in Ω̄. Either a geodesic intersects ∂Ω, or otherwise extremal
geodesics are periodic, and (at least) C 1 in the arc length parameter (note that geodesics
may intersect, including self-intersections). New features of problem (P ) that were de-
scribed include:
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(a) “Ridges” in one solution component exist which act as indicators or markers of in-
terfaces and their nodal curves in the other solution component (these ridges are propor-
tional in height to α and persist as ε → 0 in the component (say u) that keeps the same
sign when the other component (say v) changes sign, where both the centrelines of such
a ridge and such an interface converge to C(0) as ε → 0).

(b) Stable “double interface” solutions exist whenever a stable single interface solution
exists (the double interface is of the type where there is a single interface in each com-
ponent, and the distance between the single interfaces vanishes as ε → 0 but does not
remain uniformly O(ε)).

These new features appear in the solutions of the coupled ordinary differential equation
problem

0 =
1
2
uxx + u[1 − u2 − αv2], 0 =

1
2
vxx + v[1 − v2 − αu2],

for −∞ < x < ∞, where ux, vx → 0 as |x| → ∞; here u → ±(1 + α)−
1
2 as x → ±∞,

while either v → (1+α)−
1
2 as x → ±∞ in the single interface case, or v → ∓(1+α)−

1
2

as x → ±∞ in the double interface case (see Girardet and Norbury [4] where this ordinary
differential equation problem is further analysed). This problem models the key behaviour
in Problem (P ) near interfaces when x is a variable measuring stretched (in ε) distance
normal to the interface, and the u, v are scaled by g.
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Well-Posedness of Free Surface Problems In 2D Fluids
DAVID AMBROSE

The main subject of this talk is my recent proof of a long-standing conjecture in fluid
dynamics: that the motion of a vortex sheet subject to surface tension is well-posed (for a
short time). The method employed was strongly related to numerical methods developed
by T. Hou, J. Lowengrub, and M. Shelley [4]. In particular, both analysis and computation
of the problem become possible when the problem is reformulated using natural variables
and convenient parameterizations. This will be described in more detail below. Even
more recently, Nader Masmoudi and I have extended the analytical method to provide a
new proof of the well-posedness of two-dimensional water waves without surface tension.

The proofs of well-posedness for both the water wave and for the vortex sheet with
surface tension allow a wide class of initial data to be used. The position of the interface
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and the initial vorticity (which is concentrated on the interface) are taken in Sobolev
spaces, and the interface may be of multiple heights. Also, there is no restriction on
the size of the initial data; the only requirement is that a natural non-self-intersection
condition must be met.

The vortex sheet is the interface between two incompressible, irrotational, inviscid
fluids flowing past each other. It is well known that without surface tension, the vortex
sheet is ill-posed. It had long been believed that when surface tension is accounted for in
the evolution equations, the initial value problem would become well-posed.

At each time, the sheet can be viewed as a curve in the complex plane. The curve, z, is
parameterized by a spatial variable, α, and by time, t. The classical vortex sheet evolves
according to the Birkhoff-Rott integral,

(1) z∗
t (α, t) =

1
2πi

PV
∫ ∞

−∞

γ(α′)
z(α, t) − z(α′, t)

dα′.

The ∗ denotes complex conjugation; γ is the vortex sheet strength. Notice that γ is not
a function of time. This problem has been studied for many years and has been found
to be ill-posed. In particular, it exhibits the well-known Kelvin-Helmholtz instability: in
the linearization of the evolution equations about equilibrium, Fourier modes with high
wave numbers grow without bound. Equation (1) neglects the effect of surface tension at
the interface. Surface tension is a restoring force, and when surface tension is accounted
for in the equations of motion, Fourier modes of high wave number remain bounded in
the linearization. Taking this further, Beale, Hou, and Lowengrub demonstrated that even
far from equilibrium, surface tension makes the linearized equations well-posed [5]. For
these reasons, it had been conjectured that surface tension makes the full problem well-
posed.

The HLS formulation has two important components: first, they compute dependent
variables which are naturally related to the surface tension. In particular, surface tension
enters the evolution equations in the form γ t = 1

Weκα, where κ is the curvature of the
vortex sheet and We is the Weber number. The Weber number is a dimensionless param-
eter that is inversely proportional to the surface tension; the case without surface tension
corresponds to We = ∞. (Recall that without surface tension, γ t = 0.) To simplify this
curvature term in the evolution equations, Hou, Lowengrub, and Shelley described the
curve by its tangent angle and arclength rather than by the Cartesian variable, z. The no-
tation s will be used for arclength and θ will be used for the tangent angle the curve forms
with the horizontal. The strength of this choice of variables lies in the close relationship
between curvature and the tangent angle, κ = θα/sα.

Second, HLS added an extra tangential velocity to the evolution equation for the vortex
sheet. This does not change the shape of the vortex sheet; rather, it only reparameterizes
it. The most convenient choice will make the curve always be parameterized by arclength.
Since the evolution equation for sα is

(2) sαt = Tα − θαU,

where T and U are the tangential and normal velocities of z, T can be chosen to essentially
eliminate sα from the system. That is, setting sαt equal to a function of time yields an
equation for T. This essentially reduces the problem by one dependent variable. Rather
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than evolving sα(α, t), it is only necessary to keep track of L(t), the length of one period
of the sheet.

The choice of tangential velocity also changes the evolution equation for γ. These new
terms introduced in the γt equation are of a lower order than the term which comes from
surface tension.

The main tool in the proof of well-posedness of vortex sheets with surface tension is an
energy estimate. This energy estimate is performed after much rewriting of the evolution
equations. The equations can be stated as

θt =
2π2

L2
H(γα) + P,(3)

γt =
2π

LWe
θαα +

2π2

L2
γH(γθα) + Q̃.(4)

The Hilbert transform is denoted by H. Since L is a function of t only, notice that the evo-
lution equations are effectively semilinear. After performing the energy estimate, standard
methods can be applied to prove well-posedness. The energy functional is related the H s

Sobolev norm of θ and the H s−1/2 Sobolev norm of γ.
Also, the analysis described above proves well-posedness in the case where the upper

and lower fluids have different densities. With a density difference, the γ t equation has
additional terms, although none of them are significant. (It is worth noting that in the
two-density case, the equation for γt is actually an integral equation for γt; it was proven
in [2] that this integral equation can be solved.) A particular case of the two-density
problem is when the upper fluid has density equal to zero; this is the water wave. Thus,
the work described above establishes well-posedness of the two-dimensional water wave
with surface tension.

Without surface tension, well-posedness of the full water wave problem was demon-
strated by Wu in [6]. The proof, however, requires significant use of complex analysis
(the Riemann mapping theorem in particular). In [3], Nader Masmoudi and I have given
a simpler proof of well-posedness for the two-dimensional irrotational water wave. The
method resembles the method of [1], but there are important differences. In particular,
the variable γ is insufficient in the water wave case. An appropriate new variable is δ, the
difference between the Lagrangian tangential velocity and the special tangential velocity:
δ = W · t̂ + γ

2sα
− T. Frequently the derivative δα is more useful than δ itself. The

evolution equation for δα can be written

(5) δαt = −cθα + ψ,

where ψ is a collection of terms which are easy to deal with when performing energy
estimates. Here, c = c(α, t) is defined by c = −∇p · n̂. A necessary condition for
well-posedness is that c(α, t) > 0. This is a generalization of a condition of G. I. Taylor.

In terms of δ instead of γ, the evolution equation for θ can be written

(6) θt =
2π

L
H(δα) + φ.

Here, φ is a collection of terms which can be handled routinely in the energy estimates.
Energy estimates for the system (5), (6) can be made with δα ∈ Hs−1/2 and θ ∈ Hs,

for s large enough. Similar estimates hold when surface tension is accounted for. It is
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then found that solutions to the water wave problem without surface tension are the limit
of solutions to the water wave problem with surface tension as surface tension goes to
zero.
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Stability of Periodic Peakons
JONATAN LENELLS

Abstract.The peakons are peaked traveling wave solutions of a nonlinear integrable equation mod-
eling shallow water waves. We give a simple proof of their stability.

AMS SUBJECT CLASSIFICATION (2000): 35Q35, 37K45.
KEYWORDS: Water waves, Peakons, Stability.

INTRODUCTION

The Camassa-Holm equation

(0.1) ut − utxx + 3uux = 2uxuxx + uuxxx,

arises as a model for the unidirectional propagation of shallow water waves over a flat
bottom, u(x, t) representing the water’s free surface in non-dimensional variables. We
are concerned with periodic solutions of (0.1), i.e. u : S × [0, T ) → R where S denotes
the unit circle and T > 0 is the maximal existence time of the solution. Equation (0.1) was
first obtained [6] as an abstract bi-Hamiltonian equation with infinitely many conservation
laws and was subsequently derived from physical principles [2]. Equation (0.1) is a re-
expression of the geodesic flow in the group of compressible diffeomorphisms of the
circle [7], just like the Euler equation is an expression of the geodesic flow in the group
of incompressible diffeomorphisms of the torus [1]. This geometric interpretation leads
to a proof that equation (0.1) satisfies the Least Action Principle [3]: a state of the system
is transformed to another nearby state through a uniquely determined flow that minimizes
the energy. For a large class of initial data, equation (0.1) is an infinite-dimensional
completely integrable Hamiltonian system: by means of an isospectral problem one can
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convert the equation into an infinite sequence of linear ordinary differential equations
which can be trivially integrated [4].

Equation (0.1) has the periodic traveling solution

u(x, t) =
cϕ(x − ct)

Mϕ
, c ∈ R,

where ϕ(x) is given for x ∈ [0, 1] by

ϕ(x) =
cosh(1/2 − x)

sinh(1/2)
and extends periodically to the real line, and

Mϕ = max
x∈S

{ϕ(x)} =
cosh(1/2)
sinh(1/2)

.

Because of their shape (they are smooth except for a peak at their crest, see Figure 1)
these solutions are called (periodic) peakons. Note that the height of the peakon is equal
to its speed. Equation (0.1) can be rewritten in conservation form as

(0.2) ut +
1
2

(
u2 + ϕ ∗ [u2 +

1
2
u2

x]
)

x

= 0.

This is the exact meaning in which the peakons are solutions.
Numerical simulations suggest that the sizes and velocities of the peakons do not

change as a result of collision so that these patterns are expected to be stable. More-
over, for the peakons to be physically observable it is necessary that their shape remains
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approximately the same as time evolves. Therefore the stability of the peakons is of great
interest. We prove the following:

Theorem The periodic peakons are stable.

Outline of Proof. Equation (0.1) has the conservation laws

(0.3) H0[u] =
∫

S

udx, H1[u] =
1
2

∫
S

(u2 + u2
x)dx, H2[u] =

1
2

∫
S

(u3 + uu2
x)dx.

To each solution u(x, t) we associate a function Fu(M, m) of two real variables (M, m)
depending only on the three conservation laws H0, H1, H2. Since H0, H1, H2 are con-
served quantities, Fu does not depend on time. If we let Mu(t) = maxx∈S{u(x, t)} and
mu(t) = minx∈S{u(x, t)} be the maximum, respectively the minimum of u at the time t,
it turns out that

(0.4) Fu(Mu(t), mu(t)) ≥ 0, t ∈ [0, T ).

Moreover, for the peakon we have Fϕ(M, m) ≤ 0 with equality only at the point (Mϕ, mϕ)
(see Figure 2). If u is a solution starting close to ϕ, the conserved quantities H i[u] are
close to Hi[ϕ], i = 0, 1, 2, and hence Fu is a small perturbation of Fϕ. Therefore, the
set where Fu ≥ 0 is contained in a small neighborhood of (Mϕ, mϕ). We conclude by
(0.4) that (Mu(t), mu(t)) stays close to (Mϕ, mϕ) for all times. The proof is completed
by showing that if the maximum of u stays close to the maximum of the peakon, then the
shape of the whole wave remains close to that of the peakon. �

The proof is inspired by [5] where the case of peaked solitary waves of (0.1) is con-
sidered. The approach taken here is similar but there are differences. For example, in the
case of the peaked solitary waves [5] a polynomial in M plays the role of our function
Fu(M, m). The variable m enters in the periodic case because of non-zero boundary
conditions.
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Well-posedness of KdV on H−1(T)
THOMAS KAPPELER

(joint work with Peter Topalov)

Let us consider the Initial Value Problem (IVP) for the Korteweg-deVries equation on
the circle

vt = −vxxx + 6vvx t ∈ R, x ∈ T = R/Z

v


t=0
= q ∈ Hα(T).

This problem has been studied extensively. In particular it is known that for q ∈ C ∞(T),
the (IVP) admits a unique solution S(t, q) which exists for all times (see [BS]). Our aim
is to solve the (IVP) for very rough initial data such as distributions in the Sobolev space
H−1(T).

We say that a continuous curve γ : [T1, T2] → Hα(T) with T1 < 0 < T2, γ(0) = q
and α ∈ R is a solution of (IVP) if for any T1 < t < T2 and for any sequence (qk)k≥1 ⊆
C∞(T) with q = limk→∞ qk in Hα(T), the solutions S(·, qk) have the property that
γ(t) = limk→∞ S(t, qk) in Hα(T). It then follows from the definition of a solution of
(IVP) that it is unique whenever it exists. If the solution of (IVP) exists, we denote it by
S(t, q).

The above (IVP) is said to be globally [uniformly] C 0-wellposed on Hα(T) if for any
q ∈ Hα(T) the solution S(t, q) exists globally in time and the solution map S is contin-
uous [uniformly continuous on bounded sets] as a map S : H α(T) → C0(R, Hα(T)).

Theorem 1. ([KT1]) KdV is globally C 0-wellposed on Hα(T) for any −1 ≤ α ≤ 0.

Remarks: (1) Theorem 1 improves in particular on earlier results of [Bou1], [Bou2],
[KPV], [CKSTT]. Using earlier results, it is proved in [CKSTT] that KdV is globally
uniformly C0-wellposed on Hα

0 (T) for any α ≥ −1/2.

(2) In [CCT] it is shown that KdV is not uniformly C 0-wellposed on Hα
0 (T) for −2 <

α < −1/2 where Hα
0 (T) = {q ∈ Hα(T)

 ∫
T

q = 0}. See also [Bou2].

The following theorem states that well known features [MT] of solutions of (IVP) for
smooth initial data continue to hold for rough initial data.

Theorem 2. ([KT1]) For any q ∈ H α(T) with −1 ≤ α ≤ 0, the solution of (IVP) has the
following properties:

(i) the orbit t �→ S(t, q) is relatively compact.
(ii) t �→ S(t, q) is almost periodic.

Theorem 1 and Theorem 2 can be applied to obtain corresponding results for the IVP
of the modified KdV (mKdV)

ut = −uxxx + 6u2ux t ∈ R, x ∈ T
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u


t=0
= r ∈ Hα(T).

Theorem 3. ([KT2]) mKdV is globally C 0-wellposed on Hα(T) for 0 ≤ α ≤ 1.

Remarks: (1) Theorem 3 improves on earlier results of [Bou1], [KPV], [CKSTT]. Us-
ing earlier results it is proved in [CKSTT] that mKdV is globally uniformly C 0-wellposed
on Hα(T) for any α ≥ 1/2.

(2) In [CCT] it is shown that mKdV is not uniformly C 0-wellposed on Hα
0 (T) for

−1 < α < 1/2. See also [Bou2].

Besides Theorem 1, the main ingredient of the proof of Theorem 3 is the following
result on the Miura map, B : L2(T) → H−1(T), r �→ rx + r2, first introduced by
Miura [Mi] and proved to be a Bäcklund transformation, mapping solutions of mKdV to
solutions of KdV.

Theorem 4. ([KT2])

(i) For any α ≥ 0, the Miura map B : H α(T) → Hα−1(T) is a global fold.
(ii) Restricted to Hα

0 (T), B is a real analytic isomorphism onto the real analytic
submanifold Hα−1

0 (T) := {q ∈ Hα−1(T)
λ0(q) = 0} where λ0(q) denotes the

lowest eigenvalue in the periodic spectrum of the operator −d 2/dx2 + q.

Remark: Theorem 4 is based on earlier results on the Riccati map [KT3] which used
as one of the ingredients estimates on the gaps of the periodic spectrum of impedance
operators of [Kor1]. Some of the results in [KT3] have been obtained independently by
[Kor2].

The main ingredient in the proof of Theorem 1 is a result on the normal form of the
Korteweg-deVries equation considered as an integrable Hamiltonian system. To formu-
late it, introduce the following model spaces (α ∈ R)

hα := {(xk, yk)k≥1

xk, yk ∈ R;
∑
k≥1

k2α(x2
k + y2

k) < ∞}

with the standard Poisson bracket where {xk, yk} = 1 = −{yk, xk} and all other brackets
between the coordinate functions vanish.

On the space Hα
0 (T) := {q =

∑
k 	=0 q̂ke2πikx

q ∈ Hα(T)} we consider the Poisson
bracket introduced by Gardner and, independently, by Faddeev and Zakharov

{F, G} =
∫

T

∂F

∂q(x)
d

dx

∂G

∂q(x)
dx.

Theorem 5. ([KP], [KMT]) There exists a real analytic diffeomorphism Ω : H −1
0 (T) →

h−1/2 so that

(i) Ω preserves the Poisson bracket;
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(ii) for any −1 ≤ α ≤ 0, the restriction Ωα of Ω to Hα
0 (T) is a real analytic isomor-

phism, Ωα : Hα
0 (T) → hα+1/2;

(iii) on H1
0 (T), the KdV Hamiltonian H(q) =

∫
T
(1
2q2

x + q3)dx, when expressed in
the new coordinates (xk, yk)k≥1, is a real analytic function of the actions Ik :=
(x2

k + y2
k)/2 (k ≥ 1) alone.

Remark: In [KP] it is shown that Ω0 : L2
0 → h1/2 is a real analytic isomorphism with

properties (i) and (iii). Moreover it is proved that for any α ∈ N, the restriction Ω α of Ω
to Hα

0 (T) is a real analytic isomorphism, Ωα : Hα
0 (T) → hα+1/2. This result has been

extended in [KMT] as formulated in Theorem 5.
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Exact Periodic water waves with Vorticity
WALTER A. STRAUSS

(joint work with Adrian Constantin)

The work presented here is an application of global continuation methods to a classi-
cal problem in fluid mechanics. The main tools are Leray-Schauder degree, bifurcation
theory, and estimates for elliptic PDEs.

We consider the most classical kind of water wave, traveling at a constant speed c > 0.
We assume that it is two-dimensional and horizontally periodic with a period L. The
water is treated as incompressible and inviscid. We denote the horizontal variable by x
and the vertical variable by y. The bottom is assumed to be flat. The surface S has average
height y = 0. Let S be given by the equation y = η(x − ct). Gravity acts on the water
with gravitational constant g. The air pressure is assumed to be a constant Patm and it
is assumed that there is no surface tension. Let (u, v) denote the velocity, ψ denote the
stream function and ω the vorticity. Then ω = γ(ψ) for some function γ.

The special case of irrotational flow, when ω = 0, has been studied much more than
the general case because then ψ is a harmonic function and the techniques of complex
analysis are readily available. However, we want to focus on the case of general vorticity.

It follows from the preceding equations that the relative mass flux

p0 =
∫ η(x)

−d

{u(x, y) − c}dy

is independent of x. We will be looking for waves with u < c and therefore p 0 < 0.

Theorem 1 (Main Theorem). Let L > 0, c > 0, p0 < 0. Let these quantities satisfy
Condition A given below. Then there exist traveling waves (u, v, η) of period L, flux p0

and speed c, with u < c, which are symmetric around each crest and trough. In fact there
exists a connected set C of such waves in the space C2 × C2 × C3 such that

(i) C contains a trivial flow with η ≡ 0 (that is, a flat surface), and
(ii) C contains waves for which max u ↗ c (that is, stagnation).

Condition A. Let Γ′(p) = γ(−p) with Γ(0) = 0. Denote a(p) =
√

λ + 2Γ(p) defined
for λ > −2Γmin. Condition A requires that for some λ the Sturm-Liouville problem

−(a3Mp)p = µaM, M(p0) = 0, a3Mp(0) = gM(0)

has an eigenvalue µ ≤ −1.
This condition is necessary for the validity of the theorem. We will construct the

continuum C by bifurcation from the curve of trivial solutions. Condition A is required
for the existence of a local bifurcation curve.

The proof is based in part on the following ingredients: (1) a transformation due to
Choquet-Bruhat that fixes the free boundary, (2) a local bifurcation argument using the
Crandall-Rabinowitz theorem, (3) a global bifurcation argument of Rabinowitz type using
the Healey-Simpson degree, (4) a nodal characterization of the solutions using the Hopf
and Serrin maximum principles, and (5) regularity theorems of Schauder type due to
Lieberman and Trudinger for fully nonlinear elliptic problems.
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On Stokes’s extreme wave
LUDWIG EDWARD FRAENKEL

Stokes conjectured in 1880 that (in the absence of surface tension and viscosity) the ‘high-
est’ gravity wave on water

(i) is distinguished by sharp crests of included angle 2π/3;
(ii) has a profile (by which we mean the free upper boundary of the water) that is

convex between successive crests.

Part (i) of this conjecture was proved in 1982 in two quite different ways. In England,
Amick, Fraenkel and Toland used the integral equation of Nekrasov and real-variable
methods for functions of one variable. In Novosibirsk, Plotnikov used complex-variable
methods and an extension of a certain function beyond its domain in the plane of the
complex potential. (This was an inspired sharpening for a particular case of a general
construction due to H. Lewy.)
Part (ii) of the conjecture has been proved recently by Plotnikov and Toland (who have
been collaborators since 1997). The proof uses complex-variable methods of the kind
initiated by Plotnikov; it is a tour de force, but far from simple.

The present talk describes two unsuccessful attempts to obtain a relatively simple exis-
tence proof for the extreme wave by means of the Nekrasov equation, in the hope that
such a proof might yield both parts of the Stokes conjecture more or less directly.

For periodic gravity waves on water of infinite depth, the Nekrasov equation is

φ(s) = (Tνφ)(s) :=
1
3

∫ π

0

K(s, t)
sin φ(t)

ν +
∫ t

0 sinφ
dt, 0 < s ≤ π,

where

K(s, t) :=
1
π

log
tan 1

2s + tan 1
2 t

| tan 1
2s − tan 1

2 t| ,

and where tan φ(s) := Y ′(x) ≥ 0 is the slope of half a wave-length of the free boundary
{(x, Y (x)) |x ∈ IR}. The points s = π and s = 0 correspond to a trough and a crest,
respectively. The parameter ν ∈ [

0, 1
3

)
and is such that 1

3 − ν is small for waves of small
amplitude, while ν = 0 for the extreme (or ‘highest’) wave. In 1978, Toland proved
the existence of a suitable solution for ν = 0 by considering a sequence

(
φν(n)

)∞
n=1

of
solutions for which ν(n) ↓ 0 as n → ∞.

My first attempt involves the sequence (φn)∞n=0 of functions defined by sin φ0(s) :=
1
2 cos s

2 (0 ≤ s ≤ π) and φn+1 := T0φn. The functions φ1 and φ2 are known exactly; φ3

and φ4 are described by formulae which result partly from fitting a trigonometric series
to numerical values of the smooth part of sin φn(t)/

∫ t

0
sinφn for n = 2 and 3. Graphs of

φ0 to φ4 suggest rapid convergence. The leading four terms of φn(s) for s ↓ 0 are known
for every n and form a part of the formulae for φ 0 to φ4.
However, I have failed to prove convergence.
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In the equation φ = T0φ for the extreme wave, let

(Nφ)(s) :=
sin φ(s)∫ s

0
sin φ

and

(Kf)(s) :=
∫ π

0

K(s, t) f(t) dt (0 < s ≤ π),

so that T0φ ≡ 1
3K ◦ Nφ. Perhaps the main difficulty of the problem is that Nφ is not

a monotonic function of φ (under the usual partial ordering of continuous functions on
(0, π]). However, the inverse not only exists but is an increasing function of Nφ; in fact,

sin ψ(s) = sin
s

2
Nψ(s) exp

∫ s

0

{
Nψ(t) − 1

2
cot

t

2

}
dt

whenever Nψ(t) ∼ 1/t as t ↓ 0, Nψ ∈ C(0, π] and Nψ(s) ≥ 0.

Accordingly, my second attempt has been to pursue f := Nφ, rather than φ, by means of
the new equation f = Af , where

(Af)(s) : =
sin(

1
3
Kf)(s)

sin
s

2

exp
∫ s

0
{f0 − f}, f0(t) := Nφ0(t) =

1
2

cot
t

2
,

=
sin(T0φ)(s)∫ s

0 sin φ
if φ := N−1f.

An encouraging property of this equation is that its linearization about f 0 is solvable, as
follows. If we set f = f0 + h, then, formally,

f = Af ⇐⇒ h − A′(f0)h = Af0 − f0 + O(h2).

Theorem. The equation

h − A′(f0)h = g in L2 := L2(0, π)

has a unique solution satisfying

‖ h ‖L2≤
(

7
9
− 3

4
log

4
3

)−1

‖ g ‖L2 .

Uniqueness issues on permanent progressive water-waves
HISASHI OKAMOTO

(joint work with Kenta Kobayashi)

Abstract. We consider two-dimensional water-waves of permanent shape with constant propaga-
tion speed. Two theorems concerning the uniqueness of certain solutions are reported. Uniqueness
of Crapper’s pure capillary waves is proved under a positivity assumption. The proof is based on



272 Oberwolfach Report 5/2004

the theory of positive operators. Also proved is the uniqueness of the gravity waves of mode one.
This is done by a combination of new inequalities and numerical verification algorithm.

Keywords.Crapper’s wave, gravity waves, uniqueness, positivity, the Perron-Frobenius theory,
verified numerics.

SUMMARY

We consider progressive waves of permanent shape on 2D irrotational flow of incom-
pressible inviscid fluid. For the sake of simplicity, we consider only those fluid flows
whose depth are infinite. We show that, under a positivity assumption, the pure capillary
waves of Crapper are unique. Also, the positive gravity waves are shown to be unique.

Specifically we consider a solution θ of

(1) q
dθ

dσ
= −sinh(Hθ) (−π ≤ σ ≤ π)

such that θ is 2π-periodic and satisfies θ(−σ) = −θ(σ). For its meaning, see [5]. In
1957, G.D. Crapper found a family of solutions of (1), which are written, in our context,
as follows:

q =
1 + A2
1 − A2

, θ(σ) = −2 arctan
(

2A sinσ

1 − A2

)
.

A natural question would be: Does the differential equation (1) has a solution other than
Crapper’s waves?

Our results is:

Theorem 1. Suppose that a solution of (1) satisfies θ(−σ) = −θ(σ) and either the
following A1 or A2.

A1: 0 ≤ θ(σ) ≤ π everywhere in 0 ≤ σ ≤ π;
A2: dτ

dσ (σ) ≥ 0 everywhere in 0 ≤ σ ≤ π.

Then it is one of Crapper’s solutions of mode one.

The proof of this theorem depends crucially on [7]. See [6].
We now move on to a uniqueness theorem on the gravity waves, which has been re-

cently obtained by the second author. Now the assumption is that the surface tension is
neglected and only the gravity acts. In this case the solutions are obtained by solving the
following integral equation, called Nekrasov’s equation:

(2) θ(σ) =
1
3π

∫ π

0

log
∣∣∣∣ sin σ+s

2

sin σ−s
2

∣∣∣∣ µ sin θ(s)
1 + µ

∫ s

0 sin(θ(u))du
ds.

Here µ is a new parameter related to the gravity acceleration.
The equation (2) has a rather long history but the structure of the solutions had long

been unclear except for those solutions of small amplitude. See [5]. The first satisfactory
answer was given by [3] as in the following form:

Theorem 2 (Keady & Norbury, ’78). For all 3 < µ < ∞, there exists at least one
non-trivial solution satisfying 0 ≤ θ ≤ π/2.
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It is known that there exist solutions which change sign in 0 ≤ σ ≤ π. It is also
known that secondary bifurcations exist along such solutions. Therefore uniqueness does
not hold among solutions of different signs. However, no secondary bifurcation seems
to exist along a positive solutions, and we expect uniqueness for positive solutions. The
second author proved in [4] the following

Theorem 3. For all 3 < µ ≤ 40.0, there exists at most one non-trivial solution satisfying
0 ≤ θ ≤ π.

The proof in [4] uses the validated numerics or “interval analysis”, which gives us
exact ( i.e., including round-off error ) bound for numerical computations.
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On the spectral problem associated with the Camassa-Holm equation
CHRISTER BENNEWITZ

INTRODUCTION

Associated with the Camassa-Holm (CH) equation (see [1])

ut − utxx + 3uux + 2κux = 2uxuxx + uuxxx,

where x ∈ R, t ≥ 0 and κ is a parameter, there is the spectral problem

(1) −y′′ + 1
4y = λ(κ + w(·, t))y,

where w = u−uxx and t is viewed as a parameter. There are complications in copying the
scattering-inverse scattering approach for the KdV equation to this situation. In particular,
an interesting feature of the CH equation is the presence of wave breaking. It is known,
however, that this can only occur if κ + w(x, 0) is not of one sign. Standard spectral
theory, however, considers (1) in an L2-space with weight κ + w, which is only possible
if the weight is of one sign.

One may instead use H1(R) as the Hilbert space for (1), provided with a slightly
modified scalar product

〈y, z〉 =
∫

R

(y′z′ + 1
4yz), ‖y‖ =

√
〈y, y〉.



274 Oberwolfach Report 5/2004

A simple scaling argument shows that one need only consider the cases κ = 0 and κ = 1.
Consider now the case κ = 1. There is then a scattering theory for (1), with standard
decay assumptions on w. It was proved in [2] [3] that all eigen-values and the transmission
coefficient are conserved quantities under the CH flow, and that the reflection coefficient
and the normalization constants for the eigenfunctions evolve in a simple, explicit way.
Unfortunately, no inverse scattering theory is available unless 1 + w ≥ 0. In this case
one may transform (1) to a standard Schrödinger equation, and use the inverse scattering
theory then available. This was carried out by Constantin [2] and Lenells [3].

On the other hand, there is a complete spectral theory for (1), and some inverse spectral
theory. This is of some use in the case κ = 0, as we shall see.

SPECTRAL THEORY

We sketch a general spectral theory for equations of the form

(2) −(py′)′ + qy = λwy in [0, b),

where p ≥ 0, q ≥ 0 and 1/p, q and w are all in L1
loc[0, b). For simplicity also assume

supp w = [0, b). We study the equation in the completion H of C 1
0 (0, b) with respect to

the norm-square ‖y‖2 =
∫ b

0
(p|y′|2 + q|y|2). Let ϕ(x, λ) be the solution of (2) with initial

data ϕ(0, λ) = 0, pϕ′(0, λ) = 1. There then exists a uniquely determined positive mea-
sure dρ on R, called the spectral measure, some of the properties of which are as follows.
Let L2

ρ be the Hilbert space of functions ŷ measurable (dρ) and such that
∫ |ŷ|2 dρ < ∞.

Given y ∈ H the integral ŷ(t) =
∫ b

0 (py′ϕ′(·, t) + qyϕ(·, t)) converges in L2
ρ and gives

a unitary map F : H � y �→ ŷ ∈ L2
ρ, the generalized Fourier transform for (2). The

spectrum of the operator corresponding to (2) is supp dρ, eigenvalues corresponding to
point-masses in the measure. We have the following inverse spectral theorem.

Theorem 0.1. Suppose the interval [0, b) and the coefficients p and q are given. Then the
spectral measure determines the coefficient w uniquely.

If the spectrum is discrete with eigenvalues λn and we define the normalization con-
stants cn = ‖ϕ(·, λn)‖−2, then dρ =

∑
cnδλn . So, in this case knowing the spectral

measure is equivalent to knowing all eigenvalues and normalization constants.
For a brief indication of the proof of the theorem, assume that two coefficients w and

w̃ give the same spectral measure, and let U = F̃−1F , F and F̃ being the generalized
Fourier transforms associated with w and w̃ respectively. Then U is a unitary operator
on H, and we are done if we can prove that it is the identity. It is not hard to see that
this follows if we can prove that U preserves supports. To see that it does, one may use
a generalization of the classical Paley-Wiener theorem, valid for the generalized Fourier
transforms used here.

APPLICATION TO THE CAMASSA-HOLM EQUATION

We consider (1) with κ = 0 on (−∞,∞), where w is locally integrable. We may
transform this problem using a Liouville transform, introducing new independent and



Wave Motion 275

dependent variables ξ(x) = e−x and ỹ(ξ) = e−x/2y(x). If y ∈ H we obtain∫
R

(|y′|2 + 1
4 |y|2) =

∫ ∞

0

|ỹ′|2.

The equation (1) is transformed to −ỹ ′′ = λw̃ỹ where w̃(ξ) = e2xw(x). The spectral the-
ory sketched above applies if w̃ is integrable near 0. This translates into the requirement
that exw(x) is integrable near +∞.

Assuming (1 + |x|)w(x) ∈ L1(R) and κ = 0, the spectrum of (1) is discrete and the
equation has a solution f+(x, λ) asymptotic to e−x/2 at +∞ for any λ. It is easy to see
that f+ transforms to ϕ, and f+ will be in H precisely if λ = λn is an eigen-value. Define
the corresponding normalization constant

(3) cn =
( ∫

R

(|f ′
+(·, λn)|2 + 1

4 |f+(·, λn)|2))−1
.

Eigen-values are still conserved under the CH flow, and the normalization constants
evolve according to cn(t) = cn(0) exp(−t/4λn). Clearly cn = ‖ϕ(·, λn)‖−2, so Theo-
rem 0.1 gives the following theorem, which is at least a step in the direction of a scattering-
inverse scattering approach for CH.

Theorem 0.2. Assume that κ = 0 and (1 + ex)w(x) ∈ L1(R). Then (1) has discrete
spectrum and the eigenvalues and normalization constants (3) determine w uniquely.
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Algebro-Geometric Solutions of the KdV and Camassa-Holm equation
HELGE HOLDEN

(joint work with Fritz Gesztesy)

THE KDV HIERARCHY

To construct the KdV hierarchy, one assumes u to be a smooth function on R (or
meromorphic in C) in the stationary context or a smooth function on R

2 in the time-
dependent case, and one introduces the recursion relation for some functions f � of u by

(1) f0 = 1, f�,x = −(1/4)f�−1,xxx + uf�−1,x + (1/2)uxf�−1, � ∈ N.

Given the recursively defined sequence {f�}�∈N0 (whose elements turn out to be differen-
tial polynomials with respect to u, defined up to certain integration constants) one defines
the Lax pair of the KdV hierarchy by

L = − d2

dx2
+ u,(2)
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P2n+1 =
n∑

�=0

(
fn−�

d

dx
− 1

2
fn−�,x

)
L�.(3)

The commutator of P2n+1 and L then reads

(4) [P2n+1, L] = 2fn+1,x,

using the recursion (1). Introducing a deformation (time) parameter t n ∈ R, n ∈ N0 into
u, the KdV hierarchy of nonlinear evolution equations is then defined by imposing the
Lax commutator relations

(5)
d

dtn
L − [P2n+1, L] = 0,

for each n ∈ N0. By (4), the latter are equivalent to the collection of evolution equations

(6) KdVn(u) = utn − 2fn+1,x(u) = 0, n ∈ N0.

Explicitly,

KdV0(u) = ut0 − ux = 0,

KdV1(u) = ut1 + 1
4uxxx − 3

2uux − c1ux = 0,(7)

KdV2(u) = ut2 − 1
16uxxxxx + 5

8uuxxx + 5
4uxuxx − 15

8 u2ux

+ c1

(
1
4uxxx − 3

2uux

) − c2ux = 0, etc.,

represent the first few equations of the time-dependent KdV hierarchy.
We construct a special class of explicitly defined solutions given by the Its–Matveev

formula

(8) u(x, tn) = Λ0 − 2∂2
x ln(θ(A + Bx + Crtn)),

Here Λ0, A, B, Cr are all constants, and θ is Riemann’s theta function. Observe that the
argument in the theta-function is linear both in space and time.

THE CAMASSA–HOLM HIERARCHY

The Camassa–Holm (CH) equation reads

(9) 4ut − uxxt − 2uuxxx − 4uxuxx + 24uux = 0, (x, t) ∈ R
2

(chosing a scaling of x, t that’s convenient for our purpose), with u representing the fluid
velocity in x-direction. Actually, (9) represents the limiting case κ → 0 of the general
Camassa–Holm equation,

(10) 4vt − vxxt − 2vvxxx − 4vxvxx + 24vvx + 4κvx = 0, κ ∈ R, (x, t) ∈ R
2.

However, in our formalism the general Camassa–Holm equation (10) just represents a
linear combination of the first two equations in the CH hierarchy and hence we consider
without loss of generality (9) as the first nontrivial element of the Camassa–Holm hierar-
chy. Alternatively, one can transform

(11) v(x, t) �→ u(x, t) = v(x − (κ/2)t, t) + (κ/4)

and thereby reduce (10) to (9).
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We start by formulating the basic polynomial setup. One defines {f �}�∈N0 recursively
by

f0 = 1,

f�,x = −2G(
2(4u − uxx)f�−1,x + (4ux − uxxx)f�−1

)
, � ∈ N,(12)

where G is given by
(13)

G : L∞(R) → L∞(R), (Gv)(x) =
1
4

∫
R

dy e−2|x−y|v(y), x ∈ R, v ∈ L∞(R).

One observes that G is the resolvent of minus the one-dimensional Laplacian at energy
parameter equal to −4, that is,

(14) G =
(
− d2

dx2
+ 4

)−1

.

The first coefficient reads

(15) f1 = −2u + c1,

where c1 is an integration constant. Subsequent coefficients are nonlocal with respect to
u. At each level a new integration constant, denoted by c �, is introduced. Moreover, we
introduce coefficients {g�}�∈N0 and {h�}�∈N0 by

g� = f� +
1
2
f�,x, � ∈ N0,(16)

h� = (4u − uxx)f� − g�+1,x, � ∈ N0.(17)

Explicitly, one computes

f0 = 1,

f1 = −2u + c1,

f2 = 2u2 + 2G(
u2

x + 8u2
)

+ c1(−2u) + c2,

g0 = 1,

g1 = −2u − ux + c1,(18)

g2 = 2u2 + 2uux + 2G(
u2

x + uxuxx + 8uux + 8u2
)

+ c1(−2u − ux) + c2,

h0 = 4u + 2ux,

h1 = −2u2
x − 4uux − 8u2

− 2G(
uxuxxx + u2

xx + 2uxuxx + 8uuxx + 8u2
x + 16uux

)
+ c1(4u + 2ux), etc.

Next one introduces the 2 × 2 matrix U by

U(z, x) =
( −1 1

z−1(4u(x) − uxx(x)) 1

)
, x ∈ R,(19)
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and for each n ∈ N0 the following 2 × 2 matrix Vn by

(20) Vn(z, x) =
( −Gn(z, x) Fn(z, x)

z−1Hn(z, x) Gn(z, x)

)
, n ∈ N0, z ∈ C \ {0}, x ∈ R,

assuming Fn, Gn, and Hn to be polynomials of degree n with respect to z and C ∞ in x.
Postulating the zero-curvature condition

(21) −Vn,x(z, x) + [U(z, x), Vn(z, x)] = 0,

one finds

Fn,x(z, x) = 2Gn(z, x) − 2Fn(z, x),(22)

zGn,x(z, x) = (4u(x) − uxx(x))Fn(z, x) − Hn(z, x),(23)

Hn,x(z, x) = 2Hn(z, x) − 2(4u(x) − uxx(x))Gn(z, x).(24)

From (22)–(24) one infers that

(25)
d

dx
det(Vn(z, x)) = −1

z

d

dx

(
zGn(z, x)2 + Fn(z, x)Hn(z, x)

)
= 0,

and hence

(26) zGn(z, x)2 + Fn(z, x)Hn(z, x) = Q2n+1(z),

where the polynomial Q2n+1 of degree 2n+1 is x-independent. Actually it turns out that
it is more convenient to define

(27) R2n+2(z) = zQ2n+1(z) =
2n+1∏
m=0

(z − Em), E0 = 0, E1, . . . , E2n+1 ∈ C

so that (26) becomes

(28) z2Gn(z, x)2 + zFn(z, x)Hn(z, x) = R2n+2(z).

Next one makes the ansatz that Fn, Hn, and Gn are polynomials of degree n, related
to the coefficients f�, h�, and g� by

Fn(z, x) =
n∑

�=0

fn−�(x)z�,(29)

Gn(z, x) =
n∑

�=0

gn−�(x)z�,(30)

Hn(z, x) =
n∑

�=0

hn−�(x)z�.(31)

Insertion of (29)–(31) into (22)–(24) then yields the recursion relations (12)–(13) and (16)
for f� and g� for � = 0, . . . , n. For fixed n ∈ N we obtain the recursion (17) for h � for
� = 0, . . . , n − 1 and

(32) hn = (4u − uxx)fn.
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(When n = 0 one directly gets h0 = (4u − uxx).) Moreover, taking z = 0 in (28) yields

(33) fn(x)hn(x) = −
2n+1∏
m=1

Em.

In addition, one finds

(34) hn,x(x) − 2hn(x) + 2(4u(x) − uxx(x))gn(x) = 0, n ∈ N0.

Using the relations (16) and (32) permits one to write (34) as

s-CHn(u) = (uxxx − 4ux)fn − 2(4u − uxx)fn,x = 0, n ∈ N0.(35)

Varying n ∈ N0 in (35) then defines the stationary CH hierarchy. We record the first few
equations explicitly,

s-CH0(u) = uxxx − 4ux = 0,

s-CH1(u) = −2uuxxx − 4uxuxx + 24uux + c1(uxxx − 4ux) = 0,(36)

s-CH2(u) = 2u2uxxx − 8uuxuxx − 40u2ux + 2(uxxx − 4ux)G(
u2

x + 8u2
)

− 8(4u − uxx)G(
uxuxx + 8uux

)
+ c1(−2uuxxx − 4uxuxx + 24uux) + c2(uxxx − 4ux) = 0, etc.

Next, we turn to the time-dependent CH hierarchy. Introducing a deformation parame-
ter tn ∈ R into u (replacing u(x) by u(x, tn)), the definitions (19), (20), and (29)–(31) of
U , Vn, and Fn, Gn, and Hn, respectively, still apply. The corresponding zero-curvature
relation reads

(37) Utn(z, x, tn) − Vn,x(z, x, tn) + [U(z, x, tn), Vn(z, x, tn)] = 0, n ∈ N0,

which results in the following set of equations

4utn(x, tn)−uxxtn(x, tn) − Hn,x(z, x, tn) + 2Hn(z, x, tn)

−2(4u(x, tn) − uxx(x, tn))Gn(z, x, tn) = 0,(38)

Fn,x(z, x, tn) = 2Gn(z, x, tn) − 2Fn(z, x, tn),(39)

zGn,x(z, x, tn) = (4u(x, tn) − uxx(x, tn))Fn(z, x, tn) − Hn(z, x, tn).(40)

Inserting the polynomial expressions for Fn, Hn, and Gn into (39) and (40), respectively,
first yields recursion relations (12) and (16) for f � and g� for � = 0, . . . , n. For fixed
n ∈ N we obtain from (38) the recursion (17) for h � for � = 0, . . . , n − 1 and

(41) hn = (4u − uxx)fn.

(When n = 0 one directly gets h0 = (4u − uxx).) In addition, one finds

4utn(x, tn) − uxxtn(x, tn) − hn,x(x, tn) + 2hn(x, tn)

− 2(4u(x, tn) − uxx(x, tn))gn(x, tn) = 0, n ∈ N0.(42)

Using relations (16) and (41) permits one to write (42) as

CHn(u) = 4utn − uxxtn + (uxxx − 4ux)fn − 2(4u − uxx)fn,x = 0, n ∈ N0.(43)
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Varying n ∈ N0 in (43) then defines the time-dependent CH hierarchy. We record the first
few equations explicitly,

CH0(u) = 4ut0 − uxxt0 + uxxx − 4ux = 0,

CH1(u) = 4ut1 − uxxt1 − 2uuxxx − 4uxuxx + 24uux + c1(uxxx − 4ux) = 0,

CH2(u) = 4ut2 − uxxt2 + 2u2uxxx − 8uuxuxx − 40u2ux(44)

+ 2(uxxx − 4ux)G(
u2

x + 8u2
) − 8(4u − uxx)G(

uxuxx + 8uux

)
+ c1(−2uuxxx − 4uxuxx + 24uux) + c2(uxxx − 4ux) = 0, etc.

We show the analogue of the Its–Matveev formula for the CH hierarchy. Here we find

u(x, tn) = A +
n∑

j=1

Uj
∂

∂wj
ln

(
θ
(
z(P∞+ , µ̂(x, tr)) + w

)
θ
(
z(P∞− , µ̂(x, tr)) + w

))∣∣∣∣
w=0

.(45)

Here (U1, . . . , Un) is a constant, and

ẑ(P, Q) = B(P ) + α̂(DQ),(46)

where B(P ) is a constant, and α̂ is the Abel map, and DQ is a divisor at Q. Finally, µ̂ is
the set of solutions of the Dubrovin equations. All constants can be explicitly computed in
terms of quantities of a hyperelliptic curve. Unfortunately, the argument inside the theta
function is not linear in the space and time variable.

Extensive background information and complete details as well as references to the
early literature can be found in [1].
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Lie Groups and Mechanics: an introduction
BORIS KOLEV

EULER EQUATION OF A RIGID BODY

In classical mechanics, a material system (Σ) in the ambient space R3 is described
by a positive measure µ on R3 with compact support. This measure is called the mass
distribution of (Σ).

In the Lagrangian formalism of Mechanics, a motion of a material system is described
by a smooth path ϕt of embeddings of the reference state Σ = Supp(µ) in the ambient
space. A material system (Σ) is rigid if each map ϕ is the restriction to Σ of an isometry
g of the Euclidean space R3.

In what follows, we are going to study the motions of a rigid body (Σ) such that
Σ = Supp(µ) spans the 3 space. In that case, the manifold of all possible configurations
of (Σ) is completely described by the group D3 of orientation-preserving isometries of
R3.
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Although the physically meaningful rigid body mechanics is in dimension 3, we will
not use this peculiarity in order to distinguish easier the main underlying concepts. Hence,
in what follows, we will study the motion of an n-dimensional rigid body. To avoid heavy
computations, we will restrain our study to motions of a rigid body having a fixed point.
In these circumstances, the configuration space reduces to the group SO(n) of isometries
which fix a point.

The Lie algebra so(n) of SO(n) is the space of all skew-symmetric n × n matrices1.
There is a canonical inner product, the so-called Killing form

〈Ω1, Ω2 〉 = −1
2

tr(Ω1Ω2)

which permit us to identify so(n) with its dual space so(n)∗. For x and y in Rn, we define

L∗(x, y)(Ω) = (Ω x) · y, Ω ∈ so(n)

which is skew-symmetric in x, y and thus defines a linear map

L∗ :
2∧

R
n → so(n)∗ .

This map is injective and defines therefore an isomorphism between so(n) ∗ and
∧2

R
n,

which have the same dimension. We let L(x, y) be the corresponding element of so(n)
(using the Killing form).

The location of a point a of the body Σ is described by the column vector r of its
coordinates in the frame �0. At time t, this point occupies a new position r(t) = g(t)r,
where g(t) is an element of the group SO(3) and its velocity is given by v(a, t) = ġ(t) r.
The kinetic energy K of the body Σ at time t is defined by

(1) K(t) =
1
2

∫
Σ

‖v(a, t)‖2 dµ =
1
2

∫
Σ

‖ġ r‖2 dµ =
1
2

∫
Σ

‖Ωr‖2 dµ

where Ω = g−1 ġ lies in the Lie algebra so(n).

Lemma 1. We have K = − 1
2 tr(ΩJΩ), where J is the symmetric matrix with entries

Jij =
∫

Σ

xixj dµ .

The kinetic energy K is therefore a positive quadratic form on the Lie algebra so(n).
To K , a linear operator A : so(n) → so(n), called the inertia tensor or the inertia
operator, is associated by means of the relation

K =
1
2
〈A(Ω), Ω 〉 , Ω ∈ so(n).

More precisely, this operator is given by

(2) A(Ω) = JΩ + ΩJ =
∫

Σ

(
Ω rrt + rrtΩ

)
dµ .

1In dimension 3, we generally identify the Lie algebra so(3) with R3 endowed with the Lie bracket given
by the cross product ω1 × ω2.
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The angular momentum of the rigid body is defined by the following 2-vector

M(t) =
∫

Σ

(gr) ∧ (ġr) dµ .

Lemma 2. We have L(M) = gA(Ω)g−1.

If there are no external actions on the body, the spatial angular momentum is a constant
of the motion,

(3)
dM
dt

= 0 .

Coupled with the relation L(M) = gA(Ω)g−1, we deduce that

(4) A(Ω̇) = A(Ω)Ω − ΩA(Ω)

which is the generalization in n dimensions of the traditional Euler equation. Notice that
if we let M = A(Ω), this equation can be rewritten as

(5) Ṁ = [M, Ω ] .

GENERAL ARNOLD-EULER EQUATION

A Riemannian or pseudo-Riemannian metric on a Lie group G is left invariant if it is
preserved under every left shift Lg, that is,

〈Xg, Yg 〉g = 〈Lh Xg, Lh Yg 〉hg , g, h ∈ G.

A left-invariant metric is uniquely defined by its restriction to the tangent space to the
group at the unity and hence by a quadratic form on the Lie algebra of the group, g. To
such a quadratic form on g, correspond a symmetric operator A : g → g ∗ defined by

〈ξ, ω 〉 = (Aξ, ω ) = (Aω, ξ ) , ξ, ω ∈ g .

The operator A is called the inertia operator. It can be extended to a left-invariant tensor
Ag : TgG → TgG

∗ defined by Ag = L∗
g−1ALg−1 .

The geodesics of the metric are defined as extremals of the Lagrangian

(6) L(g) =
∫

K (g(t), ġ(t)) dt

where

K(X) =
1
2
〈Xg, Xg 〉g =

1
2

(Ag Xg, Xg )g

is called the kinetic energy or energy functional.
If g(t) is a geodesic, the velocity ġ(t) can be translated to the identity via left or right

shifts and we obtain two elements of the Lie algebra g,

ωL = Lg−1 ġ, ωR = Rg−1 ġ,

called the left angular velocity, respectively the right angular velocity. Letting m =
Ag ġ ∈ TgG

∗, we define the left angular momentum mL and the right angular momentum
mR by

mL = L∗
gm ∈ g∗, mR = R∗

gm ∈ g∗.
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Between these four elements, we have the relations

ωR = Adg ωL, mR = Ad∗gmL, mL = AωL.

The invariance of the energy with respect to left translations leads to the existence of a
momentum map µ : TG → g∗ defined by

µ((g, ġ))(ξ) =
∂K

∂ġ
Zξ = 〈ġ, Rg ξ 〉g = (m, Rg ξ ) =

(
R∗

g m, ξ
)

= mR(ξ),

where Zξ is the right-invariant vector field generated by ξ ∈ g. According to Noether’s
theorem, this map is constant along a geodesic, that is

dmR

dt
= 0.

As we did in the special case of the group SO(n), using the relation mR = Ad∗g mL and
computing the time derivative, we obtain the Arnold-Euler equation

(7)
dmL

dt
= ad∗ωL

mL.

Using ωL = A−1 mL and the bilinear operator B defined by

〈[a, b ] , c 〉 = 〈B(c, a), b 〉 , a, b, c ∈ g,

equation (7) can be rewritten as an evolution equation on the Lie algebra

dωL

dt
= B(ωL, ωL) .

Well-posedness results for the generalized Benjamin-Ono equation with arbitrary
large initial data
LUC MOLINET

(joint work with Francis Ribaud)

Abstract. We prove new local well-posedness results for the generalized Benjamin-Ono equation
(GBO) ∂tu + H∂2

xu + uk∂xu = 0, k ≥ 2 . By combining a gauge transformation with dispersive
estimates we establish the local well-posedness of (GBO) in Hs(IR) for s ≥ 1/2 if k ≥ 5, s > 1/2

if k = 2, 4 and s ≥ 3/4 if k = 3. Moreover we prove that in all these cases the flow map is locally
Lipschitz on Hs(IR).

PRESENTION OF THE PROBLEM

This work is devoted to the study of the local well-posedness problem for the generalized
Benjamin-Ono equation

(GBO)

{
∂tu + H∂2

xu ± uk∂xu = 0 , (t, x) ∈ IR × IR ,
u(0, x) = u0(x) ,
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where H is the Hilbert transform defined by

H(f)(x) = −i

∫ +∞

−∞
eixξ sgn(ξ)f̂(ξ) dξ ,

and k ≥ 2 is an integer.

The Benjamin-Ono equation (k=1) arises as a model for long internal gravity waves in
deep stratified fluids, see [2], and have been studied in a large amount of works. When
k ≥ 2, (GBO) is an infinite dimensional Hamiltonian system (for k = 1 it is even formally
completely integrable) and possesses the following invariant quantities :

I(u) =
∫ +∞

−∞
u(t, x) dx , M(u) =

∫ +∞

−∞
u2(t, x) dx ,

and

E(u) =
∫ +∞

−∞

(1
2
|D1/2

x u(t, x)|2 ∓ 1
(k + 1)(k + 2)

u(t, x)k+2
)

dx (energy) .

One of the challenging problem about this family of equations is probably to establish a
well-posedness result in the energy space H 1/2(IR).

Recall that the Cauchy problem for the Benjamin-Ono equation (k=1) has been shown
to be locally well-posed in H s(IR) for s ≥ 3 in [19], s > 3/2 in [8], [1] and later on
for s ≥ 3/2 in [18]. These results have been extended to global ones by using con-
servation laws. Recently, by establishing dispersive estimates for the non homogeneous
linearized equation, H. Koch and N. Tzvetkov [14] and then C. Kenig and K. Koenig [9]
have improved these local well-posedness results in H s(IR) to respectively s > 5/4 and
s > 9/8. More recently, using a gauge transformation and standard dispersive estimates,
T. Tao [20] has gone down to H 1(IR). It is worth noticing that all these results have
been obtained by compactness methods. Moreover, it has been proved in [17] that, for all
s ∈ IR, the flow-map u0 �→ u(t) is not of class C2 at the origin in H s(IR) which implies
that it is not possible to obtain well-posedness results in H s(IR) for the Benjamin-Ono
equation by contraction methods. In this direction, H. Koch and N. Tzvetkov [15] have
recently proved that this flow-map is even not locally uniformly continuous in H s(IR).

Now, concerning the case k ≥ 2, the local well-posedness of (GBO) is also known in
Hs(IR) for s > 3/2, see [8], [1], [13]. Recently, using the approach developped in [14],
C. Kenig and K. Koenig [9] have shown the local well-posedness of (GBO) in H 1(IR)
for k = 2 (note that only the continuity of the flow-map is established). Unfortunately,
this approach does not seem to permit to go below H 1(IR) due to the weakness of the
smoothing effect of the associated free evolution. On the other hand, in the context of
small initial data, C. Kenig, G. Ponce and L. Vega [13] have proved local well-posedness
results for (GBO) in Hs(IR) by a Picard iterative sheme on the integral equation. This
denotes of course a strong difference with the case k = 1 and implies the real analiticity
of the flow-map in a neighborhood of the origin. Very recently, these results have been
improved by the authors in [16] where it is proven that, for small initial data, (GBO) is
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locally well-posed in H s(IR) as soon as
s > 1/2 if k = 2 ,
s > 1/3 if k = 3 ,
s > sk if k ≥ 4 ,

and globally well-posed as soon as{
s ≥ 1/2 if k = 3 ,
s > sk if k ≥ 4 ,

where sk = 1/2 − 1/k is the critical scaling Sobolev index. Moreover these results are
almost sharp for k �= 3 : in [16] we prove that for k = 2 and k ≥ 4, the flow map is not
respectively of class C3 below H1/2(IR) and of class Ck+1 below Hsk(IR) at the origin.
Note that the above results imply the global well-posedness in the energy space H 1/2(IR)
for small initial data when k ≥ 3.
It is worth recalling that the dispersion of the free evolution V (t) of (GBO) is just suffi-
cient to recover the lost derivative in the nonlinear term but does not seem to permit to get
a contraction factor for T small when estimating the operator

G : u �→ V (t)u0 −
∫ t

0

V (t − t′)∂x(uk+1(t′)) dt′

in the appropriate resolution space. This explains the smallness assumption on the initial
data in [13] and [16]. In this sense (GBO) seems to be a limit case for the balance between
dispersion and derivative nonlinearity of order one.

In this work we improve the existing local well-posedness results in the case of ar-
bitrary large initial data. As mentioned above, the aim is to reach the energy space
H1/2(IR). This will be achieved for k ≥ 5. More precisely, we prove that (GBO) is
locally well-posed in H s(IR) as soon as

s > 1/2 if k = 2, 4 ,
s ≥ 3/4 if k = 3 ,
s ≥ 1/2 if k ≥ 5 .

Moreover we show that in all these cases, in a sharp contrast with the case k = 1, the
flow-map is locally Lipschitz. This has to be anderstood as a stability result for (GBO)
when k ≥ 2.
To establish our results, inspired by the recent work [20], we introduce a gauge transform
w of u a smooth solution of (GBO) and derive a dispersive equation satisfied by w. Using
dispersive estimates we will be able to get a positive power of T in front of the Duhamel
part when estimating w in our resolution space. Next, rewriting (GBO) with the help of w,
we obtain the desired estimate on the solution u. Our results follow then by regularizing
the initial data and passing to the limit on smooth solutions to (GBO).

1. MAIN RESULTS

Let us state our main result.
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Theorem 1. For any u0 ∈ Hs(IR) with
s > 1/2 if k = 2, 4 ,
s ≥ 3/4 if k = 3 ,
s ≥ 1/2 if k ≥ 5 ,

there exists T = T s
k (‖u0‖Hs) > 0 with T s

k (α) ↗ ∞ as α ↘ 0, and a unique solution u
to (GBO) satisfying

u ∈ C([0, T ]; Hs(IR)) ∩ Xs
T .

Moreover, for the class of s defined above, the flow-map is Lipschitz on every bounded set
of Hs(IR).

Remark 1.1. Actually we prove that T = Tk(‖u0‖Hs(k)) where

s(k) =


1/2 + if k = 2, 4 ,
3/4 if k = 3 ,
1/2 if k ≥ 5 .

Remark 1.2. Theorem 1 yields a global existence result for the solutions to the following
(GBO) equation

(1) ∂tu + H∂2
xu − uk∂xu = 0 ,

where k is an odd integer greater or equal to 5. Indeed, the energy is then given by

E(u) =
1
2

∫ +∞

−∞
|D1/2

x u(t, x)|2 dx +
1

(k + 1)(k + 2)

∫ +∞

−∞
u(t, x)k+2 dx

and thus, for k ≥ 5 odd, Theorem 1.1 combining with the conservation of E(u) leads to
the global well-posedness of (1) in H s(IR), s ≥ 1/2. Note that for k ≥ 2 with the reverse
sign in front of the nonlinear term, numerical simulations suggest that blow-up in finite
time can occur for large initial data [4].

Remark 1.3. Following the approach developped in this work with some additional tech-
nical points, one can certainly improve the results of Theorem 1 to s > s k = 1/2 − 1/k
at least for k ≥ 5 large enough. This would be in some sense optimal since it is shown in
[3] that the flow-map cannot be uniformly continuous in H s(IR) for s = sk.
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About the “loss of regularity” for hyperbolic problems
MICHAEL REISSIG

Mathematics Subject Classification 2000: 35L15, 35L80, 35S30, 35B45.

In this lecture we will study hyperbolic problems with quite different goals from the first
point of view. It turns out that these problems have common features which are described
in the following table:

strictly hyperbolic theory
with non-Lipschitz

continuous coefficients
←→

Lp − Lq decay estimates
for wave equations with

bounded time-dependent coefficients

  

weakly hyperbolic theory ←→
Lp − Lq decay estimates
for wave equations with

increasing time-dependent coefficients



288 Oberwolfach Report 5/2004

The question for Lp − Lq decay estimates is related with the question for global in time
small data solutions for the Cauchy problem for nonlinear wave equations like

utt −!u = f(ut,∇u,∇ut,∇2u), u(0, x) = εφ(x), ut(0, x) = εψ(x).

The goal is to prove under suitable assumptions that for all ε ∈ (0, ε 0(φ, ψ)] there exists a
global (in time) small data solution. One of the key tools is the so-called Strichartz’ decay
estimate

E(u)(t)|Lq ≤ C(1 + t)−
n−1

2 ( 1
p− 1

q )E(u)(0)|
W

Np
p

on the conjugate line 2 ≤ q ≤ ∞, 1/p+1/q = 1 for solutions of the Cauchy problem for

classical wave equations, where Np > n
(

1
p − 1

q

)
. Generalizing such type of estimates

(with −n
2 instead of −n−1

2 in the decay rate) to Klein-Gordon equations or damped wave
equations (with an additional term − 1

2 in the decay rate of the latter case coming from the
dissipation itself) one can show the global existence of small data solutions for

utt −!u + m2u = f(ut,∇u,∇ut,∇2u), u(0, x) = εφ(x), ut(0, x) = εψ(x), m > 0;
utt −!u + ut = f(ut,∇u,∇ut,∇2u), u(0, x) = εφ(x), ut(0, x) = εψ(x).

In general one can find such Lp − Lq decay estimates for solutions of partial differential
equations (or systems) with constant coefficients.

For this reason the author asked if one can generalize such estimates to solutions for wave
equations with time dependent coefficients like

utt − a(t) ! u + m(t)u + b(t)ut = 0.

Here one can use the WKB-method and construct explicit representations of solutions.
The dependence of coefficients on spatial variables brings essential difficulties, e.g. the
global existence (in time) of phase functions in the FIO-representations.
The above model is to general, one should assume some more structure of the coefficients.

1.case: wave equations with weak dissipation
The model under consideration is

utt −!u + b(t)ut = 0.

Under the main assumptions b′ < 0, limt→∞ b(t) = 0 we have a complete picture from
wave to damped wave equations which reads in the following form (we only describe the
decay rates):
• b ∈ L1(R+): scattering results with the free wave equation,
• b(t) ∼ (t log t)−1 for large t: hyperbolic decay rate − n−1

2 ( 1
p − 1

q ) and a term coming
from the dissipation itself, such dissipations are not effective,

• b(t) = µ(1 + t)−1, µ > 0: critical case µ = 2 gives the best L2 − L2 decay rate
(1 + t)−1, here the decay rate changes from the hyperbolic one (small µ)
to the parabolic one − n

2 ( 1
p − 1

q ) (large µ),

• b(t) ∼ t−1 log t for large t: parabolic decay rate − n
2 ( 1

p − 1
q ) and a term coming

from the dissipation itself, such dissipations are effective.
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Question: What are the relations in the 3-d case between the influence of dissipation (ef-
fective or non effective) on Lp − Lq decay estimates and assumptions to the asymptotic
behavior of the nonlinearity f = f(ut,∇u,∇ut,∇2u) in 0?

2.case: general model There exist several difficulties:
• There exists an interplay between oscillating behavior and increasing behavior of

coefficients.
• An interplay between a = a(t) and m(t) decides if the mass term is effective. In

such a case it should be included into the phase function. This gives difficulties
to develop a stationary phase method.

• An interplay between a = a(t) and b(t) decides if the dissipation term is effective.

One can prove the following results:
1. Let us consider the model problem

utt − exp(2tα)(2 + sin t)2 ! u = 0, u(0, x) = φ(x), ut(0, x) = ψ(x).

Then the following Strichartz’ type estimate holds with some regularity W
Np
p :

E(u)(t)|Lq ≤ C
(
1 +

∫ t

0

exp ταdτ
)s0−n−1

2 ( 1
p− 1

q )

E(u)(0)|
W

Np
p

,

where s0=ε sufficiently small, s0 is a positive constant, s0 = ∞ (no Lp − Lq decay esti-
mate) if α > 1

2 , α = 1
2 , α < 1

2 respectively.
2. A mass term can have an improving influence (less increasing behavior is necessary)
as the next result shows.

Let us consider the model problem

utt − (1 + t)2(2 + sin t)2(!u − u) = 0, u(0, x) = φ(x), ut(0, x) = ψ(x).

Then the following Strichartz’ type estimate holds with some regularity W
Np
p :

E(u)(t)|Lq ≤ C(1 + t2)s0−n
2 ( 1

p− 1
q )E(u)(0)|

W
Np
p

,

where s0 is a positive constant.

Are there some relations to other hyperbolic problems? Yes! There exist relations to
weakly hyperbolic problems or to strictly hyperbolic problems with non-Lipschitz coeffi-
cients. Let us demonstrate this connection by the following result:

Let us consider the strictly hyperbolic Cauchy problem

utt −
n∑

k,l=1

akl(t, x)uxkxl
= f(t, x), u(0, x) = φ(x), ut(0, x) = ψ(x),
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in the strip Rn × [0, T ]. The non-Lipschitz behavior of coefficients is described by the
following conditions for all multi-indices β and all p ∈ N:

|Dp
t Dβ

xakl(t, x)| ≤ Cpβ

(1
t

(
log

1
t

))γ

.

Then for large s the energy inequality

E(u)(t)|Hs−s0 ≤ CsE(u)(0)|Hs

holds with s0 = 0, s0=ε sufficiently small, s0 is a positive constant, s0 = ∞ (no C∞

well-posedness) if γ = 0, γ ∈ (0, 1), γ = 1, γ > 1 respectively. Moreover, there exists a
parametrix in the cases γ ∈ [0, 1].

Remarks:
• There exists in all those hyperbolic problems a connection between the oscillating be-
havior of coefficients and the ”loss of regularity” (for L p−Lq decay estimates this means
how the decay rate differs from the classical decay rates for the wave, Klein-Gordon,
or damped wave operator). An optimal classification of oscillations can be given for all
problems.
• The construction of parametrix in form of Fourierintegral operators is closely related to
the construction of representation of solutions by Fourier multipliers to derive L p − Lq

decay estimates.
• A careful division of the phase space into zones, a symbolic calculus for non-standard
symbol classes, hierarchies of symbols, ellipticity, the construction of phase functions and
amplitudes in FIO-representations, and a suitable perfect diagonalization procedure, form
the main tools for the construction of parametrix.
• Counterexamples (s0 = ∞ in the above results) are proved by the application of Flo-
quet’s theory.

Genesis of Solitons Arising from Individual Flows of the Camassa-Holm Hierarchy
ENRIQUE LOUBET

The present work offers a detailed account of the large time development of the veloc-
ity profile v run by a single “individual” Hamiltonian flow of the Camassa-Holm (CH)
hierarchy, the Hamiltonian employed being the invariant H = 1/λ, where λ is any of
the bound states of the associated spectral problem: ( 1

4 − D2)(f) = λmf , with “mass”
potential m ≡ v − v′′. The flow may be expressed as in ∂m/∂t = [mD + Dm](f 2) =
1/(2λ)D(1 − D2)(f2), or more simply, as ∂v/∂t = 1/(2λ)D(f 2). Unlike the for-
mation of the soliton train that is produced by Korteweg-de Vries (KdV) ∂V/∂t =
3V ∂V/∂X − 1

2∂3V/∂X3, which accounts, except for the reflectionless potential V , only
for the part of the total energy ascribed to the bound states of the associated spectral
problem (−D2 + V )(F ) = λF , the deficiency being carried by the evanescent radiation
corresponding to the continuous spectrum; for summable m, CH has only bound states
λn , n ∈ Z − {0}, each of which characterizes the speed=amplitude of the associated
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individual soliton Sn(t, x) ≡ 1/(2λn)e−|x−t/(2λn)|. They embody respectively an en-
ergy 1

2

∫
[(S′

n)2 + S2
n] = 1/(4λ2

n), and all these individual pieces add up to the whole:
HCH ≡ 1

2

∫
mG[m] =

∑
1/(4λ2

n) where G ≡ (1 − D2)−1, so here nothing is lost. And
indeed, the present investigation confirms this:

Let m be summable and odd, having the signature of x, and consider the individ-
ual flow based upon H = 1/λ with λ > 0. With the help of a private “Lagrangian”
scale determined by x• = −f2(t, x) and x(0, x) = x; the updated velocity profile
(etXHv(0, ·))(x) ≡ v(t, x(t, x)) is found to shape itself like the soliton

Sλ(t, x) = 1/(2λ)e−|x−t/(2λ)|

escaping to −∞ as t ↑ +∞, leaving behind a “residual” v(+∞, x(+∞, x)) having the
same spectrum as the one attatched to the initial v(0, x) except that λ is excised. Doubt-
less, the map induced by the large time asymptotics v(0, x) �→ v(+∞, x(+∞, x)), is
some counterpart of the standard Darboux transformation for removing/adding the bottom
bound state for KdV, with the difference now that you need not proceed in such orderly
fashion. I did not succeed in casting such correspondence in the form of an “addition” as
in [1], but it should be closely connected to that circle of ideas.
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Introduction by the Organisers

As the theme of the conference indicates, one of the organizers’ main goals was
to put together a group of participants with a wide range of interests in and
around the complex geometric side of the representation theory of Lie groups
and algebras. It is their belief that a hybrid approach to representation theory, in
particular interaction between complex geometers and harmonic analysts standing
on a strong foundation of finite- and infinite-dimensional Lie theory, will open up
new avenues of thought and lead to progress in a number of areas.

Since the previous Oberwolfach conference (Represention Theory and Complex
Analysis, April 2000), there has been quite a positive development toward these
goals. A number of breakthroughs were achieved, and of course these were re-
ported at this year’s conference. More than half of the 47 participants (from 15
countries) are now working in some middle ground between complex geometry and
representation theory. Furthermore, it was clear from the discussions both after
the talks and in the evenings that most participants now understand each other’s
language well enough to discuss high level research projects.

A basic new component, infinite-dimensional complex geometry and related repre-
sentation theory, was added this year. This quickly developing subject is already
attracting wide attention. A goal for the future is to better integrate this with the
more classical finite-dimensional theory.

One consequence of the broad range of backgrounds of the participants is that,
without prodding by the organizers, virtually all speakers gave quite comprehensive
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introductions to their subjects before going into their most recent results. This
was greatly appreciated by all!

Instead of attempting to summarize these talks we will let the following abstracts
speak for themselves.
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Abstracts

Visible actions on complex manifolds and multiplicity-one theorems
Toshiyuki Kobayashi

Multiplicity-free representations appear in various contexts such as Fourier
transforms, Taylor series expansions, the Peter-Weyl theorem, branching laws for
GLn ↓ GLn+1, Clebsch-Gordan formula, Pieri’s law, GLm − GLn duality, the
Plancherel formula for Riemannian symmetric spaces G/K, etc.

The aim of this talk is to report a simple principle based on complex geometry
that explains the multiplicity-free property of various representations as above and
more.

Suppose V → D is an H-equivariant holomorphic vector bundle. Then, a
representation of the group H is naturally defined on the Fréchet space O(D,V)
of holomorphic sections. One asks:

“When does O(D,V) become multiplicity-free?”
We present a sufficient condition which comprises of a ‘balance’ of the base

space D and fibers Vx. To be more precise, let P → D be an H-equivariant
principle K-bundle, µ : K → GLC(V ) a finite dimensional unitary representation,
and V � P ×K V . Suppose we are given automorphisms of Lie groups H and
K, and a diffeomorphism of P , for which we use the same letter σ, satisfying the
following two conditions:

σ(hpk) = σ(h)σ(p)σ(k)(h ∈ H ; p ∈ P ; k ∈ K),

The induced action of σ on D(� P/K) is anti-holomorphic.

For a subset B in P σ, we define the following σ-stable subgroup

M := {k ∈ K : bk ∈ Hbforanyb ∈ B}.
Theorem. Assume that there exist σ and a subset B of P σ satisfying the following
three conditions:

a) HBK contains an interior point of P .
b) The restriction µ|M decomposes as a multiplicity-free sum of irreducible

representations of M .

We shall write the decomposition as µ|M � ⊕
i ν(i).

c1) µ ◦ σ is isomorphic to µ∗ (the contragredient representation of µ) as rep-
resentations of K.

c2) ν(i) ◦ σ is isomorphic to (ν(i))∗ as representations of M for every i.

Then, for any (abstract) unitary representation π of H which can be realized as a
subrepresentation of O(D,V), π is multiplicity-free as an H-module.
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Loosely speaking, our theorem asserts that the multiplicity-free property prop-
agates from the smaller group M acting on fibers (see (b)) to the larger group H
acting on holomorphic sections under a suitable condition (see (a)) on the H-action
on the complex manifold D.

In light of the geometric condition (a) given in Theorem, we introduce the
following notion:
Definition. The action of a Lie group H on a connected complex manifold D is
visible if there exists a totally real submanifold N which meets generic H-orbit
on D and satisfies

J(TxN) ⊂ Tx(H · x) for all x ∈ N.

Example. 1) The natural action of Tn on the projective space Pn−1C is visible.
2) The natural action of the direct product group U(n1) × U(n2) × U(n3) on

the Grassmann variety Grp(Cn)(n = n1 + n2 + n3 = p + q) is visible if min(n1 +
1, n2 + 1, n3 + 1, p, q) ≤ 2.

3) Let G be a compact Lie group, and GC its complexification. Then the action
of G × G on GC is visible.

4) Let N be a nilpotent orbit of GL(n, C) corresponding to a partition 2p1n−2p.
Then the action of U(n) on N is visible for any p.

5) Let G/K be a Riemannian symmetric space of the non-compact type, and
Ω its crown in GC/KC. Then the action of G on Ω is visible.

The above examples lead us to various kinds of multiplicity free representa-
tions. For example, (1) gives rise to the multiplicity-free property of the restric-
tion GLn ↓ GLn−1 as well as the Pieri rule for tensor product representations;
(2) does to the list of all multiplicity-free tensor product representations of GLn,
which Stembridge found by a completely different method based on combinatorial
argument; (3) does to the multiplicity-free property of the Peter-Weyl theorem
of L2(G); (4) does to spherical nilpotent orbits whose complete list was recently
given by Panyushev.
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A new look at the Maslov index
Bent Ørsted

The Maslov index is an invariant that appears several places in mathematics;
roughly speaking it encodes qualitive aspects of solutions to certain variational
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problems - this includes asymptotic solutions to partial differential equations and
flows of Hamiltonian systems. It also appears in the study of Lagrangian subspaces
of a fixed symplectic vector space, where it gives an integer invariant for each triple
of such subspaces. In this lecture we give several new ways of looking at the Maslov
index, generalizing to the setting of bounded symmetric domains and defining a
Maslov index for transversal triples of points in the Shilov boundary. This is done
by integrating the canonical Kähler form over geodesic triangles in the domain
and taking a limit to the boundary. We also extend to the infinite-dimensional
situation and define a Maslov map from transversal triples on an appropriate
Shilov boundary to the first homotopy group of the stabilizer of a base point in
the domain. A crucial identity is shown in the context of Jordan triple systems,
which gives a good algebraic framework for the infinite-dimensional case of such
generalized flag manifolds and their invariants. This represents joint work, partly
in progress, with J.-L. Clerc, K-H. Neeb, and W. Bertram.
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Analysis on the crown of a Riemannian symmetric space
Jacques Faraut

The crown of a Riemannian symmetric space X = G/K of non-compact type
is a domain D in its complexification XC = GC/KC, which has been intoduced by
Akhiezer and Gindikin [1990]. It is also called the Akhiezer-Gindikin domain. It is
interesting from various points of view: Riemannian geometry, complex geometry,
analysis. From the analytic viewpoint it has the following remarkable property: All
eigenfunctions of the invariant differential operators have a holomorphic extension
to the crown D, and the domain D is maximal for this property.

Consider the Cartan decomposition of g = Lie(G), g = k + p, and let a ⊂ p be
a Cartan subspace. Define

ω = {H ∈ a | ∀α ∈ ∆(g, a), |α(H)| <
π

2
}.

The crown can be described as

D = G exp iω · o (o = eKC).

On the other hand consider an Iwasawa decomposition X = NA · o, and define

Ξ =
⋂

k∈K

kNCAC · o.

Theorem
The crown D is equal to the connected component Ξ0 of Ξ which contains X .
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The inclusion D ⊂ Ξ0 has been proved by Krötz and Stanton for classical groups
G [2001], and by Huckleberry in general [2002]. The reverse inclusion Ξ0 ⊂ D has
been proved by Barchini [2003].

If the symmetric space X is Hermitian, then D = X × X̄ ([Huckleberry,2002],
[Burns-Halverscheid-Hind,2003]). Let Aut(D) be the group of all holomorphic
automorphisms of the crown of D. In all cases G ⊂ Aut(D). In case of equality
one says that D is rigid. Then D is either rigid or Hermitian ([Burns-Halverscheid-
Hind,2003]).

Corollary
Every eigenfunction of all invariant differential operators has a holomorphic

extension to the crown D, and D is maximal for this property.

Such a joint eigenfunction f has a Poisson integral representation over the
maximal boundary B of X :

f(x) =
∫

B

Pλ(x, b)dT (b) (λ ∈ a∗C),

where T is an analytic functional on B = K/M (M is the centralizer of A in K).
The Poisson kernel Pλ(x, b) is related to the Iwasawa decomposition as follows. If
x = n expH · o (n ∈ N , H ∈ a) one writes H = A(x). Then

Pλ(x, b) = e〈ρ−λ,A(k−1x)〉 (b = kM).

By [Clerc,1988],

e〈λ,A(x)〉 =
�∏

j=1

ψj(x)λj ,

where ψj is a holomorphic function on XC which does not vanish on NCAC · o.
Since the crown D is simply connected, if follows that the function x 
→ Pλ(x, b)
has a holomorphic extension to D.

On the other hand, for any point z0 on the boundary of the crown D, one can
find λ ∈ a∗

C
and b ∈ B such that the function z 
→ Pλ(z, b) has a singularity at z0.
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Krötz, B.; Stanton, R.J. (2001), Holomorphic extension of representations: (I)
Automorphic functions, Preprint.

Hardy spaces for the most continuous spectrum
Bernhard Krötz

We report on joint work with Simon Gindikin and Gestur Ólafsson (cf. [GKÓ02]).
Holomorphic extensions and boundary value maps have been valuable tools to

solve problems in representation theory and harmonic analysis on real symmetric
spaces. Two of the best known constructions are Hardy spaces with their boundary
value maps and Cauchy-Szegö-kernels, and Fock space constructions with their
corresponding Segal-Barmann transform. It is in this flavour that we establish a
correspondence between eigenfunctions on a Riemannian symmetric spaces X =
G/K and a non-compactly causal (NCC) symmetric spaces Y = G/H in this talk.
In particular we, via analytic continuation, relate a spherical function φλ on G/K
to a holomorphic H-invariant distribution on G/H .

Let us explain our results in more detail. On the geometric level we construct a
certain minimal G-invariant Stein domain ΞH ⊆ XC = GC/KC with the following
properties: The Riemannian symmetric space X is embedded into ΞH as a totally
real submanifold and the affine non-compactly causal space Y is isomorphic to the
distinguished (Shilov) boundary of ΞH .

The minimal tube ΞH is a subdomain of the complex crown Ξ ⊆ XC of X
– an object first introduced in [AG90] which became subject of intense study
over the last few years. A consequence is that all D(X)-eigenfunctions on X
extend holomorphically to ΞH [KS01b]. Another key fact is that D(X) � D(Y ).
Thus by taking limits on the boundary Y we obtain a realization of the D(X)-
eigenfunctions on X as D(Y )-eigenfunctions on Y . Conversely, eigenfunctions on
Y which holomorphically extend to ΞH yield by restriction eigenfunctions on X .

It seems to us that the above mentioned transition between eigenfunctions on
X and Y is most efficiently described using the techniques from representation
theory. To fix the notation let (π,H) denote an admissible Hilbert representation
of G with finite length. We write HK for the space of K-fixed vectors and (H−∞)H

for the space of H-fixed distribution vectors of π. Using the method of analytic
continuation of representations as developed in [KS01a] we establish a bijection

HK → (H−∞)H
hol, vK 
→ vH

where (H−∞)H
hol ⊆ (H−∞)H denotes the subspace characterized through the prop-

erty that associated matrix coefficients on Y extend holomorphically to ΞH .
We give an application of our theory towards the geometric realization of the

most-continuous spectrum L2(Y )mc of L2(Y ). First progress in this direction was
achieved in [GKÓ01]. There, for the cases where Ξ = ΞH , we defined a Hardy
space H2(Ξ) on Ξ and showed that there is an isometric boundary value mapping
realizing H2(Ξ) as a multiplicity one subspace of L2(Y )mc of full spectrum. It was
an open problem how to define Hardy spaces for general NCC symmetric spaces
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Y and to determine the Plancherel measure explicitely. We solve this problem
by giving a spectral definition of the Hardy space, i.e., we take the conjectured
Plancherel measure and define a Hilbert space of holomorphic functions H2(ΞH)
on ΞH . The identification of H2(ΞH) as a Hardy space then follows by establishing
an isometric boundary value mapping b : H2(ΞH) ↪→ L2(G/H)mc. In particular
we achieve a geometric realization of a multiplicity free subspace of L2(Y )mc in
holomorphic functions.
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[KS01a] Krötz, B., and R.J. Stanton, Holomorphic extension of representations:
(I) automorphic functions, Ann. Math., to appear.
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Structure of gl(∞)
Ivan Dimitrov

Let U and V be two (infinite dimensional) complex vector spaces with a non–
degenerate pairing 〈◦, ◦〉 : U × V → C. Consider the Lie algebra g := U ⊗ V .
When both U and V are countable dimensional, g is isomorphic to the Lie algebra
gl(∞) of finitary infinite matrices, see [M]. A maximal locally solvable subalgebra
of g is called a Borel subalgebra of g. In this talk we describe the Borel subalgebras
of g and discuss their relation with maximal toral subalgebras of g.

In order to describe the Borel subalgebras of g we need the notion of a generalized
flag in U introduced in [DP]. A chain F = {F ′

α, F ′′
α}α∈A of subspaces of U is

a generalized flag in U if F ′
α is the immediate predecessor of F ′′

α and U\{0} =
∪αF ′′

α\F ′
α. (Here we allow F ′

α = F ′′
β .) For any chain C of subspaces of U , there

is a canonical generalized flag fl(C) associated with C. The pairing between U
and V defines the closure operation on subspaces of U given by H̄ := H⊥⊥. This
operation was first introduced and studied by Mackey in his thesis, see also [M].
For any generalized flag F in U we define the closure F̄ of F as fl(F⊥⊥), where
F⊥⊥ denotes the chain in U consisting of the closures of all subspaces in F . F is
a closed generalized flag in U if F̄ = F , and F is a strongly closed generalized flag
in U if F⊥⊥ = F . Clearly, any strongly closed generalized flag in U is closed. F is
closed if and only if F̄ ′′

α = F ′′
α and F̄ ′

α equals either F ′
α or F ′′

α . For any generalized
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flag F in U the subalgebra of g which stabilizes F is StF =
∑

α F ′′
α ⊗ (F ′

α)⊥. The
following theorem describes the Borel subalgebras of g.

Theorem 1. The map F 
→ StF establishes a bijection between maximal closed
generalized flags in U and Borel subalgebras of g.

This theorem provides a rather explicit description of all Borel subalgebras of g.
The results are most interesting in the case when both U and V are countable
dimensional, i.e. g � gl(∞). In this case we can represent g as the direct limit
lim−→ gn, where gn � gl(n). It is clear that choosing a direct system of Borel subal-
gebras bn of gn, the limit subalgebra b := lim−→ bn is necessarily a Borel subalgebra
of g. The converse, however, is not true. In fact we have the following theorem.

Theorem 2. A Borel algebra b of g is the direct limit of Borel algebras bn of gn

for some (but not every) direct system g = lim−→ gn, such that gn � gl(n), if and
only if the maximal closed generalized flags corresponding to b both in U and in V
are strongly closed.

Finally, we consider the relationship between maximal toral subalgebras of g and
Borel subalgebras of g. We prove that, for any b ⊂ g, there exists a maximal
toral subalgebra t ⊂ b which is the compliment (as a vector space) of the locally
nilpotent radial of b, i.e. b = t ⊕ n, where n is the locally nilpotent radical of b.
Furthermore, we establish another criterion for b = lim−→ bn as in Theorem 2. To
state it we need to recall the definition of a splitting maximal toral subalgebra of g.
A maximal toral subalgebra t of g is called splitting if it acts locally finitely on g,
equivalently, if g admits a root decomposition with respect to t. (For more details
on maximal toral subalgebras of g see [NP].) We then prove that the conditions of
Theorem 2 are equivalent to the requirement that b contains a splitting maximal
toral subalgebra of g.

The talk is based on a joint work with Ivan Penkov.
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Dolbeault cohomology of a loop space
László Lempert

(joint work with Ning Zhang (Riverside))

Loop spaces LM of compact complex manifolds M promise to have rich analytic
cohomology theories, and it is expected that sheaf and Dolbeault cohomology
groups of LM will shed new light on the complex geometry and analysis of M
itself. This idea first occurs in [W], in the context of the infinite dimensional Dirac
operator, and then in [HBJ] that touches upon Dolbeault groups of loop spaces; but
in all this both works stay heuristic. Our goal here is to present rigorous results
concerning the H0,1 Dolbeault group of the first interesting loop space, that of
the Riemann sphere P1. One noteworthy fact that emerges from this research is
that analytic cohomology of loop spaces, unlike topological cohomology, is very
sensitive to the regularity of loops admitted in the space. Another concerns local
functionals, a notion from theoretical physics. Roughly, if M is a manifold, a local
functional on a space of loops x : S1 → M is one of form

f(x) =
∫

S1
Φ(t, x(t), ẋ(t), ẍ(t), . . .)dt,

where Φ is a function on S1× an appropriate jet bundle of M . It turns out
that all cohomology classes in H0,1(LP1) are given by local functionals. Nonlocal
cohomology classes exist only perturbatively, i.e., in a neighborhood of constant
loops in LP1; but none of them extends to the whole of LP1.

We fix a smoothness class Ck, k = 1, 2, . . . ,∞, or Sobolev W k,p, k = 1, 2, . . . , 1 ≤
p < ∞. If M is a finite dimensional complex manifold, consider the space
LM = LkM resp. Lk,pM of maps S1 = R/Z → M of the given regularity. These
spaces are complex manifolds modeled on a Banach space, except for L∞M , which
is modeled on a Fréchet space. We shall focus on the loop space(s) LP1. As on any
complex manifold, one can consider the space C∞

r,q(LP1) of smooth (r, q) forms,
the operators ∂̄ : C∞

r,q(LP1) → C∞
r,q+1(LP1), and the associated Dolbeault groups

Hr,q(LP1); for all this, see e.g. [L1,2]. On the other hand, let F be the space of
holomorphic functions F : C × LC → C that have the following properties:

(1) F (ζ/λ, λ2y) = O(λ2), as C � λ → 0;
(2) F (ζ, x + y) = F (ζ, x) + F (ζ, y), if supp x ∩ supp y = ∅;
(3) F (ζ, y + const) = F (ζ, y).

As we shall see, the additivity property (2) implies F (ζ, y) is local in y.

Theorem 1. H0,1(LP1) ≈ C ⊕ F.

In the case of L∞P1, examples of F ∈ F are

(1) F (ζ, y) = ζν

〈
Φ,

m∏
j=0

y(dj)

〉
,
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where Φ is a distribution on S1, y(d) denotes d’th derivative, each dj ≥ d0 = 1, and
0 ≤ ν ≤ 2m. A general function in F can be approximated by linear combinations
of functions of form (1).

This brings us to the issue of topology on H0,1(LP1) and on F. On any, possi-
bly infinite dimensional complex manifold X the space C∞

r,q(X) can be given the
compact–C∞ topology as follows. First, the compact–open topology on C∞

0,0(X) =
C∞(X) is generated by C0 seminorms ‖f‖K = supK |f | for all K ⊂ X compact.
The family of Cν seminorms is defined inductively: each Cν−1 seminorm ‖ ‖
on C∞(TX) induces a Cν seminorm ‖f‖′ = ‖df‖ on C∞(X). The collection of
all Cν seminorms, ν = 0, 1, . . . , defines the compact–C∞ topology on C∞(X).
The compact–C∞ topology on a general C∞

r,q(X) is induced by the embedding

C∞
r,q(X) ⊂ C∞(

r+q⊕ TX). With this topology C∞
r,q(X) is a separated locally con-

vex vector space, complete if X is first countable. The quotient space Hr,q(X)
inherits a locally convex topology, not necessarily separated. We note that on the
subspace O(X) ⊂ C∞(X) of holomorphic functions the compact–C∞ topology
restricts to the compact–open topology. The isomorphism in Theorem 1 is topo-
logical; it is also equivariant with respect to the obvious actions of the group of
Ck diffeomorphisms of S1.

There is another group, the group G ≈ PSL(2, C) of holomorphic automor-
phisms of P1, whose holomorphic action on LP1 (by post–composition) and on
H0,1(LP1) will be of greater concern to us. Theorems 2, 3, 4 below will describe
the structure of H0,1(LP1) as a G–module. Recall that any irreducible (always
holomorphic) G–module is isomorphic, for some n = 0, 1, . . ., to the space Kn of
holomorphic differentials ψ(ζ)(dζ)−n of order −n on P1; here ψ is a polynomial,
deg ψ ≤ 2n, and G acts by pullback. The n’th isotypical subspace of a G–module
V is the sum of all irreducible submodules isomorphic to Kn. In particular, the
0’th isotypical subspace is the space V G of fixed vectors.

Theorem 2. If n ≥ 1, the n’th isotypical subspace of H0,1(L∞P1) is isomorphic
to the space Fn spanned by functions of form (0.1), with m = n.

The fixed subspace of H0,1(LP1) can be described more explicitly, for any loop
space:

Theorem 3. The space H0,1(LP1)G is isomorphic to Ck−1(S1)∗ resp. W k−1,p(S1)∗,
if the dual spaces are endowed with the compact–open topology.

The isomorphisms in Theorem 3 are not Diff S1 equivariant. To remedy this,
one is led to introduce the spaces Cl

r(S
1) resp. W l,p

r (S1) of differentials y(t)(dt)r

of order r on S1, of the corresponding regularity; Lp
r = W 0,p

r . Then H0,1(LP1)G

will be Diff S1 equivariantly isomorphic to Ck−1
1 (S1)∗, resp. W k−1,p

1 (S1)∗.
For low regularity loop spaces one can very concretely represent all of H0,1(LP1):

Theorem 4. (a) If 1 ≤ p < 2, all of H0,1(L1,pP1) is fixed by G, hence it is
isomorphic to Lp′

(S1), with p′ = p/(p − 1).
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(b) If 1 ≤ p < ∞ then H0,1(L1,pP1) is isomorphic to⊕
0≤n≤p−1

Kn ⊗ L
p/(n+1)
n+1 (S1)∗ ≈

⊕
0≤n≤p−1

Kn ⊗ Lpn

−n(S1), pn =
p

p − 1 − n
,

and so it is the sum of its first [p] isotypical subspaces. Indeed, the isomorphisms
above are G × Diff S1 equivariant, G, resp. Diff S1 acting on one of the factors
Kn, Lq

r naturally, and trivially on the other.

Again, the dual spaces are endowed with the compact–open topology.

To finish this write up, here is a list of relevant literature:
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Infinite-Dimensional Homogeneous Spaces and Operator Ideals
Daniel Beltiţă

The existence of invariant Kähler structures on homogeneous spaces of certain
Lie groups turns out to be a phenomenon that is not confined to finite dimensions.
Our research concerns this phenomenon in the case of some classes of infinite-
dimensional Lie groups associated with ideals of compact operators on Hilbert
spaces.
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More specifically, we have introduced in the paper [Be03] a notion of admissible
pair of operator ideals (I0, I1) and have used it to construct Kähler homogeneous
spaces of Banach-Lie groups naturally associated with such pairs. One special
instance of admissible pair is a pair of Schatten ideals (Sp, Sq), where 2 ≤ p < ∞
and 1

p + 1
q = 1. More generally, certain dual pairs of Lorentz ideals also turn out

to be admissible.
Here is the precise definition of an admissible pair:

Definition. Let H be a complex Hilbert space and B(H) the Banach algebra of
all bounded linear operators on H. An admissible pair of ideals of B(H) is a pair
(I0, I1) of two-sided ideals of B(H) satisfying the following conditions:

(a) The ideal I0 is equipped with a norm ‖ · ‖I0 making it into a reflexive
separable Banach space satisfying

‖T ‖ ≤ ‖T ‖I0 = ‖T ∗‖I0 and ‖ATB‖I0 ≤ ‖A‖ · ‖T ‖I0 · ‖B‖
whenever A, B ∈ B(H) and T ∈ I0.

(b) We have I1 · I0 ⊆ S1(H) and the bilinear functional

I1 × I0 → C, (K, T ) 
→ Trace (KT )

induces a vector space isomorphism of I1 onto the topological dual of the
Banach space (I0, ‖ · ‖I0), where S1(H) denotes the trace class on H.

(c) We have I1 ⊆ I0.

Using the notion of admissible pair, one can construct infinite-dimensional
Kähler manifolds as described in the following theorem. In this statement, for
any operator ideal I we denote by uI = {T ∈ I | T ∗ = −T } the Lie algebra of
skew-adjoint operators in I, and we also denote by UI = {T ∈ idH + I | T ∗T =
TT ∗ = idH} the group of all unitary operators in idH + I.

Theorem. Let (I0, I1) be an admissible pair of ideals of B(H) and A a self-adjoint
element of B(H). Consider the following objects:

• UI0,I1(A) = {T ∈ UI0 | T ∗AT ∈ A + I1} = {T ∈ UI0 | [A, T ] ∈ I1},
• HI0,A = {T ∈ UI0 | T ∗AT = A},
• uI0,I1(A) = {T ∈ uI0 | [A, T ] ∈ I1},
• ω : uI0,I1(A) × uI0,I1(A) → R, ω(T1, T2) = Trace (i[A, T1]T2).

Then the following assertions hold.

(a) The group UI0,I1(A) has a natural structure of connected real Banach-Lie
group with the Lie algebra uI0,I1(A), and the bilinear functional ω is a con-
tinuous 2-cocycle of the real Banach-Lie algebra uI0,I1(A). Furthermore,
HI0,A is a Banach-Lie subgroup of UI0,I1(A) whose Lie algebra equals
{T ∈ uI0,I1(A) | ω(T, ·) ≡ 0}.

(b) The 2-cocycle ω induces a UI0,I1(A)-invariant weakly symplectic form Ω
on the homogeneous space UI0,I1(A)/HI0,A.
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(c) If the spectrum of the operator A is finite, then there exists a UI0,I1(A)-
invariant complex structure making the weakly symplectic homogeneous
space
(UI0,I1(A)/HI0,A, Ω) into a weakly Kähler homogeneous space.

We now outline the method used in [Be03] to construct the aforementioned
Kähler structures. The main point is that we actually study Banach-Lie groups
associated with admissible pairs and with certain n-tuples of self-adjoint operators.
We use the joint functional calculus of those n-tuples (which is a special instance of
the Weyl functional calculus) to construct Kähler polarizations in the complexified
Lie algebras of the Lie groups under consideration. In fact, the polarizations arise
as spectral subspaces corresponding to certain subsets of the joint spectrum of
the corresponding n-tuple. A remarkable point of this approach is that it actually
holds in a quite general setting. E.g., besides the homogeneous spaces of groups
associated with operator ideals, that approach leads to complex structures on the
flag manifolds associated with arbitrary associative unital Banach algebras.

We mention that certain special instances of the complex homogeneous spaces
constructed by the above described method were already shown to play a signifi-
cant role in representation theory of certain Hilbert-Lie groups associated with the
Hilbert-Schmidt ideal (see e.g., [Bo80], [Ca85], [Ne00], [Ne02]). From this point
of view, it is interesting to investigate the role played by the new classes of com-
plex homogeneous spaces in the representation theory of more general Banach-Lie
groups. On the other hand, it would be important to understand whether the
specific properties of the operator ideals correspond to any particular phenomena
in the complex geometry of the corresponding homogeneous spaces (compare also
[Up85]).
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Realizing Lie Groups as Automorphism Groups of Complex Manifolds
Jörg Winkelmann

Let X be a hyperbolic (in the sense of Kobayashi) complex connected man-
ifold. Then the group of all holomorphic automorphisms of X (endowed with
the compact-open topology) is a finite-dimensional real Lie group with countably
many connected components. This raises the question whether conversely every
such Lie group can be realized as a the full automorphism group of a hyperbolic
complex manifold.

We prove that this is true if the group is connected or discrete.

Theorem 1. Let G be a (finite-dimensional) real connected Lie group or a count-
able discrete group.

Then there exists a Stein hyperbolic connected complex manifold X such that G
is isomorphic to the group of all automorphisms (i.e. biholomorphic selfmaps) of
X.

The first step in this direction was the result for compact Lie groups. Saerens
and Zame ([5]), and independently Bedford and Dadok ([1]) proved that, given
a compact real Lie group K there always exists a strictly pseudoconvex bounded
domain D ⊂ Cn such that Aut(D) � K. By the theorem of Wong-Rosay (which
states that every strictly pseudoconvex bounded domain with non-compact auto-
morphism group is isomorphic to the ball) it is clear that an arbitrary non-compact
real Lie group can not be realized as the automorphism of a strictly pseudoconvex
bounded domain in Cn. However, as proved in [8], for any connected real Lie group
G there does exist a complex manifold X on which G acts effectively. Moreover, X
can be chosen in such a way that it enjoys several of the key properties of strictly
pseudoconvex bounded domains. Namely, X can be chosen such that it is both
Stein and hyperbolic in the sense of Kobayashi.

In [10] we verified that one can rule out additional automorphisms, i.e. it is
possible to achieve Aut(X) � G. The precise result is the following:

Theorem 2. Let G be a connected real Lie group. Then there exists a Stein, com-
plete hyperbolic complex manifold X on which G acts effectively, freely, properly
and with totally real orbits such that AutO(X) � G.

The idea is to follow the strategy of Saerens and Zame: Construct the desired
manifold as an open subset of a larger Stein manifold in such a way that the given
group acts on this open subset. Ensure that every automorphism of this open
subset can be extended to the boundary, then modify the boundary in such a way
that this CR-hypersurface simply has no automorphisms other than those from
the given group. The latter can be done using the fact that a CR-hypersurface
(unlike a complex manifold) does have local invariants. A principal difficulty in
this approach is to obtain an extension of automorphisms of the open subset to the
boundary. If one is concerned only with compact Lie groups, then one can work
with a strictly pseudoconvex bounded domain D. For such a domain it is evident
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that for every automorphism φ of D there exists a sequence xn ∈ D such that both
xn and φ(xn) converge to a strictly pseudoconvex point in the boundary. This is
the starting point for the extension of the automorphism φ to the boundary ∂D.

Now, our goal is to obtain a result for arbitrary connected Lie groups, which
are not necessarily compact.

This lack of compactness assumption creates some difficulties.
There are two main problems: First, an arbitrary non-compact Lie group is

not necessarily linear. For instance, the universal cover of SL2(R) cannot be
embedded into a linear group. Second, as already mentioned, the theorem of
Wong-Rosay implies that in general a non-compact Lie group can not be realized
as the full automorphism group of a strictly pseudoconvex bounded domain with
smooth boundary. Thus we have to work with domains which are not bounded or
where the boundary is not everywhere smooth. The trouble is that it is therefore
no longer clear that for every automorphism φ there exists a sequence xn in the
domain such that both xn and φ(xn) converge to a nice point in the boundary.

In [7] a result similar to ours is claimed for certain Lie groups with a rather
sketchy outline of a possible proof.

The first of the aforementioned two problems is dealt with by assuming the
group G to be linear while the second problem is simply ignored. Since the second
problem is in fact a serious obstacle, the proof sketched in [7] can not be regarded
as complete.

We proceed in the following way: To deal with the first problem, we note that
every Lie algebra is linear by the theorem of Ado. Therefore, in a certain sense,
every Lie group is linear up to coverings and the first problem can be attacked by
working carefully with coverings.

For the second problem, we use bounded domains whose boundaries are smooth
outside an exceptional set E which is small in a certain sense. Exploiting this
smallness we prove that for every automorphism φ there must exist a sequence xn

such that both xn and φ(xn) converge to a boundary point outside the “bad set”
E.

Once this has been verified, we can prove (using arguments similar to those used
in[5], [1]) that φ extends as holomorphic map near lim(xn), and use the theory of
Chern-Moser-invariants to deduce that φ was in fact given by left multiplication
with an element of G.

For discrete groups the following statement is proved in [9]:

Theorem 3. Let G be a countable discrete group. Then there exists a non-compact
Riemann surface X, hyperbolic in the sense of Kobayashi, such that G is isomor-
phic to the automorphism group of X.
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Principal Series Representations and Dirac Operators
Roger Zierau

Kostant defined a remarkable invariant differential operator in [7] which he called
the cubic Dirac operator. Given a connected semisimple Lie group, a closed re-
ductive subgroup and a homogeneous vector bundle E → G/H of finite rank, the
cubic Dirac operator is a G-invariant differential operator on sections:

(1) D : C∞(G/H, E ⊗ S) → C∞(G/H, E ⊗ S).

Here S is the spin representation of h. In this lecture we discuss joint work with
Salah Mehdi in which the kernel of D is studied when H is noncompact and
rank(g) = rank(h). The main result is an integral formula for certain solutions of
Df = 0. In particular, the kernel is nonzero and certain interesting representations
occur.

The cubic Dirac operator is defined as follows. There is an orthogonal decompo-
sition g = h⊕ q with respect to the Killing form of g (however, we need to assume
the Killing form on h is nondegenerate). Then q is equipped with a nondegener-
ate (possibly indefinite) symmetric form. Thus, one may build a corresponding
Clifford algebra and spin representation of so(q). Since ad : h → so(q) we obtain
the representation σ ◦ ad of h, which we call the spin representation of h. In (1)
we require only that E is a representation of h so that E ⊗ S integrates to a rep-
resentation of H . Then E ⊗ S → G/H is the corresponding homogeneous vector
bundle. Now choose a basis {Xj} of q so that 〈Xj , Xk〉q = εjδjk, with εj = ±1.
Let c ∈ Cl(q) correspond to the alternating 3-form 〈X , [Y, Z]〉q on q. The cubic
Dirac operator of (1) is defined by

(2) D =
∑

j

εjr(Xj) ⊗ 1 ⊗ γ(Xj) + 1 ⊗ 1 ⊗ γ(c).

Here γ denotes Clifford multiplication and r(X) is the right action of X ∈ g on
functions.



314 Oberwolfach Report 6/2004

There are several well-known cases where such an operator has been studied.
Most notably, when H is a maximal compact subgroup of G, then c = 0 and D
is the ‘usual’ Dirac operator arising from an invariant connection. In this case,
the kernel of D (on L2-sections) is a relative discrete series representation and all
relative discrete series representations of G occur this way. See [11], [1] and [12].
Another case is when G is compact. Then, in [8] and [9] the kernel of D is seen to
be an irreducible G-representation. This is a generalization of the Bott-Borel-Weil
Theorem. A remarkable property of D which relates D to infinitesimal character
is contained in [6].

Now let us turn to a noncompact group G and noncompact reductive subgroup
H . Let E and S be as above. Our goal is to study the kernel of D and our
approach is to find a G-intertwining map from a principal series representation of
G into Ker(D).

We briefly describe the construction. Let θ be a Cartan involution of g which
stabilizes h and let g = k + s be the corresponding Cartan decomposition of g.
The principal series consists of representations induced from representations of
real parabolic subgroups of G. Our subgroup H determines a parabolic subgroup
as follows. Choose a maximal abelian subalgebra a in h ∩ s. Then a determines a
parabolic P = MAN (up to a choice of N). Note that it is important here that
gC and hC have the same ranks. It follows that P ∩ H = (M ∩ H)A(N ∩ H) is a
minimal parabolic subgroup of H . In particular H ∩ K · eP = H · eP is a closed
H-orbit in G/P .

Lemma 3. Each relative discrete series representation of M occurs in the kernel
of

DM/M∩H : C∞(M/M ∩ H,F ⊗ S) → C∞(M/M ∩ H,F ⊗ S)
for some homogeneous bundle F → M/M ∩ H. Note that, with our choice of P ,
M ∩ H is compact.

This Lemma is of course related to the results on the discrete series mentioned
above. However, here we are not concerned with the L2 statement; by relative
discrete series here we mean a representation infinitesimally equivalent to a relative
discrete series representation.

For a representation W of P we write C∞(G/P,W) for the induced represen-
tation (the smooth principal series representation).

Lemma 4. For any smooth representation W of P , given some nonzero t ∈
HomP∩H(W ⊗ Cρ+2ρh

, E ⊗ S) there is a nonzero G-intertwining map

Pt : C∞(G/P,W ⊗ Cρh
) → C∞(G/H, E ⊗ S)

(Ptφ)(g) =
∫

H∩K

� · (φ(g�)) d�.

Therefore, we need to find a W and t so that the image of Pt lies in the kernel
of D. This is accomplished by finding a relative discrete series representation W
of M so that, when realizing W as Ker(DM/M∩H) as in Lemma 3, t is evaluation
at e ∈ M and the following holds.
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Theorem 5. When the highest weight µ of E is sufficiently regular, the image of
Pt lies in Ker(D).

Remark 6. Note the analogy between our construction and that of the Poisson
integral. The Poisson integral is a formula giving harmonic functions on the unit
disk in C. In fact, the generalization of this is the Poisson transform (see, for
example, [5, Ch. II, Section 4.1]) producing joint eigenfunctions of the G-invariant
differential operators on the riemannian symmetric space G/K. One notes that
the Poisson transform is an integral over the boundary G/P of G/K and the
formula comes from an analogue of Lemma 4 with S and E replaced by the trivial
representation. In our setting, H ∩ K · eP = H · eP ⊂ G/P . We may therefore
say that integration over ‘a piece of the boundary’ of G/H gives solutions to the
Dirac equation Df = 0.

Remark 7. The results discussed here may be viewed as a generalization of [3], [2]
and [4] in the following sense. If G/H is a measurable open orbit in a flag variety
(i.e., an elliptic coadjoint orbit), then D = ∂ + ∂

∗
. In this case, the operator

initially studied in [3] coincides with the intertwining operator Pt above.

Remark 8. The principal series representations are fairly well understood. Thus,
certain representatins occurring in Ker(D) can be identified via the Langlands
classification. Furthermore, the growth of harmonic spinors of the form Ptφ can
be studied by considering properties of φ and using techniques of Harish-Chandra.
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Theta lifting of unitary lowest weight representations and their
associated cycles
Kyo Nishiyama

We consider a reductive dual pair (G, G′) in the stable range with G′ the smaller
member and of Hermitian symmetric type. Namely, the following three kinds of
dual pairs will be treated.

the pair (G, G′) stable range condition

Case R : (O(p, q), Sp(2n, R)) 2n < min(p, q)

Case C : (U(p, q), U(m, n)) m + n ≤ min(p, q)

Case H : (Sp(p, q), O∗(2n)) n ≤ min(p, q)

We study the theta lifting of a unitary lowest weight representation π′ of G′, which
may be singular. The main result is an explicit determination of the associated
cycle of the lifted representation θ(π′). More precisely, we prove that

θ(AC(π′)) = AC(θ(π′)),

where θ(associated cycle) means the theta lifting of nilpotent orbits in the stable
range. We also obtained a K-type formula for θ(π′) in terms of the branching
coefficient of classical groups; the associated nilpotent orbit is realized as a quotient
of a minimal nilpotent orbit of a lager group. The K-type formula is not new
though, since θ(π′) is a derived functor module. However, our K-type formula is
not a variant of Blattner’s one, and we believe ours has some advantage.

Also, we have given a brief survey on the associated cycles of the unitary low-
est weight representations in the terminology of classical invariant theory ([1]).
This idea is crucial for the investigation of the theta lifting of the lowest weight
representations explained above.

The talk is based on the joint research ([2], [3], [4]) with Chen-bo Zhu (National
University of Singapore) and Hiroyuki Ochiai (Nagoya University).
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Quantum Chaos and Cohomology of Arithmetic Groups
Joachim Hilgert

(joint work with A. Deitmar)

Our work [1] is motivated by the following problem: given a classical system
(symplectic manifold plus Hamiltonian function) and a quantization of this sys-
tem (Hilbert space plus a self adjoint operator), can one detect from the quantum
system whether the classical system shows chaotic behavior (e.g. ergodic or hy-
perbolic behavior)? For the modular surface and its geodesic flow (so that a
suitable quantization is given by the corresponding L2-space together with the
Laplace-Beltrami operator ∆) Lewis and Zagier [2] have constructed a natural
correspondence between Maass cusp forms (which are eigenfunctions of ∆) and
holomorphic functions ψ : C \R− → C satisfying a three term functional equation
(called the Lewis equation) which has a natural interpretation in terms of the
classical system. So far one has this correspondence only for this surfaces, but
it is expected that it can be extended to coverings or even more general locally
symmetric spaces of finite volume.

The Lewis equation admits a cohomological interpretation which suggests a
starting point for generalizations. On the other hand Maass cusp forms can be
defined in terms of representation theory and correspond to Γ-invariant vectors in
principal series representations πs of PSL(2, R), which leads to an interpretation
of the dimension of the space of Maass cusp forms as multiplicities NΓ(πs) of πs

in L2(Γ\G).
Our main theorem is the following multiplicity formula for split semisimple

Lie groups with arithmetic torsion free subgroups: If π is any irreducible unitary
principal series representation and r, d the rank, respectively the dimension of the
non-compact Riemannian symmetric space associated with G, then

NΓ(π) =
∑
j≥0

(−1)j+r

(
j
r

)
dimHN−j

cusp (Γ, πω).

In order to prove this formula establish a functorial isomorphism

Hj(g, KF ⊗̂V max → Extj
g,K(Ṽ , F )
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for Harish-Chandra modules V (then V max is the maximal globalization and Ṽ is
the dual Harisch-Chandra module) and smooth G-representations F , as well as a
Poincaré duality

Hj
cusp(Γ, V max) ∼= HN−j

cusp (Γ, Ṽ min),

where Ṽ min is the minimal globalization of Ṽ . As a corollary we derive
Theorem: Let Γ be a Fuchsian group of finite covolume and s ∈ R. Then

NΓ(πs) = dimH1
cusp(Γ, πω

s ), where πω
s is the G-module of analytic vectors in the

representation space of πs.
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Global deformations of the Virasoro algebra
Alice Fialowski

This talk is based on a joint work with Martin Schlichenmaier (see [4]).
Introduction. Deformation is one of the tools to study a specific object, by

deforming it into some families of “similar” structure objects. Another question
related to deformation: Can we equip the set of nonequivalent deformations with
the structure of a topological or maybe geometric space? In other words, does
there exist a moduli space for these structures? If so, then for a fixed object its
deformations should reflect the local structure of the moduli space at the point
corresponding to this object.

There is a lot of confusion in the literature in the notion of a deformation.
Several different (inequivalent) approaches exist. May aim now is to clarify the
difference between deformations of geometric origin and so-called formal deforma-
tions. Formal deformation theory has the advantage of using cohomology. It is
also complete in the sense that under some natural cohomology assumptions there
exists a versal formal deformation which induces all other deformations. Formal
deformations are deformations with a complete local algebra base. A deformation
with a commutative (non-local) algebra base gives a much richer picture of defor-
mation families, depending on the augmentation of the base algebra. If we identify
the base of deformation – which is a commutative algebra of functions – with a
smooth manifold, an augmentation corresponds to choosing a point on the mani-
fold. So choosing different points should in general lead to different deformation
situations. I will show in the case of the Witt and Virasoro algebra that – in the
case of infinite dimensional Lie algebras – there is no tight relation between global
formal deformations.
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1. Deformations. Let L be a Lie algebra.
i) Intuitively: One-parameter family Lt of Lie algebras with bracket µt = µ0 +

tφ1 + t2φ2 + . . . .
ii) Global deformations: Consider a deformation Lt not as a family of Lie

algebras, but as a Lie algebra over the algebra K[[t]]. Call it the base of the
deformation. The natural generalization is to allow more parameters, or to take
in general a commutative algebra A over K with identity as base of a deformation.
Take such an A over K of char 0 with an augmentation ε : A → K and m = Ker ε
maximal ideal.

Definition. A global deformation λ of L with base (A, m) is a Lie A-algebra
structure on A⊗KL with [ , ]λ such that ε ⊗ id : A ⊗ L → K ⊗ L = L is a Lie
algebra homomorphism.

A deformation is called trivial if A⊗KL carries the trivially extended Lie struc-
ture, i.e. [1 ⊗ x, 1 ⊗ y]λ = 1 ⊗ [x, y]. Two deformations of a Lie algebra L with
the same base A are called equivalent if there exists a Lie algebra isomorphism be-
tween the two copies of A⊗L with the two Lie algebra structures, compatible with
ε ⊗ id. We say that the deformation is local if A is a local K-algebra with unique
maximal ideal mA = Ker ε. In case that in addition, m2

A > 0, the deformation is
called infinitesimal.

iii) We call a deformation formal, if its base is a complete local algebra (with a
unique maximal ideal) (see [1]).

Proposition (see [3]). If dim H2(L,L) < ∞, there exists a universal infinitesimal
deformation ηL of L with base B = K ⊕ H2(L,L)′.

This means that for any infinitesimal deformation λ of the Lie algebra L with
finite-dimensional (local) algebra base A there exists a unique homomorphism
φ : K ⊕ H2(L,L)′ → A such that λ is equivalent to the push-out φ∗ηL.

Definition ([1]). A formal deformation η of L parametrized by a complete local
algebra B is called versal if for any deformation λ, parametrized by (A, mA), there
exists f : B → A morphism such that the push-out

1) f∗η is equivalent to λ.
2) If A satisfies mA

2 = 0, then f is unique.

Theorem. Assume H2(L,L) is finite dimensional.
a) ([1]) There exists a versal formal deformation of L.
b) ([3]) The base of the versal deformation is formally embedded into H2(L,L),

i.e. it can be described in H2(L,L) by a finite system of formal equation.

Corollary. H2(L,L) = {0} implies that L is formally rigid.

Theorem ([2]). The Witt and Virasoro algebra is formally rigid.

2. Krichever–Novikov algebras. They are generalizations of the Virasoro
and all its related algebras. Let M be a compact Riemann surface of genus g,
or a smooth projective curve over C. Let I = {P} and O = {Q} be distinct
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points (“marked points”) on the curve. Denote A = I ∪ O as a set. Denote by
L the Lie algebra consisting of those meromorphic sections of the holomorphic
tangent line bundle which are holomorphic outside of A, equipped with the Lie
bracket of vector field. Call them Krichever–Novikov algebras. For the Riemann
sphere (g = 0) with quasi-global coordinate z, I = {0}, O = {∞}, the introduced
algebra is the Witt algebra. The Witt and Virasoro algebras are graded, but these
Krichever–Novikov algebras are only almost graded, as was observed by Krichever–
Novikov in the two-point case [5] and generalized by Schlichenmaier [6].

We consider the genus one case, i.e., the case of one-dimensional complex tori,
or, equivalently the elliptic curve case. Consider now two marked points. One
marking we always put to ∞ = (0 : 1 : 0), and the other one to the affine
coordinate (e, 0). Set

B := {(e1, e2, e3) ∈ C
3 | e1 + e2 + e3 = 0, ei �= ej for i �= j}.

In B × P
2 we consider the family of elliptic curves E over B defined via Y 2Z =

4(X − e1Z)(X − e2Z)(X − e3Z). Consider the complex lines in C2:

Ds := {(e1, e2) ∈ C
2 | e2 = s · e1}, s ∈ C, D∞ := {(0, e2) ∈ C

2}.
Then B is isomorphic to C2 \ (D1 ∪ D− 1

2
∪ D−2).

Theorem ([7]). For any elliptic curve E(e1,e2) over (e1, e2) ∈ C2 \ (D1 ∪D−1/2 ∪
D−2) the Lie algebra L(e1,e2) of vector fields on Ee1,e2) has a basis {Vn, n ∈ Z}
such that the Lie algebra structure is given as

(∗) [Vn, Vm] =




(m − n)Vn+m, n, m odd,

(m − n)(Vn+m + 3e1Vn+m−2

+(e1 − e2)(e1 − e3)Vn+m−4), n, m even,

(m − n)Vn+m + (m − n − 1)3e1Vn+m−2

+(m − n − 2)(e1 − e2)(e1 − e3)Vn+m−4, n odd, m even.

These algebras make sense also for the points (e1, e2) ∈ D1 ∪ D− 1
2
∪ D−2.

Altogether this defines a 2-dimensional family of Lie algebras parametrized over
C2. In particular, for (e1, e2) = 0 we get the Witt algebra.

Now consider the family of algebras obtained by taking as base variety the line
Ds (for an s). We get that for fixed s in all cases the algebras will be isomorphic
above every point in Ds as long as we are not above (0, 0).

Proposition. For (e1, e2) �= (0, 0) the algebras L(e1,e2) are not isomorphic to W.

In particular, we obtain a family of algebras over the base Ds, which is always
the affine line. In this family, the algebra over the point (0, 0) is the Witt algebra
and the isomorphy type above all other points will be the same but different from
this special Witt element. We obtain the following

Theorem. For every s ∈ C ∪ {∞} the families of Lie algebras defined by (∗)
define global deformations W(s)

t of W over the affine line C[t]. Here t corresponds
to the parameter e1 and e2 respectively. The Lie algebra over t = 0 corresponds
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always to the Witt algebra, the algebras above t �= 0 belong (if s is fixed) to the
same isomorphy class, but are not isomorphic to W.

Remark. It is easy to incorporate a central term defined by a local cocycle and
easy to show that the centrally extended algebras have the same properties.
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Direct limits of Lie groups
Helge Glöckner

1. Existing methods. Let G1 ⊆ G2 ⊆ · · · be an ascending sequence of finite-
dimensional real Lie groups, such that the inclusion maps are smooth homomor-
phisms. Then G :=

⋃
n∈N

Gn is a group in a natural way, and it becomes a topolog-
ical group when equipped with the final topology with respect to the inclusion maps
Gn → G, the so-called DL-topology ([1], [11]). Provided certain technical condi-
tions are satisfied (ensuring in particular that expG := lim−→ expGn

: lim−→ L(Gn) →
lim−→ Gn = G is a local homeomorphism at 0), the map expG and its translates can
be used as charts which make G a (usually infinite-dimensional) Lie group (see [9]
and subsequent work by the same authors). It is also known that every Lie subal-
gebra of gl∞(R) := lim−→ gln(R) integrates to a subgroup of GL∞(R) := lim−→ GLn(R)
[6]; this facilitates an alternative construction of a Lie group structure on various
direct limits of linear Lie groups. However, neither of these methods is general
enough to tackle arbitrary direct limits of Lie groups. In particular, examples
show that expG need not be injective on any 0-neighbourhood [1], whence a gen-
eral construction of a Lie group structure on G =

⋃
n Gn cannot make use of expG.

2. A new construction principle. In [1], a Lie group structure on G =
⋃

n Gn

was constructed in the case where the inclusion maps are embeddings (strict direct
systems). Later, the strictness condition could be removed [2]. In [2], direct limits
of Lie groups are discussed as special cases of direct limits of direct sequences
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M1 ⊆ M2 ⊆ · · · of finite-dimensional smooth manifolds and injective immersions.
To make M :=

⋃
n Mn a smooth manifold, the idea is to start with a chart φ1 of

some Mn (say M1) and then to use tubular neighbourhoods to extend φn already
defined (or its restriction to a slightly smaller open set) to a chart of Mn+1. Then
lim−→ φn is a chart for M . It can be shown that M is smoothly paracompact [2].
Furthermore (see [2]), the direct limit groups G are regular Lie groups in the sense
of convenient differential calculus [6] (this is easy) and also regular Lie groups in
Milnor’s sense [8] (this is much harder to prove). If all manifolds (or Lie groups)
and all bonding maps are real or complex analytic, then the direct limit manifolds
constructed in [2] are real analytic in the sense of convenient differential calculus,
resp., complex analytic.

3. Lie theory for direct limit groups. Despite the fact that expG need not be
well-behaved, all of the basic constructions of finite-dimensional Lie theory can be
pushed to the case of direct limit groups G =

⋃
n Gn. Thus, subgroups and Haus-

dorff quotient groups of G are Lie groups, a universal complexification GC exists,
subalgebras of L(G) integrate to analytic subgroups, and Lie algebra homomor-
phisms integrate to smooth homomorphisms in the expected way. Furthermore,
every locally finite real or complex Lie algebra of countable dimension is enlargible,
i.e., it is the Lie algebra of a regular Lie group [2]. Such Lie algebras have been
studied by Bahturin, Baranov, Benkart, Dimitrov, Neeb, Penkov, Strade, Stumme,
and Zalesskii. If H ⊆ G is a closed subgroup, then H is a smooth submanifold
of G, and in fact a conveniently real analytic (cω-) submanifold, under mild ad-
ditional conditions [2]. Furthermore, the homogeneous space G/H can be given a
cω-manifold structure which makes π : G → G/H a smooth principal bundle (and a
cω-principal bundle under additional conditions), [2]. Similar results are available
for complex Lie groups [2]. Special cases of complexifications and homogeneous
spaces have already been used in [10], in the context of a Bott-Borel-Weil theorem
for direct limit groups.

4. Direct limits of infinite-dimensional Lie groups. The situation becomes
more complicated if the Gn’s are infinite-dimensional Lie groups. Let us assume
that a direct limit φ := lim−→ φn of compatible charts is defined on some open (or
c∞-open) subset of the locally convex direct limit lim−→ L(Gn). Provided lim−→ L(Gn)
is regular (viz. it is Hausdorff, and each bounded subset is contained and bounded
in some L(Gn)), then it is straightforward to make G =

⋃
n Gn a (possibly not

smoothly Hausdorff) Lie group in the sense of convenient differential calculus [4],
whose group multiplication however need not be continuous (cf. [11]). All Lie
groups of relevance are Lie groups in a stronger sense (as in Milnor [8]), based
on a notion of smooth maps which are, in particular, continuous (Keller’s C∞

c -
maps). Pathological examples show that, even if φ is a global chart, it need not
make G =

⋃
n Gn a Milnor-Lie group, [4]. But what happens for the examples

encountered in practice ?

5. Discussion of the main examples. Given a σ-compact smooth mani-
fold M of finite dimension, the group Diffc(M) of compactly supported smooth
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diffeomorphisms of M is a Lie group in Milnor’s sense (see [7] or [5], where also reg-
ularity of Diffc(M) in Milnor’s sense is proved in detail). It is a union Diffc(M) =⋃

K DiffK(M) of the Fréchet-Lie groups DiffK(M) of diffeomorphisms supported in
a given compact subset K ⊆ M . Because the DL-topology does not make Diffc(M)
a topological group [11], the DL-topology is strictly finer than the topology on the
Lie group Diffc(M). Hence, there exists a discontinuous map on Diffc(M) which
is continuous on DiffK(M) for each K. There even exists a discontinuous map on
DiffK(M) which is smooth on each DiffK(M), whence Diffc(M) �= lim−→ DiffK(M)
as a smooth manifold [4]. However, homomorphisms on Diffc(M) are smooth
(resp., continuous) if and only if they are so on each DiffK(M), [4]. The situa-
tion is similar for test function groups C∞

c (M, G) with values in a Lie group G.
Thus Diffc(M) = lim−→ DiffK(M) and C∞

c (M, G) = lim−→ C∞
K (M, G) holds or does

not hold, in the following categories (see [4]):

C∞
c (M, G) Diffc(M)

Lie groups yes yes

topological groups yes yes

smooth manifolds no no

topological spaces no no

6. Smooth homomorphisms vs. continuous homomorphisms. The con-
tinuity and smoothness questions just analyzed are related to the general (open)
problem (due to Milnor) whether every continuous homomorphism between infinite-
dimensional Lie groups is smooth. Some progress concerning this problem has
been made recently: Every Hölder continuous homomorphism between Milnor-Lie
groups is smooth [3], and Lip0-homomorphisms between Lie groups in the sense
of convenient differential calculus are smooth in the convenient sense (the author,
work in progress).
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Flag manifolds and cycles
Gregor Fels

Let G be a complex semisimple Lie group and Q ⊂ G a parabolic subgroup. Let
S ⊂ G be a (connected) real form of G. Let s ⊂ g = sC denote the corresponding
Lie algebras. Fix a Cartan decomposition s = k ⊕ p and let g = kC ⊕ pC be its
complexification. Finally, let K ⊂ S denote the corresponding maximal compact
subgroup and let KC ⊂ G be its complexification. In order to avoid some awkward
case by case distinctions we assume that G is simple. All the result below can be
easily generalized for semisimple G.

Let X := G/Q be a flag manifold. The orbit structure of the canonical action
S×X → X by left translations is well understood, see [Wo1]. Since there are only
finitely many Sfrm-e–orbits in X we conclude that open orbits exist. Any open
Sfrm-e–orbit is called a flag domain.
Every flag domains D = S·x contains a unique compact KCfrm-e–orbit CD. Such
orbit has the property CD = KC·x = K·x. This is a special case of a more general
fact: There is a natural duality between the Sfrm-e–orbits and the KCfrm-e–orbits
in X, and an Sfrm-e–orbit s and an KCfrm-e-orbit k are said to be dual if the
intersection s ∩ k is a single Kfrm-e–orbit. see [Mat], [MUV], [BrLo].
Every compact KCfrm-e–orbit CD defines a cycle 1·CD in X i.e., a point in the
Barlet cycle space. The Barlet cycle space C(X) provides a universal family pa-
rameterizing all cycles in X. The construction of the Barlet space C(Z) can be
given for an arbitrary complex space Z, see [Bar] for the details. From the point

of view of group actions, a natural family can be defined as follows ([WeWo]). For
a given compact KCfrm-e–orbit C = CD, consider M̃D := {g ∈ G | gC ⊂ D}.
Notice that the stabilizer G[C] of C acts freely and properly on the right on this
set, and that the quotient

MD := (M̃D/G[C])◦

can be identified with a domain in the complex homogenous space G/G[C]. Ob-
serve that this space parameterizes the (connected component) of the family of
submanifolds of D which are obtained by moving the base manifold C by elements
of g ∈ G such that g(C) ⊂ D. We refer to such MD as the Wolf parameter space.
The analysis of the quotient G/G[C] shows that the following cases occur:

• G/G[C] = {pt} in the rare case when a non-compact real form S acts transitively
on X
• G/G[C] is a compact Hermitian space Y. This happens only if S is of Hermitian
type and certain cycles CD ⊂ G/Q
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• G/G[C] is the affine symmetric space G/NG(kC).

Our first main result is the description of the Wolf parameter spaces MD for
all S, X and the corresponding flag domains D. In the particular case when S
is of Hermitian type, the structure of MD was determined in [WZ]: In this case
MD

∼= ∆ or MD
∼= ∆×∆ where ∆ denotes the bounded symmetric domain such

that Aut◦(∆) = S/Z(S).
We deal only with the case where S is not of Hermitian case. Let H := NG(kC) =
G[CD]. It turns out that

Theorem 1. Let a (non-Hermitian) real form S be fixed. For arbitrary X and
flag domain D ⊂ X all domains MDC ⊂ G/H coincide. The domains MDC can

be also described in a more explicite way: Fix a maximal Abelian subalgebra a ⊂ p

and an Iwasawa decomposition s = k⊕a⊕n. Fix a Borel subgroup B ⊂ G such that
b ⊃ a⊕n. It should be noted that B·[H ] is open in G/H and its complement consists
of dim a irreducible Bfrm-e–stable hypersurfaces: G/H \ B·[H ] = H1 ∪ · · · ∪ Hr.
For any Bfrm-e–stable hypersurface H define the set

ΩH :=
(
G/H \

⋃
s∈S

sH)◦ =
(
G/H \

⋃
k∈K

kH)◦
where (· · · )◦ denote the connected component containing [H ]. This set is open and
is called the hypersurface domain, associated with H.

Theorem 2. For an arbitrary but fixed (non-Hermitian) S, any flag domain
D ⊂ X and arbitrary Bfrm-e–stable divisor H ⊂ G/H we have

MD = ΩH = S· exp iωAG·[H ]

where ωAG := {X ∈ a | |λ(X)| < π/2 for all λ ∈ Φ(a)}. Here, Φ(a) denotes the
restricted root system of s with respect to a.
All above domains are Kobayashi hyperbolic.

See [FeHu], [HuWo].

Remark. The open set S· exp iωAG·[H ] ⊂ G/H is also called the Akhiezer-
Gindikin domain, see [AG]. Note that H is disconnected and KC = H◦.
The covering map G/KC → G/H maps biholomorphically S· exp iωAG·[KC] onto
S· exp iωAG·[H ]. Furthermore, being interested in local properties of various cycle
spaces, we do not need to distinguish between H = G[C] and KC = H◦.

As already mentioned, instead of moving the reference cycles CD by elements of a
given transformation group G one can also consider the universal family of cycles,
i.e., the component of the Barlet cycle space C(X) which contains CD. Such a
universal family depends only on the complex geometry of the ambient space and
the embedding CD ↪→ X. A compact KCfrm-e–orbit C can be now considered as
a point [C] ∈ C(D) = C, and MD is just a subset of C. Therefore one naturally
asks if MD = C(D) or if MD is at least open in C.
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In order to “see” cycles in the proximity of the given C it is necessary to compute
the full Zariski tangent space T[C]C at a point [C]. In general, the Barlet spaces C
are singular and in principle, the point [C] ∈ C might be singular. Note that we
have the canonical subspace T[C](G·[C]) of T[C]C, consisting of vectors tangent to
the orbit G·[C].

Our first result here is that for certain real forms S ⊂ G the tangent spaces to
C computed at all compact KCfrm-e–orbits C and for all G-flags X the spaces
To(G·[C]) and T[C]C coincide. In particular, MD is open in C(X).

On the other hand, there are real forms S and flag manifolds X in which there are
situations which do not arise by moving the base cycle by elements of Aut(X) :
There exist real forms and compact orbits C ⊂ X (we give a precise list below)
such that dimT[C]C > dimG/G[C]. In such a case we compute in detail the isotropy
representation KC × T[C]C → T[C]C. It is actually quite difficult to obtain precise
quantitative results of this type, and a substantial part of our work consists in
developing effective methods for computing certain cohomology groups which are
necessary for our purposes.

The calculations are carried out mostly for the full flag X = G/B. It should be
noted that in this case Aut◦(X) = G/Z(G).

Theorem 3. In all cases the Barlet space C(G/B) is smooth at CD.

Note that for G simple and S ⊂ G a real form, all kCfrm-e–modules pC in the
complexified Cartan decomposition of s are irreducible if S is not of Hermitian type
and sum of two irreducible submodules pC = (pC)+ ⊕ (pC)− if S is of Hermitian
type. Further, for every complex group H of the classical type A–D let H ↪→
GL(V H

std) denote the standard representation. It turns out that the isotropy groups
in all cases listed below are of classical type.

Theorem 4.

i) For all real forms s listed below, there exist compact KCfrm-e–orbits C ⊂
G/B = X, such that the Zariski tangent space T[C]C(X) is bigger than
T[C](G/G[C]). T[C]C = T[C](G·[C]). The real forms listed below are also the
only ones with this property:

(1) so(2p, 2q + 1) for p ≥ 2,
(2) so(2p + 1, 2q + 1), for p, q ≥ 1
(3) spn(R) for n ≥ 3,
(4) G2

(5) sl3(R).

ii) At the same time, for all real forms except sl3(R) there exist compact
KCfrm-e–orbits C′ ⊂ G/B, such that T[C′]C(X) = T[C′](G·[C′]).
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iii) For those compact KCfrm-e–orbits C ⊂ G/B with the property as in i)
the tangent space T[C]C(X) has the following decomposition as a KCfrm-
e–module:

s = so(2p, 2q + 1) T[C]C = pC ⊕ V
SO2p

std

s = so(2p + 1, 2q + 1) T[C]C = pC ⊕ V
SO2p+1
std or T[C]C = pC ⊕ V

SO2q+1
std

s = spn(R) T[C]C = (pC)+ ⊕ ∧2
V GLn

std or T[C]C = (pC)− ⊕ ∧2(V GLn

std )∗

s = G2 T[C]C = pC ⊕ V SO4
std

s = sl3(R) T[C]C = pC ⊕ V SO3
std

See [Fe] for the proofs and further details.
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Berezin transform on root systems of type BC
Genkai Zhang

In the present talk we present our recent result on Berezin transform on root
systems with general multiplicities. The Berezn transform on symmetric domains
arises when one studies the branching of holomorphic representation on a Her-
mitian symmetric space G/K of a semisimple Lie group G under a symmetric
subgroup H with the corresponding symmetric space H/L being a real form of
G/K. More precisely, consider the restriction map R of a scalar holomorphic
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discrete series Hν (and its analytic continuation) realized as a Hilbert space of
holomorphic functions on G/K to the real form H/L. The map Bν = RR∗ on
L2(H/L) is then the Berezin transform. It is H-invariant, and is bounded on
L2(H/L) for larger parameter of ν. The spectral symbol of Bν has been computed
by Unterberger-Upmeier [3], Zhang [6] [5] van Dijk and Pevsner [1] and have found
several applications [4]. In the present work we consider a general root system of
type BC with general positive multiplicity. The Berezin transform can be defined
as an integral operator whose kernel is defined by a series. We find the spectral
symbol of the Berezin transform and find a Bernstein-Sato type formula for the
integral kernel. The precise results are summarized below.

Let a = Rr be an Euclidean space with inner product (·, ·) and let R ⊂ a∗ be a
root system of type BC. We fix an orthogonal basis γj , j = 1, . . . , r of a∗ so that
R = { γj

2 ; j = 1, · · · , r} ∪ {γj ; j = 1, · · · , r} ∪ {γj±γk

2 ; j �= k = 1, · · · , r} and let
k = (k1, k2, k3) be the root multiplicity with k1, k2 and k3 the multiplicities of the
respective subsets of R. We assume that k1 + k2 > 0 and k3 > 0.

Let {ξj} be the basis of a dual to γj

2 , j = 1, . . . , r, i.e., γj

2 (ξk) = δjk. A function
f(x) on aC will be identified with f(x1, · · · , xr), for x = x1ξ1 + · · · + xrξr . Let
Dj = Dξj be be the Cherednik operators and let φλ be Heckman-Opdam the
spherical function. Consider the function

fν(x) =
r∏

j=1

cosh(xj)−2ν .

The integral kernel B(x, y) of the Berezin transform is given by B(x, 0) = fν(x)
and by an infinite series with using the Jack symmetric polynomials. Its spectral
symbol is determined by the integral

bν(λ) = f̃ν(λ) =
∫

a

fν(x)φλ(x)dµΣ(x)

where dµΣ(x) is the invariant measure for the root system Σ (which corresponds
to the radial A-part of the Riemannian measure in the case of symmetric space
H/L = LA · 0).

We prove first a Bernstein-Sato type formula using the Cherednik operator.

Theorem 1. (Bernstein-Sato type formula) The following formula holds
r∏

j=1

(D2
j − (−ν/2 + ρ1)2))fν =

r∏
j=1

(−ν/2 + k3(j − 1))(1 + ν/2− k2 − k3(r − j))fν+1

In proving the theorem we also find some interesting commutation relation for
the Hecke algebra elements and multiplication operators by polynomials of ex

j .
We can then find the spectral symbol.

Theorem 2. The spherical transform of fν is given by

bν(λ) = cδ

r∏
j=1

∏
ε=±1

Γ(ν − p − 1
2

+ ελj)
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The result has also some applications to orthogonal polynomials, the details
will appear later.
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General Differential Calculus and General Lie Theory
Wolfgang Bertram

In joint work with H. Glöckner and K.-H. Neeb [1], a simple and at the same
time very general approach to differential calculus, manifolds and Lie groups is
proposed which not only works in arbitrary dimension over the real and complex
numbers, but more generally for arbitrary topological modules over (commutative)
base rings k having a dense group of invertible elements (in particular, over all
non-discrete topological fields). All notions and results from differential geometry
and Lie theory that are essentially algebraic in nature continue to make sense in
this general framework – one may call these parts of the theory “general differential
geometry” and “general Lie theory”.

In our talk we present a basic result of this theory which in a way provides a
rigorous justification of the use of “infinitesimals” in differential geometry (cf. [3]):
if M is a manifold over k, then the tangent bundle TM is, in a natural way, a
manifold over the ring of dual numbers k[ε] = k ⊕ εk ∼= k[x]/(x2) (with relation
ε2 = 0), and tangent maps are smooth over k[ε]; thus the tangent functor really
is a functor of scalar extension from k to dual numbers over k. It immediately
follows that the iterated tangent bundles T nM are manifolds over the ring T nk :=
k[ε1, . . . , εn] and that the “jet bundles” JnM = (T nM)Σn (the subbundle fixed
under the canonical action of the permutation group Σn on T nM) are manifolds
over the ring Jnk := (T nk)Σn . Likewise, if G is a Lie group over k, then T nG
is a Lie group over T nk and JnG is a Lie group over Jnk. Another approach to
infinitesimals has been proposed by A. Weil in 1953 and lead to various concepts
such as the “Weil-functors” defined in the book “Natural Operations in Differential
Geometry” by I. Kolář, P. Michor and J. Sovák (Springer-Verlag 1993) or the
theory of “smooth toposes” and “synthetic differential geometry” (see the book
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“Models for Smooth Infinitesimal Analysis” by I. Moerdijk and G. Reyes, Springer-
Verlag 1991); our result may be seen as an alternative and much simpler approach
to these objects.

Finally, we give a short overview over problems and further topics in the context
of general Lie theory. In general, it is not possible to integrate differential equations
in our general context (this is known to be so already in the p-adic case or in the
locally convex real case), and so most problems take the form of “integration prob-
lems”. For instance, for a general Lie group over k, there is no exponential map,
but pushing the theory of connections somewhat further than usual one can define
a certain bundle isomorphism on the level of higher order tangent bundles which
serves to replace the missing exponential map (work in progress, cf. [3]). Then one
may ask whether there is also an analog of the Campbell-Hausdorff formula. This
seems to be indeed the case, but the precise form of this formula is unknown at
present (note that the characteristic of k is arbitrary). The ultimate integration
problem in Lie theory would be to find an analog of “Lie’s third theorem” in our
general context, i.e. to find necessary and sufficient conditions for a Lie algebra
to be “integrable” to a Lie group. This problem can also be posed for symmetric
spaces and Lie triple systems. Remarkably enough, for Jordan algebraic structures
the integration problem can be solved (cf. [2], [4]): there is a functor assigning to
every Jordan-structure over k (-algebra, -triple system or -pair, satisfying some
natural continuity condition) a geometry which is smooth over k. This is possible
since “Jordan geometries” tend to be algebraic, whereas “Lie geometries” only
tend to be analytic.
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Cohomology of holomorphic vector fields on a punctured Riemann
surface

Friedrich Wagemann
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Let Σ denote a compact Riemann surface of genur g and Σr = Σ \ {p1, . . . , pr}
a punctured Riemann surface, punctured in r ≥ 1 distinct points.
Let Hol(Σr) denote the Lie algebra of holomorphic vector fields on Σr. It is a
topological Lie algebra with respect to the topology of uniform convergence on
compact sets in Σr. The underlying topological space is Fréchet.
The goal of this survey is an Ext-description of the continuous cohomology of
Hol(Σr), i.e. to describe it in terms of (topologically split) exact sequences of
Hol(Σr)-modules.
In a first section, we recalled the setting of continuous cohomology of a Fréchet
Lie algebra g [1]. The Ext-description, which is standard for ordinary cohomology
by work of Yoneda, is more difficult here as there is no standard category of topo-
logical g-modules which posesses enough projectives and injectives. Nevertheless,
H2(g, C) classifies central extensions which are topologically split (i.e. split as
sequences of topological vector spaces). Our first theorem [6] is that the standard
map associating to a (topologically split) crossed module its continuous 3-cocycle
induces a bijection of the set of crossed modules of g with V to H3(g, V ) in case
there is a topologically split exact sequence 0 → V → W → U → 0 such that
H3(g, W ) = 0.
In a second section, we recalled N. Kawazumi’s theorem [2] on the continuous
cohomology of Hol(Σr). It states that H∗(Hol(Σr), C) is isomorphic to the sin-
gular cohomology of the space Map(Σr, S

3) of continuous maps from Σr to the
3-sphere S3, equipped as a topological space with the compact-open topology. The
latter cohomology algebra is a graded commutative Hopf algebra in N generators
of degree 2 (where N equals the dimension of H1(Σr)) and one generator of de-
gree 3, a kind of Godbillon-Vey generator. We generalized Kawazumi’s work to
n dimensional complex manifolds [4], and showed also that one can obtain from
it the continuous cohomology of the topological subspace of meromorphic vector
fields [3] (i.e. those holomorphic vector fields on Σr which have at most poles in
p1, . . . , pr) which play an important rôle in Krichever-Novikov’s approch to string
theory.
In a third section, we showed in our main theorem how to construct a crossed
module representing the mentioned Godbillon-Vey type generator [5]. The corre-
sponding 4-term exact sequence is constructed by splicing together the short exact
de Rham sequence of holomorphic differential forms on the universal cover Σ̃r of
Σr, say

0 → C → Ω0(Σ̃r) → Ω1(Σ̃r) → 0,

and an abelian extension of Hol(Σr) by Ω1(Σ̃r) by a certain 2-cocycle.
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On the holomorphic structure of G-orbits in compact hermitian
symmetric spaces
Wilhelm Kaup

In this lecture we give a survey on the results of the submitted paper [4]. Let
us start with a complex Banach space E of dimension n (that is Cn with a fixed
norm ‖ ‖). The open unit ball D ⊂ E is called a bounded symmetric domain if
the group G := Aut(D) of all biholomorphic automorphisms of D acts transitively
on D (this is not an essential restriction to the usual more abstract definition,
see e.g. [2]). Then it is well known that G is a semi-simple Lie group and that
the isotropy subgroup K : = {g ∈ G : g(0) = 0} is a maximal compact subgroup
coinciding with the group of all linear isometries of the complex Banach space
E. The compact dual Z of D in the sense of symmetric hermitian spaces is a
compact homogeneous complex manifold containing E as open dense subset in
such a way that G ∼= {g ∈ Aut(Z) : g(D) = D} (Z is the Riemann sphere in case
E = C and D the open unit disk). In this sense G also acts on Z by biholomorphic
transformations and has only finitely many orbits there (one of which is the domain
D ⊂ Z, another one is the Shilov boundary of D, the unique closed G-orbit in Z).

The G-orbits in Z as homogeneous spaces and the holomorphic arc components
of their closures have been described explicitly in [5]. Here we are interested in
the Cauchy-Riemann structure of G-orbits (which for open orbits is just the usual
holomorphic structure as complex manifold). For fixed orbit M : = G(a), a ∈ Z,
let us briefly recapitulate its CR-structure (take [1] as general reference for arbi-
trary CR-manifolds): For every c ∈ M the tangent space TcM is canonically con-
tained in the tangent space TcZ, which is a complex vector space in a natural way.
Clearly, HcM : = TcM ∩ i TcM (called the holomorphic tangent space at c ∈ M)
is the biggest complex subspace contained in TcM . The CR-structure on M is
given by the complex vector bundle HM ⊂ TM . In particular, a smooth function
f : M → C (or more generally with values in another CR-manifold) is called CR
if it satisfies the tangential Cauchy-Riemann partial differential equations in the
sense that the differential df(c) : TcM → C is complex linear on every holomorphic
tangent space HcM , c ∈ M . Here we are interested in the holomorphic extendibil-
ity of CR-functions, the explicit determination of CR-automorphism groups and
the CR-equivalence problem for G-orbits.

For simplicity and without essential loss of generality we restrict to the case
where the bounded symmetric domain D is irreducible, that is, not a direct product
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of lower dimensional bounded symmetric domains. Then, if D has rank r, there
exist precisely

(
r+2
2

)
G-orbits in Z, which can be indexed in a canonical way as

Mp,q with integers p, q ≥ 0 satisfying p + q ≤ r (compare the special example
below). There are precisely r + 1 open orbits (those with p + q = r) and also r + 1
orbits (those with q = 0) contained in the closure D of D. In case D is of tube type,
the Shilov boundary M0,0 of D is totally real in Z, and there is a biholomorphic
transformation ι of Z with period 2, mapping every Mp,q onto Mq,p, thus giving
a real-analytic CR-equivalence between Mp,q and Mq,p. It’s the existence of this
transformation ι that is responsible for some extra phenomena in the tube case. For
a presentation of our results therefore assume in the following that the irreducible
bounded symmetric domain D is not of tube type: Then, if M = Mp,0 (that is,
M ⊂ D), every continuous CR-function f on M has a unique continuous extension
f̂ to the linear convex hull M̂ =

⋃
k≥p Mk,0 of M that is holomorphic on the domain

D = Mr,0, and M̂ is maximal in Z with respect to this extension property. For
every other orbit M = Mp,q, q > 0, every continuous CR-function on M is constant
and every continuous CR-function on M ∩ E has a unique holomorphic extension
to E, implying that then every infinitesimal CR-transformation of M extends to
a holomorphic vector field on Z. This can be used to show for every G-orbit M
in Z that the group Aut(M) of all CR-automorphisms of M is just the group
G and also that the G-orbits in Z are pairwise CR-inequivalent. The proofs use
extensively the Jordan algebraic description of bounded symmetric domains as
well as the CR-extension results for K-orbits obtained in [3].

For the announced example fix integers s ≥ r ≥ 1 in the following and denote
by E : = Cs×r the Banach space of all complex s × r–matrices, where ‖z‖ is the
operator norm of the matrix z, considered as a linear operator Cr → Cs. Then the
open unit ball D ⊂ E is an irreducible bounded symmetric domain of rank r, and
D is of tube type if and only if s = r. The subgroup SU(s, r) ⊂ SL(s + r, C) acts
by linear fractional transformations transitively on D in the following way: Write
every g ∈ SU(s, r) in block form g =

(
a b
c d

)
with a ∈ Cs×s, b ∈ Cs×r, c ∈ Cr×s,

d ∈ Cr×r and put g(z) := (az + b)(cz + d)−1 for all z ∈ D. Then the connected
identity component of G = Aut(D) consists of all transformations obtained this
way. The compact dual Z of D is the Grassmann manifold Gr,s of all r-planes in
Cr×Cs, in which E is embedded by identifying every matrix z ∈ E with its graph
{(x, zx) : x ∈ Cr} ∈ Gr,s. For every z = (zjk) ∈ E let z∗ : = (zjk) ∈ Cr×s and 11
the unit matrix in Cr×r. Then, if the hermitian matrix 11 − z∗z ∈ Cr×r has type
(p, q) (meaning p positive and q negative eigenvalues), we have G(z) = Mp,q. In
particular,

D = Mr,0 = {z ∈ E : 11 − z∗z positive definite}
and

M0,0 = {z ∈ E : z∗z = 11}
is the Shilov boundary of D. In the tube case, i.e. r = s, the involutory transfor-
mation ι leaves GL(r, C) ⊂ Z invariant and satisfies ι(z) = z−1 there.
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Deformation quantization of Kähler manifolds
Martin Schlichenmaier

In this talk I presented results on the Berezin-Toeplitz deformation quantization
for compact quantizable Kähler manifolds. Some of them were obtained jointly
with M. Bordemann and E. Meinrenken. Some of them jointly with A. Karabegov.

Let (M, ω) be a Kähler manifold and (C∞(M), ·) the associative and commuta-
tive algebra of C∞-functions under the pointwise product. This algebra is endowed
with a Poisson structure via {f, g} := ω(Hf , Hg), with Hf the Hamiltonian vector
field defined by ω(Hf , .) = df(.). A formal deformation quantization or a star
product is an associative product � on the vector space of formal power series
C∞(M)[[ν]], which is ν-adically continuous and fulfills

(1) f � g = f · g mod ν, (2)
1
ν

(f � g − g � f) = i{f, g} mod ν.

In particular,

f � g =
∞∑

j=0

νjCj(f, g),

with bilinear maps Cj : C∞(M) × C∞(M) → C∞(M). A star product is called a
differential star product if the Cj are bidifferential operators. Usually one assumes
also f �1 = 1�f = f . Two star products � and �′ (for the same Poisson structure)
are called equivalent if there is an isomorphism of algebras B (i.e. B(f) �′ B(g) =
B(f � g)) such that the formal sum B =

∑∞
j=0 νjBj starts with B0 = id. A

differential star product is called a star product with the property of “separation
of variables” (in the terminology of Karabegov) or of Wick-type (in the terminology
of Bordemann-Waldmann) if in the first argument of Cj only holomorphic and in
the second argument only anti-holomorphic derivatives appear. In joint work with
A. Karabegov I showed that the Berezin-Toeplitz (BT) deformation quantization
is a differential star product with the separation of variables property [KS].
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The approach presented here works for arbitrary compact and quantizable
Kählermanifolds. A Kähler manifold is called quantizable if there exists a holo-
morphic hermitian line bundle over M : (L, h,∇), (∇ is the compatible connec-
tion) such that curvL,∇ = −iω. Important examples of such quantizable Kähler
manifolds are given by the projective space with the hyperplane section bundle,
projective submanifolds, abelian varieties, moduli spaces of flat su(N)-connections
on a Riemann surface, moduli spaces of stable algebraic vector bundles of rank N
and degree d over an algebraic curve, etc.

The metric h on L extends to h(m) on Lm := L⊗m. By integrating it against the
Liouville form it defines a scalar product on the space of C∞ sections. Inside the
L2 completion there is the finite-dimensional subspace Γ(m)

hol of holomorphic sec-
tions. Let Π(m) be the projection onto this subspace. The BT quantum operators
associated to a function f on M are defined as (T (m)

f )m∈N with

T
(m)
f : Γ(m)

hol → Γ(m)
hol ; s 
→ T

(m)
f (s) = Π(m)(f · s) .

Theorem 1. [BMS].
(a) limm→∞ ||T (m)

f || = ||f ||sup.

(b) ||mi[T (m)
f , T

(m)
g ] − T

(m)
{f,g}|| = O(1/m),

(c) ||T (m)
f · T (m)

g − T
(m)
f ·g || = O(1/m).

Theorem 2. [Bia], [BMS], [CMF]. There exists a unique star product
f �BT g =

∑∞
k=0 νkCk(f, g), such that

T
(m)
f · T (m)

g ∼
∞∑

k=0

(
1
m

)k

T
(m)
Ck(f,g), m → ∞.

This star product is called the Berezin-Toeplitz star product.

Theorem 3. [KS]. The BT-star product is a differential star product with the
separation of variables property. It has as Karabegov classifying form ω̃BT =
− 1

λω + ωcan and as Fedosov-Deligne class c(�BT ) = 1
i

(
1
λ [ω] − ε

2

)
.

Here λ is a formal variable, ωcan is the curvature form of the canonical holomor-
phic line bundle and ε is the canonical class. Furthermore, it should be recalled
that all star products with the separation of variables property are uniquely given
by their (formal) Karabegov form, and all differential star products up to equiva-
lence given by their (formal) Fedosov-Deligne class. As an important tool in the
proof of the last theorem the Berezin transform I(m) : C∞(M) → C∞(M) was
used. With the help of the (suitably generalized) Berezin covariant symbol map
σ it can be described as I(m)(f) = σ(T (m)

f ). In [KS] it was shown that it has a
complete asymptotic expansion in 1/m which starts with f(x) + (1/m)∆f + . . .
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The generalized Cayley map from an algebraic group to its Lie algebra
Peter W. Michor

This talk is mainly based on the paper [4].

Let π : G → End(V ) be an infinitesimally faithful complex representation of a
connected Lie group G. Consider (A, B) 
→ tr(AB) on End(V ) and suppose that
it is non-degenerate on the linear subspace π′(g) ⊆ End(V ). Then the orthogonal
projection prπ : End(V ) → π′(g) is defined:

G
representation π ��

Φπ Caley map

���
�
� End(V )

orthoproj.prπ

��

Ψπ(g) = Ψ(g) := det(dΦ(g))

g �� infinites. repr. π′
�� π′(g)

The Cayley mapping Φ has the following simple properties:

(1) Φ(bxb−1) = Adb(Φ(x)).
(2) We have Φ(g) ∈ Cent(gg) ⊂ Zg(gg).
(3) dΦ(e) : g → g is the identity mapping.
(4) H ⊂ G be a Cartan subgroup with Cartan algebra h ⊂ g. Then Φ(H) ⊂ h.
(5) For the character χπ(g) = tr(π(g)) of π we have

dχπ(g)(Te(µg)X) = tr(π′(Φπ(g))π′(X))

Further results are:
• Let π : G → Aut(V ) be a representation admitting a Cayley mapping. Let
H = (

⋂
a∈A Ga)o = (GA)o ⊆ G be a subgroup which is the connected centralizer

of a subset A ⊆ G and suppose that H is itself reductive. Then π|H : H → End(V )
admits a Cayley mapping and Φπ|H = Φπ|H : H → h.
• Let G be a semisimple real or complex Lie group, let π : G → Aut(V ) be an
infinitesimally effective representation. Let g = g1⊕· · ·⊕gk be the decomposition
into the simple ideals gi. Let G1, . . . , Gk be the corresponding connected subgroups
of G. Then Φπ|Gi = Φπ|Gi

for i = 1, . . . , k.
• G a simple Lie group, for direct sum and tensor product representations

Φπ1⊕π2(g) =
jπ1

jπ1⊕π2

Φπ1(g) +
jπ2

jπ1⊕π2

Φπ2(g) ∈ g.

Φπ1⊗π2(g) =
jπ1χπ2(g)

jπ1⊗π2

Φπ1(g) +
χπ1(g)jπ2

jπ1⊗π2

Φπ2(g) ∈ g.

Results for algebraic groups. Now let G be a reductive complex algebraic
group and π a rational representation. We have A(g) = A(g)G ⊗ Harm(g), where
Harm(g) is the space of all regular functions killed by all invariant differential
operators with constant coefficients. We define Harmπ(G) := Φ∗

π(Harm(g)). It is
a G-module.



338 Oberwolfach Report 6/2004

• For the localization at Ψ we have A(G)Ψ = A(G)G
Ψ ⊗ Harmπ(G). Moreover, we

have A(G) = A(G)G ⊗ Harmπ(G) if and only if Φ : G → g maps regular orbits in
G to regular orbits in g.
• If Φ(e) = 0 ∈ g then for the G-equivariant extension of the rational function
fields Φ∗ : Q(g) → Q(G) the degrees satisfy [Q(G) : Q(g)] = [Q(G)G : Q(g)G].
• Let a ∈ G be regular. Assume that dΦ(a) is invertible. Then Φ restricts to an
isomorphism Φ : ConjG(a) → AdG(Φ(a)) of affine varieties.
• Let a ∈ G. Then for the semisimple parts we have Φ(as) = Φ(a)s and Φ(a) =
Φ(as) + Φ(a)n ∈ ga is the Jordan decomposition.
• Let G be a connected reductive complex algebraic group and let Φ : G → g be the
Cayley mapping of a rational representation with Φ(e) = 0. Then Φ : Gpos → greal

is bijective and a fiber respecting isomorphism of real algebraic varieties, where
Gpos is the set of all a ∈ G whose semisimple part has positive eigenvalues, and
greal is the set of all X ∈ g whose semisimple part has only real eigenvalues.

Relation to the classical Cayley mapping. Let T : Spin(n, C) → SO(n, C)
be the double cover. We consider the spin representation Spin : Spin(n, C) →
Aut(Sn).
• There is a choice of the sign of the square root so that χ(g) :=

√
det(1 + T (g))

satisfies
ΦSpin(g) = − 2

2n/2
χ(g) Γ(T (g)) ∈ so(n, C).

for all g ∈ Spin(n, C). Moreover, χ ∈ A(Spin(n, C)) and we have for the rational
function fields

Q(Spin(n))Spin(n) = Q(so(n, C))Spin(n)[χ],

Q(Spin(n)) = Q(so(n, C))[χ].
Thus the generalized Cayley mapping ΦSpin : Spin(n, C) → so(n, C) factors to the
classical Cayley transform Γ : SO(n, C)∗ → Lie Spin(n, C)(∗), up to multiplication
by a function, via the natural identifications.

Relation to Poisson structures. For a representation π of a Lie group G we
can try to pull back the Poisson structure on g∗ via the derivative of the character
dχπ : G → g∗. This pullback is a rational Poisson structure on G which in fact
is an integrable Dirac structure in the sense of [1], [2], [3]. Let us explain this a
little:

Let M be a smooth manifold of dimension m. A Dirac structure on M is a
vector subbundle D ⊂ TM ×M T ∗M with the following two properties:

(1) Each fiber Dx is maximally isotropic with respect to the metric of signature
(m, m) on TM ×M T ∗M given by 〈(X, α), (X ′, α′)〉+ = α(X ′)+α′(X). So
D is of fiber dimension m.

(2) The space of sections of D is closed under the non-skew-symmetric version
of the Courant-bracket [(X, α), (X ′, α′)] = ([X, X ′],LXα′ − iX′dα).

Natural examples of Dirac structures are the following: Symplectic structures ω on
M , where D = Dω = {(X, ω(X)) : X ∈ TM} is just the graph of ω : TM → T ∗M ;
these are precisely the Dirac structures D with TM ∩D = {0}. Poisson structures
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P on M where D = DP = {(P (α), α) : α ∈ T ∗M} is the graph of P : T ∗M → TM ;
these are precisely the Dirac structures D which are transversal to T ∗M .

Given a Dirac structure D on M we consider its range R(D) = prTM (D) =
{X ∈ TM : (X, α) ∈ D for some α ∈ T ∗M}. There is a skew symmetric 2-
form ΘD on R(D) which is given by ΘD(X, X ′) = α(X ′) where α ∈ T ∗M is
such that (X, α) ∈ D. The range R(D) is an integrable distribution of non-
constant rank in the sense of Stefan and Sussmann, see [5], so M is foliated into
maximal integral submanifolds L of R(D) of varying dimension, which are all
initial submanifolds. The form ΘD induces a closed 2-form on each leaf L and
(L, ΘD) is thus a presymplectic manifold (ΘD might be degenerate on L). If the
Dirac structure corresponds to a Poisson structure then the (L, ΘD) are exactly
the symplectic leaves of the Poisson structure.

The main advantage of Dirac structures is that one can apply arbitrary push
forwards and pull backs to them. So if f : N → M is a smooth mapping and DM

is a Dirac structure on M then the pull back is defined by f∗DM = {(X, f∗α) ∈
TN ×N T ∗N : (Tf.X, α) ∈ DM}. Likewise the push forward of a Dirac structure
DN on N is given by f∗DN = {(Tf.X, α) ∈ TM ×M T ∗M : (X, f∗α) ∈ DN}.
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Θ-hypergeometric functions and shift operators
Angela Pasquale

The noncompactly causal (NCC) symmetric spaces are a small but nice class
of pseudo-Riemannian symmetric spaces. The interest in these spaces was raised
by the studies on the global structure of the space-time (see for instance [5]). In
1994, Faraut, Hilgert and Olafsson [1] could exploit the geometry of these spaces
to extend to them the theory of spherical functions, which Harish-Chandra had
developed in the late 50s on the Riemannian symmetric spaces of noncompact type
[4]. As in the Riemannian case, the spherical functions on a NCC symmetric space
G/H are the (suitably normalized) smooth H-invariant joint eigenfunctions of the
commutative algebra of G-invariant differential operators on G/H . However, due
to the non-compactness of H , they turn out to be much less regular than those
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of Harish-Chandra: they are only defined on an open submanifold of G/H ; they
are meromorphic (not entire) in the spectral parameter; they can be described by
integral formulas only for certain values of the spectral parameters. Many of the
difficulties encountered when studying the spherical functions on NNC symmetric
spaces can be overcome by working in the more general setting of Θ-spherical
functions.

The Θ-hypergeometric functions are special functions associated with root sys-
tems that generalize the spherical functions on both the NCC and the Riemannian
symmetric spaces. Their definition has been suggested by Olafsson’s expansion
formula [7] for the spherical functions on a NCC symmetric space G/H . This for-
mula shows that the restriction of the spherical functions of G/H to a specific Weyl
chamber of Cartan subgroup is a certain linear combination of Harish-Chandra se-
ries for the Riemannian dual G/K. In their theory of hypergeometric functions
associated with root systems [3, 2, 10, 6, 11], Heckman and Opdam developed very
powerful methods for studying this kind of linear combinations without relying on
a Riemannian structure. It is then quite natural to to try to extend Heckman-
Opdam’s definitions and methods to enclose also the spherical functions on NCC
symmetric spaces. The big family of special functions originating from this exten-
sion gives precisely the Θ-hypergeometric functions. They are constructed from
a triple (a, Σ, m), where a is a Euclidean symmetric space, Σ is a root system in
the dual a∗ of a, and m is a multiplicity functions on Σ. As the hypergeometric
functions associated with root systems, the Θ-hypergeometric functions are joint
eigenfunctions of the hypergeometric system of Heckman and Opdam. The param-
eter Θ designates a subset of a fixed fundamental system Π of positive simple roots
in Σ. The different choices of Θ lead to a lattice of special functions associated with
the given root system. At the top of the lattice, that is for Θ = Π, we find the hy-
pergeometric functions of Heckman and Opdam; at the bottom, that is for Θ = ∅,
(certain multiples of) the Harish-Chandra series. In the middle appear many new
special functions. For “geometric” triples (a, Σ, m), the Θ-hypergeometric func-
tions corresponding to Θ = Π yield Harish-Chandra’s spherical functions, whereas
the spherical functions on NCC symmetric spaces arise from some of the new spe-
cial functions in the central part of the lattice. This unified framework allows us,
for instance, to derive information on the spherical functions on NCC symmetric
spaces from those of the spherical functions of the Riemannian dual.

A particularly nice situation occurs for even multiplicity functions on reduced
root systems. Geometrically, this situation corresponds to Riemannian symmetric
spaces G/K with the property that all Cartan subalgebras in the Lie algebra g
of G are conjugate. The simplest example is when g admits a complex structure,
in which case all multiplicities are equal to 2. The analysis of Θ-hypergeometric
functions with even multiplicities is simplified by the use of Opdam’s shift oper-
ators (see e.g. [6]). By modifying one of these operators, it is possible to obtain
a Weyl-group-invariant differential operator with regular coefficients yielding Θ-
hypergeometric functions with even multiplicities from averages of exponential
functions. In particular, this provides new formulas for the spherical functions on
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Riemannian symmetric spaces with even multiplicities of both noncompact and
compact type. The study of of the Θ-hypergeometric functions in even multiplic-
ities and their associated harmonic analysis is a joint work with Gestur Ólafsson
[9].
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Maximal adapted complexifications of Riemannian homogeneous
spaces

Andrea Iannuzzi
(joint work with Stefan Halverscheid)

For a Riemannian real-analytic manifold M one can construct canonical com-
plexifications by defining the adapted complex structure on a domain of the tan-
gent bundle TM , as shown by Guillemin-Stenzel and Lempert-Szoeke ([GS], [LS]).
This uniquely determines the complexification in a neighborhood of M , which is
identified with the zero section in TM , however in general there are questions
about existence and unicity of a maximal domain Ωmax on which the adapted
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complex structure exists. If Ωmax is understood, by functoriality of the definition
it may be regarded as an invariant of the metric, i.e., isometric manifolds have
biholomorphic maximal domains. For instance examples are given by symmetric
spaces of non-compact type ([BHH]), compact normal Riemannian Homogeneous
spaces ([Sz2]), compact symmetric spaces ([Sz1]) and spaces obtained by Kählerian
reduction of these ([A]). Note that in the mentioned cases maximal domains turn
out to be Stein.

Let us consider a Riemannian homogeneous space M = G/K, with G a Lie
group of isometries and K compact. It is reasonable to assume that dimC GC =
dimR G , where GC is the universal complexification of G . Then KC acts on
GC , the left action on M induces a natural G -action on TM and under certain
extensibility assumptions on the geodesic flow of M one obtains a real-analytic
and G-equivariant map P : TM → GC/KC such that

the connected component of the non-singular locus of DP containing M is the
unique maximal domain on which the adapted complex structure exists.

This applies to the case of generalized Heisenberg groups and naturally reductive
Riemannian homogeneous spaces, among which one finds all isotropy irreducible
homogeneous spaces classified by J. Wolf [W].

As an application it is shown that for all generalized Heisenberg groups such
maximal domain is neither holomorphically separable, nor holomorphically convex.
We are not aware of previous non-Stein examples. Moreover allready in the case of
the 3-dimensional Heisenberg group one notices mixed signature Ricci curvature,
suggesting an influence of curvature properties of M on the complex geometry of
the maximal adapted complexification. Some recent new examples give a different
light to such point of view.
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[LS] Lempert, L.; Szőke, R. Global solutions of the homogeneous complex Monge-Ampère

equation and complex structures on the tangent bundles of Riemannian manifolds Math.
Ann. 290 (1991), 689–712

[PW] Patrizio, G.; Wong, P.-M. Stein manifolds with compact symmetric center Math. Ann.
289 (1991), no. 4, 355–382



Finite and Infinite Dimensional Complex Geometry and Repr. Theory 343
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patrick@cplx.ruhr-uni-bochum.de

Fakultät für Mathematik
Ruhr-Universität Bochum
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Abstracts

Curvature flow in conformal mapping
Kenneth Stephenson

(joint work with Charles Collins and Tobin Driscoll)

In joint work with Charles Collins (Tennessee) and Tobin Driscoll (Delaware), the
author investigates the conformal mapping of a non-planar Riemann surface to
a rectangle in the plane. The methods involve circle packing, and the discussion
centres on a simple prototype problem: A Riemann surface S is created as a
nonplanar cone space by pasting 10 equilateral triangles together in a specified
pattern. Four vertices on the boundary are designated as “corners”. It is well
known classically that there is a conformal map F : S −→ R mapping S to a plane
rectangle R with corners going to corners, as suggested in Figure 1.

v1

v2

v10v9v8v7
v6 v3

v4v5

Figure 1. Conformally mapping an equilateral surface to a rectangle

Circle packing provides a means for numerically approximating F . A sequence
of ever finer insitu circle packings Qn are created in S based on its equilateral
structure and a “repacking” computation then lays out circle packings Pn in the
plane having the same combinatorics but with carriers that form rectangles Rn.
For each n the associated map fn : Qn −→ Pn is defined as a “discrete conformal
map”. It has been established by Phil Bowers and the author that as n grows,
appropriately normalized rectangles Rn converge to R and the discrete conformal
maps fn converge uniformly on compact subsets of S to F . (See [1] and for
background, [3, 4].) The circle packing on the left in Figure 2 is P6; the images of
the 10 faces of S here are very close to their correct conformal shapes.

In studying this mapping, the authors parametrized the flattening process, both
classical and discrete, in a natural way to obtain a continuous family of surfaces
stretching from S to R. One can observe experimentally the ”flow” of radius ad-
justments as the circle packings are computed from one discrete surface to the
next; that flow reflects the movement of “curvature” at the circle centres during
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Figure 2. The packing P6 and the associated “flow” field

the adjustment process. The surprise came in our observation that this flow was
essentially independent of the parametrization stage. In other words, from the be-
ginning to the end of the parametrization the circles seemed to move in accordance
with an unchanging prescription about how to coordinate their size adjustments.
On the right in Figure 2 is one of these simulated flow fields.

This field ultimately describes the flow of cone angle (curvature) among the
ten cone points of S during the flattening process. The authors looked for a
classical parallel and obtained it via a modification of the Schwarz-Christoffel
(SC) method [2]. That modification introduces interior cone points and cuts to
allow mapping to a non-planar surface. The experimental flows are nearly exact
copies of the gradient field ∇ log |Φ′(z)|, where Φ′ is the derivative of the mapping
function generated by our modified SC method (and then lifted to R). This raises
a number of questions about the classical interpretation and the possible uses for
this “curvature” flow.
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Funktionentheorie 355

Julia polynomials and the Szegő kernel method
Igor Pritsker

Let G be a Jordan domain bounded by a rectifiable curve L of length l. The
Smirnov space of analytic functions E2(G) is defined by the product 〈f, g〉 =
1
l

∫
L f(z)g(z)|dz| (see [2], [3] and [10]). Consider the associated contour orthonor-

mal polynomials {pn(z)}∞n=0. If G is a Smirnov domain, then polynomials are dense
in E2(G) [2]. In this case, the Szegő kernel is given by K(z, ζ) =

∑∞
k=0 pk(ζ)pk(z) =

l
2π

√
ϕ′(z)ϕ′(ζ), z, ζ ∈ G, where ϕ is the conformal map of G onto the unit disk,

normalized by ϕ(ζ) = 0, ϕ′(ζ) > 0 [11]. Julia polynomials approximate ϕ, with a
construction resembling Bieberbach polynomials in the Bergman kernel method,

J2n+1(z) =
2π

l

∫ z

ζ

(
n∑

k=0

pk(ζ)pk(t)

)2

dt /

n∑
k=0

|pk(ζ)|2, n ∈ N.

The uniform convergence of Bieberbach polynomials has been extensively studied,
but methods based on the Szegő kernel did not receive a comprehensive attention.
It is not difficult to see that J2n+1 converge to ϕ locally uniformly in G. We show
in [9] that J2n+1 converge to ϕ uniformly on the closure of any Smirnov domain.
This class contains all Ahlfors-regular domains [8], allowing arbitrary (even zero)
angles at the boundary. For the piecewise analytic domains, we also give the
estimate

(1) ‖ϕ − J2n+1‖L∞(G) ≤ C(G) n− λ
4−2λ , n ∈ N,

where λπ, 0 < λ < 2, is the smallest exterior angle at the boundary of G. The
rate of convergence for J2n+1 on compact subsets of G is essentially squared com-
paring to (1). These results have standard applications to the rate of decay for
the contour orthogonal polynomials inside the domain, and to the rate of locally
uniform convergence of Fourier series.

The approximating polynomials of this kind were first introduced via an ex-
tremal problem by Keldysh and Lavrentiev (cf. [5], [6] and [7]), who developed
the ideas of Julia [4]. Set ‖f‖p =

(∫
L |f(z)|p|dz|)1/p for f ∈ Ep(G), 0 < p < ∞,

where Ep(G) is the Smirnov space [2]. Let Qn,p be a polynomial minimizing ‖Pn‖p

among all polynomials Pn such that Pn(ζ) = 1. Julia [4] showed that the corre-
sponding extremal problem in the class of all Ep(G) functions is solved by (φ′)1/p,
where φ is the conformal map of G onto a disk {z : |z| < R}, normalized by
φ(ζ) = 0 and φ′(ζ) = 1. Keldysh and Lavrentiev [7] proved that Qn,p converge to
(φ′)1/p locally uniformly in G if and only if G is a Smirnov domain. Thus the poly-
nomials Jn,p(z) :=

∫ z

ζ Qp
n,p(t)dt provide an approximation to φ(z). If p = 2 then

Jn,2 differ from J2n+1 just by a constant factor. This case was studied by Ahlfors
[1], Warschawski [12] and Gaier [3]. Again, the locally uniform convergence of Jn,p

to φ in Smirnov domains is immediate for any p ∈ (0,∞). We prove the uniform
convergence on G in arbitrary Smirnov domains, and give the convergence rates
generalizing (1) for piecewise analytic domains.
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Conformal Pseudo–metrics and a free boundary value problem for
analytic functions

Daniela Kraus

The starting point is the following free boundary value problem for analytic func-
tions f which are defined on a domain G ⊂ C and map into the unit disk
D = {z ∈ C : |z| < 1}.
Problem 1 Let z1, . . . , zn be finitely many points in a bounded simply connected
domain G ⊂ C and let φ : ∂G → (0,∞) be a continuous function. Show that
there exists a holomorphic function f : G → D with critical points zj (counted
with multiplicities) and no others such that

lim
z→ξ

|f ′(z)|
1 − |f(z)|2 = φ(ξ)

for all ξ ∈ ∂G.

If G = D, φ ≡ 1, Problem 1 was solved by Kühnau [5] in case of one critical
point, which is sufficiently close to the origin, and for more than one critical point
by Fournier and Ruscheweyh [2]. The method employed by Kühnau, Fournier and
Ruscheweyh easily extends to more general domains G, say bounded by a Dini–
smooth Jordan curve, but does not work for arbitrary bounded simply connected
domains.

We present a completely new approach to Problem 1, which shows that this
boundary value problem is not an isolated question in complex analysis, but is
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intimately connected to a number of basic (open) problems in conformal geometry
and non–linear PDE. To solve Problem 1 for arbitrary bounded simply connected
domains we divide it into the following two parts.

In a first step we construct a conformal metric in a bounded regular domain
G ⊂ C with prescribed non–positive Gaussian curvature κ(z) and prescribed sin-
gularities by solving the first boundary value problem for the Gaussian curvature
equation ∆u = −κ(z)e2u in G with prescribed singularities and continuous bound-
ary data. More precisely, we have

Theorem 1 Let G ⊂ C be a bounded and regular domain, let z1, z2, . . . , zn ∈ G be
finitely many distinct points and let α1, . . . , αn ∈ (0,∞). Let φ : ∂G → (0,∞) be a
continuous function and κ : G → (−∞, 0] a bounded and locally Hölder continuous
function with exponent α, 0 < α ≤ 1. Then there exists a unique pseudo–metric
λ : G → [0,∞) of curvature κ(z) in G\{z1, z2, . . . , zn} with zeros of orders αj at
zj and no others such that λ is continuous on G with λ(z) = φ(z) for z ∈ ∂G.

Theorem 1 is related to the Berger–Nirenberg problem in Riemannian geometry,
that is, the question which functions on a surface R can arise as the Gaussian
curvature of a Riemannian metric on R. The special case, where κ(z) ≡ −4 and
the domain G is bounded by finitely many analytic Jordan curves was treated by
Heins [4].

In a second step we show every conformal pseudo–metric on a simply connected
domain G ⊆ C with constant negative Gaussian curvature and isolated zeros of
integer order is the pullback of the hyperbolic metric on D under an analytic map
f : G → D:

Theorem 2 Let E = {z1, z2, . . .} be a discrete set in a simply connected domain
G ⊆ C, let α1, α2, . . . be positive integers, and let λ : G → [0,∞) be a pseudo–
metric of constant curvature κ = −4 in G\E with zeros of orders αj at zj and
no others. Then λ is the pullback of the hyperbolic metric under a holomorphic
function f : G → D, i.e.

λ(z) =
|f ′(z)|

1 − |f(z)|2 , z ∈ G .

If g : G → D is another holomorphic function such that

λ(z) =
|g′(z)|

1 − |g(z)|2 , z ∈ G ,

then g = T ◦ f , where T is a conformal automorphism of the unit disk D.

This extends a theorem of Liouville [6] which deals with the case that the
pseudo–metric has no zeros at all.
Theorem 1 and Theorem 2 together allow in particular a quick and complete
solution of Problem 1.
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Critical points of discrete potentials in space
J.K. Langley

(joint work with J. Rossi)

The following was conjectured in [1]: let zk ∈ C, ak > 0,

(1) zk → ∞,
∑
zk �=0

∣∣∣∣ak

zk

∣∣∣∣ < ∞, f(z) =
∞∑

k=1

ak

z − zk
.

Then f has infinitely many zeros.
The zeros of f correspond to equilibrium points of the electrostatic field gen-

erated by wires carrying charge density ak/2, perpendicular to the plane at zk.
The conjecture is known to be true in two contrasting cases: (i) if the total charge∑∞

k=1 ak is finite (or, more generally, if
∑

|zk|≤r ak = o(
√

r) as r → ∞) [1]; (ii) if
inf{ak} > 0 [2].

For point charges in space, the following was proved in [1]. Let xk ∈ R3, with

(2) xk → ∞,
∑
xk �=0

ak

|xk| < ∞, u(x) =
∞∑

k=1

ak

|x − xk| .

If inf{ak} > 0 then u has infinitely many critical points in R3.
In this case the critical points of u are equilibrium points of the electrostatic

field generated by charges ak at xk. Langley and Rossi [5] have recently shown that
instead of the condition inf{ak} > 0 it suffices that the xk have finite exponent
of convergence, which follows at once from (2) if inf{ak} > 0. The Cartan lemma
[3, p.366] is used to prove that there exist spheres |x| = rn → ∞ on which the
maximum of u(x) tends to 0, following which the method of [1] is applied.

The talk concludes with some results from [4] concerning zeros of f(z) when the
ak are complex in (1). A number of methods are applied, including quasiconformal
surgery.
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Efficient Discretization of Green Energy and Grunsky-Type
Development of Functions Univalent in an Annulus

Marcus Stiemer

Let Γ be an analytic Jordan curve in the complex plane. In 1970, K. Menke
introduced an extremal point system on Γ and applied it to approximate the log-
arithmic capacity of Γ and the conformal mapping Φ from the outer domain of
the unit circle onto the outer domain of Γ with Φ(z) = dz + O(1), z → ∞, d > 0
geometrically fast [2, 3, 4, 5, 6]. D. Gaier introduced the notation Menke points
for systems of this type. In contrast to Fekete-points, which possess a worse dis-
tribution on analytic Jordan curves [10, 11], Menke-points consist of two sets of
points that alternate on the curve Γ. An extension to the hyperbolic situation (see
below) has been developed in [9].

Let now F ⊂ Ĉ be a set with connected complement Ω, such that the Green
function G(z, ζ) in Ω with pole in ζ ∈ Ω exists. Moreover, let Γ be an analytic
Jordan curve in Ω with E = Int Γ.

The purpose of this work is to develop a Menke-type discretization for the
measure of minimal Green energy on Γ with respect to Ω and to prove that this
discretization provides a geometrically fast converging approximation to minimal
Green energy.

Particularly for the hyperbolic situation, F = Ĉ \ D, Ω = D, we prove that
Menke-points approximate the images of rotated roots of unity under the confor-
mal mapping Φ from {1 < |z| < e1/C(E,F )} onto R = D \E with Φ(e1/C(E,F )) = 1
geometrically fast. Here, C(E, F ) denotes the capacity of the condenser (E, F ).
Thus, hyperbolic Menke points possess a better distribution on analytic Jordan
curves than points of Fekete-type, which are called Tsuji-points in the hyperbolic
situation [7, 8]. The latter has only been shown under additional assumptions so
far.

The key to the presented proof is to utilize the connection between Green en-
ergy and the coefficients of the logarithmic development of functions univalent in
an annulus. In particular, an extension of the Grunsky inequaltities to functions
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univalent in an annulus due to R. Kühnau is applied [1].

Finally, a pointwise geometrically fast approximation to the Green potential in
R = D \ E is derived and several numerical examples are presented.
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Boundary Interpolation in the Theory of Nonlinear Riemann-Hilbert
Problems

Gunther Semmler

We study Riemann-Hilbert problems for a holomorphic function w in the unit disc
D with the boundary condition

(1) w(t) ∈ Mt

for all t ∈ T. The restriction manifold

M :=
⋃
t∈T

{t} × Mt

is supposed to be smooth so that the existence of solutions that are continuous on
the closed unit disc is secured by well-known theorems. Given k points z1, . . . , zk

in the unit disc, there is exactly one solution of the boundary value problem (1)
satisfying the side conditions

w(zj) = wj , j = 1, . . . , k w(t0) = w0 ∈ Mt0

The ambition of our research is to replace these conditions solely by interpolation
points on M, i.e. we require

(2) w(tj) = wj , j = 0, . . . , k
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where tj ∈ T and wj ∈ Mtj are given. As a generalization of a result by
Ruscheweyh and Jones for Blaschke products, we show that the interpolation
problem (2) has a solution with winding number at most k about M . This raises
the question to determine a solution of (2) with minimal winding number about
M . For three interpolation points we define the notion of counterclockwise turning
around M with respect to the holomorphic parametrization, which allows to finally
solve this problem. For more than three interpolation points, the situation is more
involved. It turns out that we can distinguish three classes of problems which
will be called rigid, fragil, and flexible. Problems in these classes have different
properties concerning uniqueness and stability of solutions.

It is remarkable that also for finite Blaschke products (which solve the most
simple Riemann-Hilbert problem where Mt = T), no solvability criterium for (2)
is known. In order to find at least an algorithmic approach we transformed this
problem to an interpolation problem for a rational funtion on the real line, the
numerator and denumerator polynomial of which have the interlacing property.
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Restriction operators on Bergman space
Mihai Putinar

(joint work with B. Gustafsson and H.S. Shapiro)

Let Ω be a bounded planar domain and let A2(Ω) be the associated Bergman space
(of analytic square integrable functions). For a positive measure µ, compactly
supported by Ω we consider the restriction operator:

R : A2(Ω) −→ L2(µ), Rf = f | suppµ.

It is a trace class operator, whose modulus square R∗R has a complete system of
eigenvectors fk ∈ A2(Ω), corresponding to a descending sequence of eigenvalues
λk (after putting aside the null vectors). The typical eigenvalue problem for fk

can be written as an integral equation:

λkfk(z) =
∫

K(z, w)fk(w)dµ(w).

This shows that each function fk analytically extends across the boundary of Ω.
The system of functions fk is doubly orthogonal with respect to the two inner

products:
λk〈fk, fm〉2,Ω = δkm〈fk, fm〉µ.

Such doubly orthogonal systems have appeared a long time ago in function theory
and approximation theory. Most of the references below illustrate such instances.
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We are interested in qualitative properties of the eigenfunctions fk. A central
result in this direction is the following.

Theorem. Let Ω be a bounded domain with smooth boundary, such that its
Green function of the bi-Laplacian(associated to an arbitrary point of the bound-
ary) is non-negative. Let H(z, w) denote the reproducing kernel for all harmonic,
square integrable functions in Ω, and assume that the positivity set: P = {z ∈
Ω; H(z, w) > 0, w ∈ ∂Ω} is non-empty.

Suppose that the positive measure µ is supported by a compact subset of P .
Then each eigenfunction fk does not vanish on the boundary of Ω and it possesses
exactly k zeros in Ω.

For instance, if Ω = D is the unit disk, then the conditions of the theorem are
met for the set P = {z; |z| <

√
2 − 1}. The analogous theorem for restrictions

from the Hardy space was discovered by Fisher and Micchelli [7] and it played an
important role in best approximation results and estimates on n-widths.

The proof of the theorem is based on potential theoretic techniques, starting
from the observation that each eigenfunction fk satisfies the balayage identity:

λk

∫
Ω

|fk(z)|2u(z)dArea(z) =
∫

|fk(z)|2u(z)dµ(z),

valid for an arbitrary harmonic function u, defined on a neighborhood of the closure
of Ω.

This particular framework of doubly orthogonal systems can be used to estimate
the growth of the contractive divisors in the Bergman space, best approximation
in the L2(µ) norm with control of the L2(Ω, dArea) norm or exact identification
of the inner measure µ from the matricial elements of the restriction operator.

This is a report on results published in:

B. Gustafsson, M. Putinar and H.S.Shapiro Restriction operators, balayage and
doubly orthogonal systems of analytic functions, J. Funct. Analysis 199(2003),
332-378.
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Measurable dynamics of transcendental entire functions on their Julia
sets

Jan-Martin Hemke

One of the main ideas in complex dynamics is to divide the plane into the Fatou
set of points, where the iterates behave stable, i.e. where they form a normal
family, and its complement, the Julia set. By definition the dynamics in the Fatou
set is easier and understood very well. We are interested in the dynamics of
meromorphic functions on their Julia set and study it in terms of the Lebesgue
measure. In [1] H. Bock proved, that for any non-constant meromorphic function,
which is defined on the whole complex plane, one of the two following cases holds:

(1) The Julia set is the entire plane and almost every orbit is dense in the
sphere Ĉ;
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(2) almost every forward-orbit in the Julia set accumulates only in the post-
singular set.

Here the post-singular set denotes the closure of the union of the forward-orbits
of all singularities of the inverse function, which are the critical and asymptotic
values. This result is a generalization of similar results for rational functions ob-
tained by M. Lyubich [8] and C. McMullen [10].
It is natural to ask for a given function, which case holds. Since a non-empty
Fatou set always implies (ii), one can restrict to the cases, in which the Julia set
consists of the whole complex plane. If the Julia set is not the entire plane, and
thus (ii) holds, it would still be interesting to know if the Julia set has positive
measure, since otherwise the statement (ii) would be trivial.
In the paper mentioned H. Bock gives sufficient conditions for (i): If f is entire and
the set of singularities of the inverse function is finite, all of these are pre-periodic
but not periodic, then (i) is satisfied. Thus the function f(z) = 2πi exp(z) is
an example for this first case, in which the post-singular set consists of the only
asymptotic value zero and its image 2πi. Other conditions concerning this case
are given by L. Keen and J. Kotus [4]. Conversely it was already shown in 1984
independently by M. Rees [6] and M. Lyubich [7] that the function f(z) = exp(z)
is an example for (ii). Here the post-singular set consists of the the closure of the
forward-orbit of the only asymptotic value zero, which tends to infinity on the real
axis. This result was generalized in [11] to functions fλ(z) = λ exp(z), if fn

λ (0)
tends to infinity sufficiently fast. M. Urbanski and A. Zdunik [3] even showed,
that the Hausdorff-dimension of the remaining set is smaller than 2.
The difference between the dynamics of exp(z) and 2πi exp(z) is caused by the dif-
ferent behavior of the asymptotic value zero under iteration. We consider functions
of the type f(z) =

∫ z

0 P (t) exp(Q(t))dt + c, with polynomials P and Q and c ∈ C,
such that Q is not constant and P not zero. Counting multiplicity these functions
have exacty deg(Q) asymptotic values and deg(P ) critical points and may even
be characterized as those entire functions with this property. In the extremal case
that all singularities of the inverse are pre-periodic but not periodic, the theorem
of H. Bock implies (i). We consider the other extreme and may neglect the critical
values but have to specify the speed of escape. We assume that every asymptotic
values s escapes exponentially fast, i.e. that |fn(s)| ≥ exp(|fn−1(s)|δ) for some
δ > 0 and almost all n ∈ N. Then we can prove that the Julia set has positive
measure and that (ii) is satisfied. If the degree of Q is at least three, using an
argument introduced by H. Schubert in [13], we obtain that the measure of the
Fatou set is even finite.
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[13] Schubert, H., Über das Maß der Fatoumenge trigonometrischer Funktionen, Diplomarbeit,
CAU-Kiel, 2003

On Periodic Rays of Certain Entire Functions
Lasse Rempe

A well-known theorem of Douady and Hubbard [M, Theorem 18.10] states that
periodic dynamic rays of polynomials always have a periodic landing point. This
result forms the basis of the combinatorial methods which have been an essential
ingredient in the success story of polynomial dynamics since the early studies of
the Mandelbrot set [DH].

In this talk, we will consider the analogous question for periodic rays of tran-
scendental entire functions. For our purposes, a periodic dynamic ray of an entire
function f : C → C is a maximal curve

γ : (t0,∞) → I(f) := {z ∈ C : |fn(z)| → ∞}
which satisfies fn(γ(t)) = γ(t + 1) for some n ≥ 1 and all t > t0. (Here t0 ∈
[−∞,∞).) As usual, we say that γ lands at a point z0 ∈ Ch if limt→t0 γ(t) = z0.

For the family of exponential maps1

Eκk : z �→ exp(z) + κ,

landing behavior of periodic rays has recently been used to great advantage by
Schleicher (see e.g. [S2, RS]). However, it was previously not known whether
periodic rays of exponential maps always land. We can now answer this question.

Theorem 1 (Periodic rays land [R1]) Every periodic ray of every exponential
map lands.

1This family forms the simplest parameter space of transcendental entire functions, as ex-
ponential maps are the only such functions with only one singular value. Also, the exponential
family can be considered to be the limit of the families of unicritical polynomials, z �→ zd + c
[BDG], which are by far the best-understood polynomial families.
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(a) (b)

Figure 3. Periodic rays for z �→ exp(z) + 1.0038 + 2.8999i. (a)
shows two rays forming a period 2-cycle; (b) shows a cycle of 25
rays landing at a common fixed point.

The proof of Douady and Hubbard’s landing theorem for polynomials uses a
hyperbolic contraction principle, and this argument can be carried over to several
situations in which there is some form of expansion along the ray. However, it is
conceivable that a periodic ray γ might accumulate on a singular value, whose orbit
again accumulates everywhere on γ. In such a situation, a proof by hyperbolic
contraction would be impossible. Thus, in order to apply this method to maps
with large postsingular sets, it seems that one must a priori show that the given
ray does not accumulate on singular values. The problem is that it can be very
difficult to control the accumulation behavior of these rays; even for many tame
exponential maps, there are many (nonperiodic) dynamic rays with complicated
accumulation behavior [DJ, R2].

Our proof of Theorem 1 circumvents these difficulties by using a theorem of
Schleicher [S1] on landing properties of parameter rays.2 However, there is little
hope for this method to generalise to higher-dimensional parameter spaces. For
example, we currently know of no argument which would prove the analogue of
Theorem for cosine maps,

z �→ a exp(z) + b exp(−z),

2Thus, we are reversing Douady’s famous principle: we plough in the parameter plane to
harvest in the dynamical plane.
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where a, b ∈ C. (Many results for the exponential family are known to generalise
to this two-dimensional family; in particular, there is a complete classification of
escaping points in terms of dynamic rays [Ro].)

On the other hand, we were able to show that the above problem is indeed the
only obstruction for a large set of functions in the class

B := {f : C → C entire; sing(f−1) is bounded}.

Theorem 2 (Periodic rays with nonsingular accumulation sets [R3])
Let f be either

• a cosine map z �→ a exp(z) + b exp(−z) or
• a function f ∈ B all of whose singular values lie in the Julia set.

If γ is a fixed dynamic ray of f which has no accumulation points in sing(f−1)),
then γ lands.
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On the zeros of the solutions of a functional equation
Walter Hayman

We consider an entire function

f(z) =
∞∑
0

anzn

satisfying the equation

(a − qz)f(q2z) − (1 + a)f(qz) + f(z) = 0 , 0 < |q| < 1.

Let zn be the nth zero of f(z) in order of nondecreasing moduli. Then

zn = −q(1−2n)

{
1 +

k∑
ν=1

bνqnν + O(|q|(k+1)n)

}
,

where the bν are constants depending on a and q. This verifies a conjecture of
Mourad Ismail [1], concerning the zeros of q–Bessel functions. The above result
also contains as a special case an identity of Ramanujan [4].

The method builds on an earlier paper by Walter Bergweiler and the author [3]
which applies to a wider class of functional equations but gives only the first term
in the asymptotic series. In this case the zeros may approach a finite number of
distinct geometric progressions. We compare the coefficients of f(z) and so f(z)
itself with certain theta–functions.
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On the number of zeros of certain rational harmonic functions
Dmitry Khavinson

(joint work with Genevra Neumann)

A. Wilmshurst [Wil 98] showed that there is an upper bound on the number of
zeros of a harmonic polynomial f(z) = p(z) − q(z), where p and q are analytic
polynomials of different degree, answering the question of T. Sheil-Small [SS 92].
Let n = deg p > deg q = m. Wilmshurst showed that n2 is a sharp upper bound
when m = n−1 and conjectured that the upper bound is actually m(m−1)+3n−2.
D. Khavinson and G. Świa̧tek [KS 03] showed that Wilmshurst’s conjecture holds
for the case n > 1, m = 1 using methods from complex dynamics. When hearing
of this result, P. Poggi-Corradini asked whether this approach can be extended to
the case f(z) = p(z)/q(z)− z, where p and q are analytic polynomials.

In this note, we apply the approach from [KS 03] to prove
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Theorem Let r(z) = p(z)/q(z) be a rational function where p and q are relatively
prime, analytic polynomials and such that n = deg r = max(deg p, deg q) > 1.
Then

#{z ∈ C : r(z) = z} ≤ 5n − 5

We note that the zeros of r(z) − z are isolated, because each zero is also a
fixed point of Q(z) = r(r(z)), an analytic rational function of degree n2. This
also follows from a result of P. Davis [Da 74] (Chapter 14) concerning the Schwarz
functions of analytic curves. (The Schwarz function is an analytic function S(z)
that gives the equation of a curve in the form z = S(z), cf. [Da 74].) A rational
Schwarz function implies that the curve is a line or a circle, so the degree must be
one.

We also note that r(z) − z will not have a zero at ∞.

L. Geyer [Ge 03] has recently shown that the 3n − 2 bound on the number of
zeros of f(z) = p(z)−z where deg p = n is sharp for all n > 1. D. Bshouty and A.
Lyzzaik [BL 03] have recently given an elementary proof for n = 4, 5, 6, 8. Hence,
a sharp bound on the number of zeros of f(z) = r(z) − z must be at least 3n− 2.

Let us discuss applications of the result to gravitational microlensing. An n-
point gravitational lens can be modeled as follows: Suppose that we have n point
masses (such as stars). Construct a plane through the center of mass of these
point masses, such that the line of sight from the observer to the center of mass is
orthogonal to this plane. This plane is called the lens plane (or deflector plane).
Suppose that the lens plane is between the observer and the light source. (We
are assuming that the distance between the point masses is small compared to the
distance between the observer and the lens plane, as well as the distance between
the lens plane and the light source.) The plane containing our light source which
is parallel to the lens plane is called the source plane. Due to deflection of light
by masses multiple images of the light source are formed. This phenomenon is
known as gravitational microlensing and is modeled by a lens equation. The lens
equation defines a mapping from the lens plane to the source plane. Suppose that
our light source is located at postion w in the source plane. In this model, if z
satisfies the lens equation, then our gravitational lens will map z to w; hence z
corresponds to the position of a lensed image. The number of lensed images is
the number of solutions of the lens equation. See [Wa 98] for an introduction to
gravitational lensing and [St 97] for an introduction to a complex formulation of
lensing theory.

To set up a lens equation for our n-point gravitational lens, the point masses
are projected onto positions in the lens plane. The projection of the j-th point
mass has a scaled mass of mj and is located at a scaled coordinate of zj in the
lens plane, where mj is a positive constant and zj is a complex constant. Suppose
that we have a light source located at a scaled coordinate of w in the source plane.
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Following [Wit 90], this lens equation will be given by

w = z + γz − sign(σ)Σn
j=1 mj/(z − zj),

where the normalized shear γ and the optical depth (or normalized surface density)
σ �= 0 are real constants. See [Wit 90] and [Pa 86] for a derivation of the normalized
lens equation for microlensing.

We can rewrite this lens equation in terms of the rational harmonic function
f(z) = r(z) − z by letting r(z) = w − γz + sign(σ)Σn

j=1 mj/(z − zj). We thus
see that the zeros of f(z) are solutions of the lens equation for a light source at
position w. H. Witt [Wit 90] showed for n > 1 that the maximum number of
observed images is at most n2 + 1 when γ = 0 and (n + 1)2 when γ �= 0. S. H.
Rhie [Rh 01] conjectured that for n > 1 such a gravitational lens gives at most
5n − 5 images for the case γ = 0 and σ > 0. In the γ = 0 case, deg r = n;
hence, our theorem settles this conjecture. Further, for the case γ �= 0, we see that
deg r = n + 1, so our theorem gives an upper bound of 5(n + 1) − 5 = 5n lensed
images.
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An extension of the Schwarz–Carathéodory reflection principle
Oliver Roth

1. A reflection principle for conformal metrics

Let D := {z ∈ C : |z| < 1} denote the open unit disk in the complex plane C.
An open subarc of the unit circle ∂D := {z ∈ C : |z| = 1} is an open connected
proper subset of ∂D.

Theorem 1 Let I be an open subarc of ∂D and let R be a Riemann surface, which
carries a complete real analytic conformal Riemannian metric λ(w) |dw|. Then a
non–constant analytic map f : D → R can be continued analytically across I with
f(I) ⊂ R if and only if there exists a holomorphic function h : I → C such that

(1) lim
z→ξ

λ(f(z)) |f ′(z)|
|h′(z)| = 1, ξ ∈ I.

Remarks.

(a) Note that λ(f(z)) |f ′(z)| in (1) is the pullback of the metric λ(w) |dw|
under the map f . Hence λ(f(z)) |f ′(z)| is a well-defined function on D.

(b) The phrase “f : D → R can be continued analytically across I with f(I) ⊂
R” means there exists a domain Ω ⊃ D with I ⊂ Ω and an analytic map
F : Ω → R such that F = f in D. This map F is the unique analytic
continuation of f to Ω.

(c) A function h : M → C is said to be holomorphic on a set M ⊆ C, if it is
defined and holomorphic in an open set V ⊆ C containing M .

(d) The special case R = C and λ(w) = 1 of Theorem 1 may be regarded as a
version of the classical Schwarz–Carathéodory reflection principle [3, 7] for
holomorphic functions f : D → C. Just as with the Schwarz–Carathéodory
reflection principle, Theorem 1 readily generalizes to non–constant analytic
maps f : D → R, where (i) D is a domain in C with an open free analytic
boundary arc I or (ii) D is a bordered Riemann surface with border Γ and
I ⊂ Γ.

(e) For the special case R = D and λ(w) = 1/(1− |w|2) Theorem 1 reduces to
the Fournier–Ruscheweyh reflection principle [4, 5].
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(f) The restraint in Theorem 1 that λ(w) |dw| is a complete and real analytic
conformal Riemannian metric can slightly be relaxed. For the ’if’ part it
suffices to assume λ(w) |dw| is a complete conformal Riemannian metric,
which is real analytic in a neighborhood U ⊂ R of f(I). For the ’only
if’ part we need only λ(w) |dw| is real analytic in a neighborhood of f(I).
These assumptions cannot further be weakened.

2. Analytic continuation of Beurling–Riemann maps

In 1953 Arne Beurling [2] proved the following extension of the Riemann map-
ping theorem3.

Theorem A Let Φ(w) be a positive, continuous and bounded function defined for
|w| < ∞ and let w0 be a given point in the w-plane. Then there exists an analytic
and univalent function f : D → C normalized by

(2) f(0) = w0, f ′(0) > 0,

and satisfying the non–linear boundary condition

(3) lim
|z|→1

(|f ′(z)| − Φ(f(z))) = 0.

Moreover, if log Φ(w) is superharmonic, then there is exactly one such function.

We call any normalized, analytic and univalent function f : D → C satisfying
(3) a Beurling–Riemann mapping function (for Φ(w)). Note that every Beurling–
Riemann mapping function f(z) is a Lipschitz map from (D, | · |) to (C, | · |),

|f(z1) − f(z2)| ≤ M · |z1 − z2|, z1, z2 ∈ D,

with M := supw∈C Φ(w) < ∞. Hence f(z) has a continuous extension to D, and
∂f(D) is a closed curve, which admits the conformal parametrization

∂f(D) : f(eit), 0 ≤ t ≤ 2π.

Moreover, |f ′(z)| has a continuous extension to D with |f ′(z)| �= 0.

If a Beurling–Riemann mapping function can be continued analytically across
an open subarc I of the unit circle, then the corresponding function Φ(f(z)) will
be real analytic on I since Φ(f(z)) = |f ′(z)| > 0 there. A partial converse is given
by the following theorem, which is essentially another special case of Theorem 1.

Theorem 2 Let Φ(w) be a positive, continuous and bounded function defined for
|w| < ∞, let w0 be a given point in the w-plane, and let f(z) be a Beurling–
Riemann mapping function for Φ(w) normalized by (2). If Φ(w) is real analytic
in a neighborhood of f(I) for some open subarc I of the unit circle, then f(z) has
an analytic continuation across I.

In particular, if Φ(w) is real analytic in a neighborhood of ∂f(D), then every
Beurling–Riemann mapping function for Φ(w) has an analytic extension to some

3See [1, 4, 6] for recent generalizations of and variations on Beurling’s theorem.
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disk |z| < ρ, ρ > 1. Hence, at least in this special case, the analytic properties
of the function Φ(w) are reflected by the analytic properties of the corresponding
mapping functions.
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Schwarzians of Hyperbolically Convex Functions
G. Brock Williams

(joint work with Roger W. Barnard, Leah Cole, and Kent Pearce)

The Schwarzian derivative Sf of an analytic function f : Ω → C is given by

Sf =
(

f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

.

The Schwarzian itself contains a great deal of geometric information about the
function f , but much more is encoded in the Schwarz norm

||Sf ||Ω = sup
z∈Ω

{η−2
Ω (z) |Sf (z)|},

where ηΩ is the hyperbolic density of Ω.
The Schwarz norm of f is completely Möbius invariant and is 0 if and only if f

is a Möbius transformation. Thus the Schwarzian derivative provides an effective
means of describing how much an analytic map differs from a Möbius transforma-
tion. For functions f defined on the unit disc D, this also serves to describe how
the range of f differs from a disc. Olli Lehto has made this notion precise, defining
a pseudo-metric on the space of all simply connected proper subsets of C modulo
Möbius transformations [1].

As a general principle, regions which are close to discs in Lehto’s pseudo-metric
share some of the properties of discs. Thus it is natural to ask “how far from a
disc can a convex set be?” [6] For convex sets in euclidean geometry, this question
was answered by Zeev Nehari who showed that if f is convex, then ||Sf ||D ≤ 2,
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with equality if and only if f(D) is a euclidean strip [7]. Similarly, Diego Mej́ıa
and Christian Pommerenke proved that the extremal spherically convex domains
are also strips [3].

In this talk, we complete the classification in all three classical geometries of
the convex domains which are furthest from being a disc, by establishing the sharp
upper bound on the Schwarz norm of functions from the disc onto hyperbolically
convex regions. In particular, we show that the bound is attained by a map onto
a domain bounded by two hyperbolic geodesics, a sort of “hyperbolic strip.” This
result had earlier been conjectured in several papers of Diego Mej́ıa and Christian
Pommerenke [2, 4, 5].

Our major tools are the Julia variation as extended by Roger Barnard and
John Lewis, estimates on elliptic integrals, and a critical new Step Down Lemma.
We formulate two new variations which preserve hyperbolic convexity. The first
variation allows us to show there is an extremal domain with at most four sides.
Our Step Down Lemma and the second variation then reduces the number of sides
to at most two. We then directly compute the Schwarz norm for the remaining
possibilities using special functions techniques.

This talk represents joint work with Roger W. Barnard, Leah Cole, and Kent
Pearce.
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Metric properties of Green’s functions
Vilmos Totik

Extensions of the classical Markov inequality

‖P ′
n‖[−1,1] ≤ n2‖Pn‖[−1,1]

(where Pn is a polynomial of degree at most n) to more general sets are closely
related to smoothness of Green’s functions. If E is a compact set on the plane,
then the n-th Markoff constant Mn for E is defined as the smallest Mn for which

‖P ′
n‖E ≤ Mn‖Pn‖E .
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Let gC\E be the Green’s function of the unbounded component of C \E with pole
at infinity (we assume that E is of positive logarithmic capacity). A standard way
of estimating Mn is to use the Bernstein-Walsh lemma

|Pn(z)| ≤ engC\E(z)‖Pn‖E, z ∈ C

and then to use the Cauchy integral formula for the derivative of Pn. This approach
gives e.g. that if gC\E is Hölder continuous: gC\E(z) ≤ C dist(z, E)α, then Mn ≤
C′n1/α. Thus, smoothness of Green’s function implies a growth restriction on the
Markov factors Mn. The converse is not clear, and in the talk first a situation
is mentioned when the connection is completely known, and this is the case of
Cantor type sets.

Let ε1, ε2, . . . be a sequence from the interval (0, 1), and starting from C0 = [0, 1]
do the Cantor construction with the modification that at level n we remove the
middle εn part of all remaining intervals. If Cn denotes the set after making n such
steps, then Cn consists of 2n intervals of total length (1− ε1) · · · (1− εn). Consider
the Cantor set C = ∩nCn. It is of measure zero if and only if

∑
n εn = ∞, and it

is of positive capacity if and only if
∑

k | log(1 − εk)|/2k < ∞ (see e.g. [5, Section
V.6]). Now for Cantor sets we have (see [6], [7], [8])

(a): Mn = eo(n) ⇐⇒ gC\E continuous ⇐⇒∑
j 2−j log(1 − εj) > −∞,

(b): Mn = O(nk) for some k ⇐⇒ gC\E ∈ Lip α for some α > 0
⇐⇒∑n

j=1 log(1 − εj) ≥ −cn,
(c): Mn = O(n2) ⇐⇒ gC\E ∈ Lip1/2 ⇐⇒∑

j ε2
j < ∞.

Note that Mn ≥ cn2 and gC\E(−r) ≥ cr1/2 for all E ⊆ [0, 1], i.e. the growth rates
in (c) are optimal.

In the special case εj = 1/(j + 1) we get a compact set E ⊂ [0, 1] of linear
measure 0 such that gC\E ∈ Lip1/2 and Mn = O(n2).

As we can see, there is a big difference between the conditions on εj in (b) and
(c). An explanation was given by V. Andrievskii [1] who proved that for E ⊂ [0, 1]
the condition gC\E(z) ≤ C|z|1/2 implies that the set E is locally of full capacity
at 0, i.e.

lim
t→0

cap([0, t] ∩ E)
cap([0, t])

= 1.

Recently a characterization of optimal Hölder smoothness of Green’s function was
given by L. Carleson ([3]): for E ⊂ [0, 1] we have gC\E(z) ≤ C|z|1/2 if and only if∑

k θk < ∞, where with some 0 < ε < 1/3

θk = 2k
(

cap([0, 2−k]) − cap
(
(E ∩ [0, 2−k]) ∪ [0, ε2−k] ∪ [(1 − ε)2−k, 2−k]

))
.

Returning to measuring density of sets with linear Lebesgue measure, T. Erdélyi,
A. Kroó and J. Szabados [4] used for E ⊂ [0, 1] the function ΘE(t) = |[0, t] \E| to
measure density, and they proved some local Markov inequalities in terms of this
ΘE . In [7] we used the same measure ΘE (if E is not on [0, 1] then take its circular
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projection onto R+ and use the Θ function for the projected set), and proved that

gC\E(z) ≤ C
√
|z| exp

(
C

∫ 1

|z|

Θ2
E(u)
u3

du

)
log

2
cap(E)

,

and this is sharp, for if Θ ↗, Θ(t) ≤ t, then there is an E ⊂ [0, 1] such that
ΘE(t) ≤ Θ(t) and

gC\E(−r) ≥ c
√

r exp
(

c

∫
r

Θ2(u)
u3

du

)
.

This result was extended in [2] by V. Andrievskii.
Finally, we talk about characterization of Hölder continuity with some positive

exponent in the spirit of Wiener’s regularity test. Let E be a compact subset on
the plane such that 0 is on the boundary of the unbounded component of C \ E.
With

En =
{
z ∈ E 2−n ≤ |z| ≤ 2−n+1

}
the continuity of gC\E at 0 was characterized by Wiener (see e.g. [9, Theorem
III.62]): gC\E is continuous at 0 if and only if

∞∑
n=1

n

log(1/ cap(En))
= ∞.

For ε > 0 set
NE(ε) = {n ∈ N cap(En) ≥ ε2−n},

and we say that a subsequence N = {n1 < n2 < . . .} of the natural numbers is of
positive lower density if

lim inf
N→∞

|N ∩ {0, 1, . . . , N}|
N + 1

> 0,

which is clearly the same condition as nk = O(k). Now (see [3]) under the cone
condition (i.e. there is a cone with vertex at 0 not intersecting E) Green’s function
g

C\E is Hölder continuous at 0 (i.e. gC\E(z) ≤ C|z|α for some α > 0) if and only if
NE(ε) is of positive lower density for some ε > 0. Here the cone condition cannot
be omitted, but the rings {2−n ≤ |z| ≤ 2−n+1} in the definition of En can be
replace by the disks {|z| ≤ 2−n}.
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[4] T. Erdélyi, A. Kroó and J. Szabados, Markov–Bernstein type inequalities on compact subsets
of R, Analysis Math., 26(2000), 17–34.

[5] R. Nevanlinna, Analytic Functions, Grundlehren der mathematischen Wissenschaften, 162,
Springer Verlag, Berlin, 1970



Funktionentheorie 377
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Random matrices in an external source and multiple orthogonal
polynomials

Arno B.J. Kuijlaars
(joint work with Pavel Bleher)

We consider the random matrix ensemble

(1)
1

Zn
e−nTr(V (M)−AM)dM

defined on n × n Hermitian matrices M , where A is a given Hermitian matrix,
called the external source. The ensemble is unitary invariant if A = 0, and then
the eigenvalue correlations can be described with orthogonal polynomials. The
universal behavior of local eigenvalue statistics in the large n limit can then be
obtained from precise asymptotic formulae for the orthogonal polynomials. This
was done in [2, 8] with the steepest descent method for Riemann-Hilbert (RH)
problems.

For a general external source A the ensemble (1) is not unitary invariant. Sup-
pose A has p distinct eigenvalues a1, . . . , ap of multiplicity n1, . . . , np, respectively.
Then the average characteristic polynomial Pn(z) = E det[zI − M ] satisfies∫

Pn(x)xke−n(V (x)−ajx)dx = 0, k = 0, . . . , nj − 1, j = 1, . . . , p,

and these relations characterize the polynomial Pn, see [3]. The polynomials are
known as multiple orthogonal polynomials of type II and they are characterized
by a (p + 1) × (p + 1)-matrix RH problem [10]. For p = 2, the RH problem is to
find an analytic Y : C \ R → C3×3 such that

• for x ∈ R, we have

(2) Y+(x) = Y−(x)

1 e−n(V (x)−a1x) e−n(V (x)−a2x)

0 1 0
0 0 1

 ,

• as z → ∞, we have

(3) Y (z) =
(

I + O

(
1
z

))zn 0 0
0 z−n1 0
0 0 z−n2

 .

This RH problem has a unique solution and Y11(z) = Pn(z).
The m-point correlation function for the eigenvalues of (1) has determinantal

form [11]
Rm(λ1, . . . , λm) = det (Kn(λi, λj))1≤i,j≤n
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with a kernel Kn built out of multiple orthogonal polynomials of type I and II,
see [3]. For the case p = 2 the kernel can be expressed in terms of the solution of
the Riemann-Hilbert problem as follows

(4) Kn(x, y) =
e−

1
2 n(V (x)+V (y))

2πi(x − y)
(
0 ena1y ena2y

)
Y −1(y)Y (x)

1
0
0

 .

The expression (4) is based on a Christoffel-Darboux formula for multiple orthog-
onal polynomials [3, 7].

The large n limit of the Gaussian case (V (M) = 1
2M2) with 2 eigenvalues a1 =

a, a2 = −a of equal multiplicity exhibits a phase transition for the value a = 1.
For a > 1 the eigenvalues are asymptotically distributed on two disjoint intervals
[−z1,−z2]∪ [z2, z1], while for a ≤ 1 the eigenvalues accumulate on a single interval
[−z1, z1]. The limiting mean eigenvalue density is given by ρ(x) = 1

π�|ξ(x)|, where
ξ(x) satisfies the third order equation (Pastur’s equation [9])

(5) ξ3 − xξ2 − (a2 − 1)ξ + xa2 = 0.

For a = 1, the density has a |x|1/3 behavior near x = 0.
We establish universality of local eigenvalue correlations in the large n limit.

In [4] we apply the steepest descent method to the RH problem (2), (3) with
V (x) = 1

2x2, a1 = a, a2 = −a, n1 = n2, and we assume a > 1. A main tool is the
Riemann surface for the equation (5) and the functions defined on it. The results
are that for x0 in the bulk,

(6) lim
n→∞

1
nρ(x0)

K̂n

(
x0 +

x

nρ(x0)
, x0 +

y

nρ(x0)

)
=

sinπ(x − y)
π(x − y)

.

At the edge point z1, we have for a certain c > 0,

(7) lim
n→∞

1
(cn)2/3

K̂n

(
z1 +

x

(cn)2/3
, z1 +

y

(cn)2/3

)
=

Ai(x)Ai′(y) − Ai′(x)Ai(y)
x − y

where Ai is the Airy function. Similar expressions are valid at −z1 and at ±z2.
The kernel K̂n in (6) and (7) is a modification of Kn

K̂n(x, y) = en(h(x)−h(y))Kn(x, y)

for a certain function h, which does not affect the eigenvalue correlation functions.
For 0 < a < 1, the steepest descent analysis of the RH problem proceeds in a

different way [1], but we again find the sine kernel in the bulk and the Airy kernel
at the edges. For a = 1, the local eigenvalue correlations near x = 0 are given in
terms of Pearcey integrals [5, 6].
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Behaviour of kernel functions under homotopies of planar domains
Eric Schippers

The main results are 1) a variational formula for Green’s function of finitely con-
nected planar domains, and 2) the demonstration of the monotonicity of various
domain functions under set inclusion. The variational formula shows that up to
first order, a general homotopy behaves like the normal variation of Hadamard
[5]. The consideration of general homotopies is necessary in order to obtain mono-
tonicity of the domain functions.

The variational formula is obtained by isolating the normal part of the variation.
Let Γt0 and Γt be parametrize one of the boundary components of domains Dt

and Dt0 (here t is the homotopy variable). For t is close to t0, let nt0(t, τ) be the
distance from Γt0(τ) to the curve Γt along the normal to Γt0 . Let

νt0(τ) =
d

dt

∣∣∣∣
t0

nt0(t, τ);

we then have that

gt(z, ζ) − gt0(z, ζ) =
t − t0
2π

∫
∂Dt0

∂gt0

∂nu
(u, z)

∂gt0

∂nu
(u, ζ)νt0(u)dsu + O(|t − t0|2)

where ds is arc length and n is the outward unit normal. The remainder term is
harmonic and bounded on compact sets. This idea was applied in special cases by
Barnard and Lewis [1].

With the use of this formula, it is quite easy to prove the monotonicity of
various expressions in the derivatives of Green’s function simply by differentiating
the expression in the homotopy variable. More precisely, one desires theorems of
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the form D1 ⊂ D2 =⇒ Φ(D1) ≥ Φ(D2), where Φ is some functional depending
on the domain. If one can construct a homotopy Dt between D1 and D2, one
can apply the variational formula above to show that Φ(Dt) is monotonic. For
example, for Green’s function g let

K(ζ, η) = − 2
π

∂2g

∂ζ∂η̄
and L(ζ, η) = − 2

π

∂2g

∂ζ∂η
.

These are the familiar Bergman kernel and an analogue of the Garabedian kernel
for the Bergman space. The following expression decreases as the domain increases:

�∆

(∑
µ,ν

αµαν
∂2mL

∂ζm∂ηn
(ζµ, ζν)

)
− ∆

(∑
µ,ν

αµαν
∂2mK

∂ζm∂η̄m
(ζµ, ζν)

)
≤ 0,

where ζµ are points in the domain and αµ ∈ C for µ = 1, . . . n. For simply
connected domains this result was obtained by the author in [4]. The case m = 0
is due to Nehari [3]. The theorem was obtained by Bergman and Schiffer [2] in
the case that m = 0 and the outer domain is the plane.

The original motivation of the author for constructing monotonic quantities
was in order to obtain distortion theorems for bounded univalent functions. In the
simply connected case Green’s function can be written in terms of the mapping
function and vice versa. The monotonicity theorems for domain functions in some
sense are intrinsic versions of inequalities for mapping functions; by choosing D2

to be the unit disc, and D1 to be the image of the unit disc under a mapping
function, one recovers estimates for the mapping function.

Considering expressions in higher derivatives of Green’s function is a natural
way to generate inequalities for higher derivatives of the mapping function. In-
deed the above inequality easily leads to sharp inequalities for odd derivatives
of bounded univalent functions. Inequalities for even derivatives of the mapping
function seem to be more difficult. The following quantity is monotonic for all λ,
points ζµ and parameters αµ, βµ, and generates inequalities for even derivatives:

∑
µ,ν

αµαν
∂2mK

∂ζm∂η̄m
(ζµ, ζν) + 2λ�

(∑
µ,ν

βµαν
∂2m+1L

∂ζm+1∂ηm
(ζµ, ζν)

)

+λ2
∑
µ,ν

βµβν

∂2m+2K

∂ζm+1∂η̄m+1
(ζµ, ζν).

Although this expression appears complicated, it is the simplest monotonic quan-
tity in which an odd derivative of L appears. Many more such monotonic quantities
can be constructed.

Some questions arise naturally. 1) For this method, it is crucial that the bound-
aries of the domains must be homotopic, and hence two domains must be of the
same topological type in order to compare them. For which expressions is this
condition necessary for monotonicity to hold? 2) Can one detect the connectivity
from these domain functions?
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Zero distribution and asymptotics of Bergman orthogonal polynomials
Nikos Stylianopoulos

(joint work with Erwin Mina Diaz, Eli Levin and Ed Saff)

Let G be a bounded simply-connected domain in the complex plane C, whose
boundary L := ∂G is a Jordan curve and let {Pn}∞n=0 denote the sequence of
Bergman polynomials of G. This is defined as the sequence

Pn(z) = γnzn + · · · , γn > 0, n = 0, 1, 2, . . . ,

of polynomials that are orthonormal with respect to the inner product

(f, g) :=
∫

G

f(z)g(z)dm(z),

where dm stands for the 2-dimensional Lebesgue measure.
One purpose of the talk is to report on results, obtained jointly with Eli Levin

and Ed Saff in [2], concerning the asymptotic behaviour of the zeros of the Bergman
polynomials {Pn}. In order to state these results we need to consider the two
conformal maps associated with L. That is, with D := {w : |w| < 1}, let Ω := C\G
and ∆ := C \ D denote, respectively, the exterior (in C) of G and D. Then, the
exterior conformal map Φ associated with G is the conformal map Φ : Ω → ∆,
normalised so that

Φ(z) = cz + O(1), z → ∞, c > 0.

The constant
capL = 1/c,

is called the (logarithmic) capacity of L. With ζ ∈ G, let ϕζ be an interior
conformal mapping of G onto the unit disk D, such that ϕζ(ζ) = 0. Our first
result characterises the asymptotic behaviour of the zeros of Pn’s in terms of the
analytic properties of ϕζ , by means of two measures. Namely, the normalised
counting measure of the zeros of Pn, denoted by νPn , and the equilibrium measure
for L, denoted by µL. With the above notations, our result can be stated as follows
(see [2, Thm 2.1]):

The following two statements are equivalent:
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(i) ϕζ has a singularity on L.
(ii) There is a subsequence N ⊂ N such that

νPn

∗−→ µL, as n → ∞, n ∈ N .

Note that the fact ϕζ has a singularity on L is independent of the choice of ϕζ , since
any two conformal mappings of G onto D are related by a Möbius transformation.
The complimentary case where ϕζ has no singularities on L is more complicated,
and different situations may arise. Here, we consider the special case where the
boundary L of G consists of two circular arcs, Lα and Lβ, that meet each other
at right angles at the points i and − i. In this case we have the following result
(see [2, Thm 3.3]):

There exists a Jordan arc Γ joining the two vertices of G, and a
certain measure µ supported on Γ, such that

νPn

∗−→ µ, n → ∞.

This “critical arc” Γ is characterised by the property that

Γ = {z ∈ G : |Φ(zα)| = |Φ(zβ)|},
where for any point z on G, zα and zβ denote, respectively, the reflections of z
with respect to Lα and Lβ.

Another purpose of the talk is to report on, as yet unpublished, results obtained
jointly with Erwin Mina Diaz and Ed Saff. These results concern the asymptotic
behaviour of the zeros of the weighted Bergman polynomials {Pn,w}∞n=0, of lens
shaped-domains G of the type studied above. These are the polynomials orthonor-
mal with respect to the weighted inner product

(f, g)w :=
∫

G

f(z)g(z)|w(z)|2dm(z),

where w is an entire function with finitely many zeros in C.
Finally, we present a conjecture concerning the asymptotic behaviour of the

Bergman polynomials {Pn}. More precisely, consider the following two formulas:

γn =

√
n + 1

π

1
capLn+1

{1 + αn},

Pn(z) =

√
n + 1

π
Φ′(z)Φn(z) {1 + βn}, z ∈ Ω.

If the boundary L of G is an analytic Jordan curve, then a result due to T.
Carleman gives,

αn = O(ρ2n) and β = O(ρn), n → ∞,

for some ρ < 1; see e.g. [1, pp. 12–13]. In the case where L is smooth, typically
L ∈ C(p + 1, s), where p + 1 ∈ N and p + s > 1

2 , then a result of P.K. Suetin ([3,
Thms 1.1 and 1.2]) gives,

αn = O
(

1
n2(p+s)

)
and βn = O

(
log n

np+s

)
, n → ∞.
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Our conjecture, which is based on certain theoretical results and strong numerical
evidence, is concerned with boundary curves that encountered very frequently in
the applications and can be stated as follows:

If L is a piecewise analytic Jordan curve without cusps, then

γn =

√
n + 1

π

1
capLn+1

{1 + O
(

1
n2

)
}, n → ∞,

Pn(z) =

√
n + 1

π
Φ′(z)Φn(z) {1 + O

(
1
n

)
}, z ∈ Ω, n → ∞.
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Asymptotics of Hermite-Padé Polynomials to the Exponential
Function

Herbert Stahl

1. Abstract of the Talk

Hermite-Padé polynomials and their associated approximants are in a very
natural way generalizations of Taylor polynomials, Padé approximants, and con-
tinued fractions (cf. [2], [1]). Historically, they are, perhaps, most famous for their
role in Hermite’s proof of the transcendency of the number e (cf. [8], [11], [12]).

Within the last 15 years a considerable up-swing of interest and research in this
topic could be observed in complex and constructive approximation theory, where
the field is typically connected with questions like multiple orthogonality, higher
order recurrence relations, and/or the approximation of functions with branch
points (cf. surveys in [14], [3], [1], [7], [17]). Many of the basic questions about
the convergence of the approximants and the asymptotics of the polynomials are
still open.

The talk is based on recent research about quadratic Hermite-Padé polynomials
associated with the exponential function. After a somewhat broader introduction
to the subject, new results about the asymptotic behavior of the polynomials have
been presented. The central element of the asymptotic relations is a concrete,
compact Riemann surfaces with 3 sheets over C. Details of its definition can be
found in [18], Subsection 2.2. Specific results will be summarized further below in
the present abstract. First we repeat the definition of Hermite-Padé polynomials
and the associated approximants.
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2. Definition of Hermite-Padé Polynomials

Let f = (f0, . . . , fm), m ≥ 1, be a system of m + 1 functions; all functions
are assumed to be analytic in a neighborhood of the origin.

Definition 1 Hermite-Padé Polynomials of Type I (Latin polynomials in
K. Mahler’s terminology in [13]): For any multi-index n = (n0, . . . , nm) ∈ Nm+1

there exists a vector of polynomials (p0, . . . , pm) ∈ P∗
n0−1 × Pn1−1 × . . . × Pnm−1

such that

(1)
m∑

j=0

pj(z)fj(z) = O(z|n|−1) as z → 0,

where |n| := n0 + . . . + nm and P∗
k := { p ∈ Pk | p monic, p �≡ 0}. The vector

(p0, . . . , pm) is called Hermite-Padé form of type I, and its elements are the
Hermite-Padé polynomials of type I.

Definition 2 Hermite-Padé Polynomials of Type II (German polynomials
in K. Mahler’s terminology in [13]): For any multi-index n = (n0, . . . , nm) ∈ Nm+1

there exists a vector of polynomials (p0, . . . , pm) ∈ P∗
N0

× PN1 × . . . × PNm with
Nj := |n| − nj , j = 0, . . . , m, such that

(2) pi(z)fj(z) − pj(z)fi(z) = O(z|n|+1) as z → 0,

for i, j = 0, . . . , m, i �= j. The vector (p0, . . . , pm) is called Hermite-Padé form of
type II, and its elements are the Hermite-Padé polynomials of type II.

The assumption p0 ∈ P∗
n0−1 and p0 ∈ P∗

N0
implies a normalization of the whole

form (p0, . . . , pm) and (p0, . . . , pm), respectively. There may exist situations in
which a normalization by the first component is not possible, however, one of the
m + 1 components always is appropriate for normalization.

3. Definition of Hermite-Padé Approximants

With each of the two types of Hermite-Padé polynomials a specific type of
Hermite-Padé approximants is associated; these are the algebraic approximants in
case of type I polynomials and the simultaneous rational approximants in case of
type II polynomials. We start with the simultaneous rational approximants.

If f0(0) �= 0, then one can assume without loss of generality in Definition 2 that
f0 ≡ 1, and under this assumption the relations (2) reduce to

(3) p0(z)fj(z) − pj(z) = O(z|n|+1) as z → 0 for j = 1, . . . , m.

Defintion 3 Hermite-Padé Simultaneous Rational Approximants: For a
given multi-index n ∈ N

m+1 let p0, . . . , pm be the Hermite-Padé polynomials of
type II defined by (2) respectively (3). Then the vector of rational functions

(4)
(

p1

p0
(z), . . . ,

pm

p0
(z)
)
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with common denominator polynomial p0 is called (Hermite-Padé) simultaneous
rational approximant to the (reduced) system of functions fred = (f1, . . . , fm).

One immediately sees that for m = 1 in Definition 3 we have the Padé approx-
imant to f1 with numerator and denominator degrees (n1, n0).

As counterpart to the simultaneous rational approximants we have the algebraic
Hermite-Padé approximants, which are defined with the help of polynomials of
type I, but in their case the system of functions has to be an algebraic one.

Let f be a function analytic at the origin. We define the algebraic system of
functions f as

(5) f = (f0, . . . , fm) := (1, f, . . . , fm).

Defintion 4 Algebraic Hermite-Padé Approximants: For a given multi-
index n ∈ Nm+1 let p0, . . . , pm ∈ P∗

n0−1 × . . . × Pnm−1 be the Hermite-Padé
polynomials of type I defined by (1) with the special choice of (5). Let the algebraic
function y = y(z) be defined by the relation

(6)
m∑

j=0

pj(z)y(z)j ≡ 0.

From the m branches of y we select the branch y = yn that has the highest contact
to f at the origin; this branch yn is the algebraic Hermite-Padé approximant to f
associated with the multi-index n.

Again, it is immediate that for m = 1 Definition 4 leads to an Padé approximant,
but this time with numerator and denominator degrees (n0 − 1, n1 − 1).

4. The Special Case of the Exponential Function

In the talk we have reported about new research on asymptotics of Hermite-
Padé polynomials of both types associated with systems of exponential functions.
The order of the system is m = 2 and the multi-indices are all of the form
(n, . . . , n) ∈ N

m+1 with n ∈ N and n → ∞. Thus, we are dealing with qua-
dratic diagonal Hermite-Padé polynomials to the system f = (1, exp, exp2).

After the investigations in the classical period, from where we here only mention
[8], [11], [12], our specific line of research in Hermite-Padé approximants had been
taken up P. B. Borwein in [4], and more or less the same problem has been studied
from a point of view of special functions in [6] and [5]. In these later investigations
several questions about the asymptotic distribution of the zeros of the polynomials,
and especially about the asymptotic behavior of the larger zeros remained open,
and these open questions have triggered our new research.

The leading idea in this new research is a rescaling of the independent variable
in such a way that the zeros of the polynomials, which almost all normally diverge
to infinity, now have finite asymptotic distributions.

The rescaling method was introduced by G. Szegö in [20] for the investigation
of Taylor polynomials to the exponential function, and has later been taken up
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very successfully for the investigation of poles and zeros of Padé approximants by
E.B. Saff and R.S. Varga; the results interesting here can be found in [15]

With the rescaling method it has become possible to prove asymptotic relations
for quadratic Hermite-Padé polynomials. In these relations an algebraic function
of third degree and the associated Riemann surface play a central role.

The new results for polynomials of type I have just been appeared in [18], very
precise results about the asymptotic distributions of zeros will appear soon in
[19], and results about the asymptotic behavior of polynomials of type II are in
preparation.

An alternative approach to the asymptotic analysis based on a matrix Riemann-
Hilbert problem has been developed by A.B.J. Kuijlaars, W. Van Assche, and F.
Wielonsky in [9]. A survey of these results is contained in [10].

A generalisation of P. B. Borwein’s investigations in [4] to general m > 2 has
been done by F. Wielonsky in [21] and [22], and it has led to best results for the
measure of irrationality of the number e. Investigations of quadratic Hermite-Padé
approximants from a numerical point of view can be found in [16].
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42(1984), 299–386.



Funktionentheorie 387

[15] Saff, E.B. and Varga, R.S., On the zeros and poles of Padé approximants to ez III, Numer.
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ory 90(1997), 283–298.
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Entire functions with no unbounded Fatou components
Aimo Hinkkanen

Let f be a transcendental entire function of order less than 1/2. We introduce
a condition on the regularity of growth of f and show that it implies that every
component of the Fatou set of f is bounded.

The Fatou set F(f) of f is defined to be the set of those points z in the complex
plane C| that have a neighbourhood U such that the family {fn|U : n ≥ 1} of the
restrictions of the iterates fn of f to U is a normal family. The Julia set J (f) of
f is J (f) = C| \F(f).

I.N. Baker asked in 1981 whether every component of F(f) is bounded if the
growth of f is sufficiently small. This would then imply, in particular, that F(f)
has no Baker domains and no completely invariant components. The best possible
growth condition in terms of order would be of order 1/2, minimal type at most,
as shown by the functions f(z) = cos

√
εz + (3π/2)2, for 0 < ε < 3π, for which

F(f) has unbounded components. Baker proved that under this growth condition,
a component D of F(f) is bounded except possibly if it is a wandering domain
(that is, all fn(D) are contained in distinct components of F(f)) or if D or one
of its forward images is in a Baker domain cycle of length at least 2. Stallard
extended Baker’s result to cover Baker domain cycles of any length.

The problem remains if D is a wandering domain; one may then assume that
D is simply connected for otherwise all components of F(f) are bounded for other
reasons as shown by Baker.

A number of authors have shown that if f is a transcendental entire function of
order less than 1/2 satisfying an extra condition on the regularity of growth of the
maximum modulus M(r, f) then all wandering domains and hence all components
of F(f) are bounded. We prove that this conclusion holds if f has the following
additional property where m(r, f) denotes the minimum modulus of f : suppose
that there exist positive numbers R0, L, δ, and C with R0 > e, M(R0, f) > e,
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L > 1, and 0 < δ ≤ 1 such that for every r > R0 there exists t ∈ (r, rL] with

(1)
log m(t, f)
log M(r, f)

≥ L

(
1 − C

(log r)δ

)
.

One can ask whether every transcendental entire function of order less than
1/2 satisfies (1). This is still an open question. If we are not close to or inside an
annulus containing very few zeros of f , it would seem plausible that the condition
(1) should be easy to satisfy, with a wide margin, by taking t to be a value arising
from the cosπρ−theorem. This is because then log m(t, f)/ logM(t, f) is greater
than a fixed constant while log M(t, f)/ logM(r, f) should be quite large. So there
should be a potential problem at most if we are in an annulus where f behaves like
a polynomial. But in that case we should be able to take t close to rL, and then the
three numbers log m(t, f), log M(t, f), and L logM(r, f), should be close together.
There may be some error term required to estimate log m(t, f)/(L log M(r, f))
from below, but (1) allows for such a term.
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Parameter Space of the Exponential Family and Infinite-Dimensional
Thurston Theory
Markus Förster

(joint work with Lasse Rempe and Dierk Schleicher)

The talk deals with the investigation of the parameter space of the exponential
family

{Eκ : z �→ ez + κ; κ ∈ C/2πiZ } .

For each parameter κ we consider the dynamical system generated by iteration of
the function Eκ. The exponential family can be considered as a model family for
transcendental dynamics in the spirit of quadratic polynomials, for every Eκ has
only one singular value, the asymptotic value κ. We are interested in the set I of
parameters for which the singular value is escaping, i.e. for which κ is contained
in the set

I(Eκ) := {z ∈ C : |E◦n
κ (z)| → ∞ as n → ∞}
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of escaping points. We call such parameters escaping parameters. For the qua-
dratic family {pc : z �→ z2 + c}, the set of escaping parameters can be viewed
as a collection of external rays (parameter rays) which do or do not land on the
bifurcation locus, the boundary of the Mandelbrot set. The parameter rays are
the main tool of understanding the topological and bifurcation structure of the
Mandelbrot set. In the case of the exponential family the bifurcation locus

B := {κ : � ∃ neighborhood U � κ s.t. ∀κ′ ∈ U Eκ and Eκ′ are conjugated}
also turns out to be the boundary of I, and I is still a disjoint union of parameter
rays, see the theorem below.

The main idea to construct these parameter rays is to carry over structure
from the dynamic plane into the parameter plane. Dierk Schleicher and Johannes
Zimmer [SZ] have precisely described for any κ the set I(Eκ) of escaping points,
which consists of uncountably many dynamic rays gκ

s (t) going off to +∞ together
with some (but not all) end points of them. This gives rise to a combinatorial
description of I(Eκ): each escaping point can be assigned a unique pair (s, t) of
an integer sequence s ∈ ZN (which codes the ray gκ

s the point belongs to) and
a real number t ≥ ts (which determines the position on the ray), where ts ≥ 0
is independent of κ. The sequence s = (s1, s2, . . . ) is derived from itineraries,
i.e. symbolic dynamics, and the potential t indicates the speed of escape. Most
importantly, the combinatorial data (s, t) gives a precise prediction of the orbit of
z = gκ

s (t): for large n we have

(1) E◦n
κ (z) = F ◦n(t) + 2πisn+1 + O

(
(F ◦(n+1)(t))−1

)
,

where F (t) := et − 1. Moreover, the set X ⊂ ZN × R
+
0 of possible combinatorial

pairs, endowed with the discrete topology in the first coordinate and the usual
one in the second coordinate, is mapped for all κ bijectively onto I(Eκ) by the
continuous map

φκ(s, t) : X → I(Eκ) ; (s, t) �→ gκ
s (t)

except if κ is an escaping parameter. We extended this result to the parameter
space in the following sense.

Theorem (M. F., L. Rempe, D. Schleicher ’03) Let I be the set of escaping
parameters:

I := {κ : κ ∈ I(Eκ)} ,

the parameters for which the singular orbit escapes under Eκ. There is a contin-
uous bijection φ : X → I satisfying

φ(s, t) = κ ⇐⇒ gκ
s (t) = κ .

The maps Gs(t) := φ(s, t) are differentiable rays, which precisely form the path-
connected components of I.
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This result has been obtained by carefully estimating derivatives and winding
numbers of dynamic rays ([FS1], [FRS]). Since the proof is technical and impos-
sible to modify for any other setting, we reprove the existence and uniqueness of
every combinatorial pair (s, t) ∈ X using spider theory [FS2]. The spider algo-
rithm provides a constructive method of realizing given combinatorics and can be
implemented as a computer program. It provides a much more conceptual proof
which unlike the previous proof uses nothing but the asymptotics (1) of the escap-
ing singular orbits in the dynamic plane. Spider theory is inspired by Thurston’s
topological characterization of rational maps [DH]. It establishes a correspondence
between parameters assuming (s, t) ∈ X and fixed points of a certain self-mapping
on Teichmüller space, which is easily described in terms of pull-backs of spiders.
Spiders are a substantially simplified model of Teichmüller space. They have been
invented by John H. Hubbard and have been used by several people in several con-
texts. However, this is the first time that spiders are applied to a case of infinite
degree and an infinite-dimensional Teichmüller space.

The spiders constructed for this purpose are objects consisting of infinitely
many feet, which model the escaping singular orbit and represent the projection
into moduli space, as well as a leg attached to each foot modulo homotopy, which
models the dynamic ray associated to the respective orbit point. By the asymptotic
behavior (1) we have very good control of how the actual singular orbit and the
dynamic rays eventually have to behave if κ assumes the prescribed combinatorics.
This allows us to only consider legs and feet with rather special properties. The
iterated map on the space of spiders (spider map) is defined by pulling back the
spider along the inverse branches of Eκ as given by the entries of s, where κ is the
first foot.

Showing that the spider map possesses exactly one fixed point for a given pair
(s, t) ∈ X consists of finding an invariant compact subset of spiders in order to
apply the Banach fixed point theorem for the existence and a contraction argu-
ment for the uniqueness. The definition of the infinitesimal Teichmüller metric on
the spider space involves the discussion of L1-integrable meromorphic quadratic
differentials, which describe the cotangent space and give rise to the dual norm
on the tangent space. The push-forward of quadratic differentials turns out to be
adjoint to the spider map acting on the tangent space, so that the contraction of
the spider map can be understood in terms of mass loss of quadratic differentials.
In order to find a compact invariant subset we carefully construct a configuration
ofszi feet with definite estimates on absolute values and mutual distances as well
as estimates on winding numbers of the feet.
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Growth of harmonic functions in the unit disc and an application
Igor Chyzhykov

1. Analytic and harmonic functions in the unit disc. Let D = {z ∈ C :
|z| < 1}. We denote by A(D) the class of analytic function in D. For f ∈ A(D)
let M(r, f) = max{|f(z)| : |z| = r}, 0 < r < 1, T (r, f) = 1

2π

∫ 2π

0
log+ |f(reiθ)| dθ.

Usually, the orders of the growth of analytic functions in D are defined as

ρM [f ] = lim sup
r↑1

log+ log+ M(r, f)
− log(1 − r)

, ρT [f ] = lim sup
r↑1

log+ T (r, f)
− log(1 − r)

.

It is well known that ρT [f ] ≤ ρM [f ] ≤ ρT [f ] + 1, and all cases are possible.
In 1960th M. M. Djrbashian using the Riemann-Liouville fractional integral ob-

tained a parametric representation of the class of analytic (meromorphic) functions
f in D of finite order of the growth [Chap. IX, Dj].

Here we confine by the case when f(z) has no zeros and of finite order of the
growth, hence log |f(z)| is harmonic.

For ψ : [0, 2π] → R we define the modulus of continuity ω(δ; ψ) = sup{|ψ(x) −
ψ(y)| : |x − y| ≤ δ, x, y ∈ [0, 2π]}, δ > 0.

Following [HL, Z] we say that ψ ∈ Λγ if ω(δ; f) = O(δγ) (δ ↓ 0).
The fractional integral of order α > 0 for h : (0, 1) → R is defined by the

formulas [Dj, HL]

D−αh(r) =
1

Γ(α)

∫ r

0

(r − x)α−1h(x) dx, D0h(r) ≡ h(r).

Let H(D) be the class of harmonic functions in D.
We put uα(reiϕ) = r−αD−αu(reiϕ), where the fractional integral is taken on the
variable r. Let B(r, u) = max{u(z) : |z| ≤ r}.

Our starting point is the following theorem

Theorem B (M. Djrbashian). Let u ∈ H(D), α > −1. Then

(2) u(reiϕ) =
1
2π

∫ 2π

0

Pα(r, ϕ − θ) dψ(θ),

where ψ ∈ BV [0, 2π],

Pα(r, t) = Γ(1 + α)
(
� 2

(1 − reit)α+1
− 1

)
,
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if and only if

sup
0<r<1

∫ 2π

0

|uα(reiϕ)| dϕ < Mα.

Remark 1. Actually, for α = 0 it is the classical result of Nevanlinna on repre-
sentation of log |F (z)| when F ∈ N .

Remark 2. Note that P0(r, t) is the Poisson kernel; Pα(r, t) = Dα(rαP0(r, t)).

Applying methods from [Dj] and [HL] (see also [Chap.7, Z]), we prove the
following theorem (cf. Theorem 40 [HL]).

Theorem 1. Let u(z) ∈ H(D), α ≥ 0, 0 < γ < 1. Then u(z) has form (2) where
ψ is of bounded variation on [0, 2π], and ψ ∈ Λγ, if and only if

B(r, u) = O((1 − r)γ−α−1), r ↑ 1

and

sup
0<r<1

∫ 2π

0

|uα(reiϕ)| dϕ < +∞.

2. An application to growth of analytic functions. For ψ ∈ BV [0, 2π] we
denote

τ [ψ] = lim inf
δ↓0

log+ 1
ω(δ;ψ)

− log δ
≥ 0.

The quantity τ [ψ] compares ω(δ; ψ) with δγ as δ → 0.

Theorem 2. Let F ∈ A(D), and

log |F (reiϕ)| =
1
2π

∫ 2π

0

Pα(r, ϕ − t) dψ(t),

where ψ ∈ BV [0, 2π], τ [ψ] = τ ∈ [0, 1). Then ρM [F ] = α + 1 − τ , ρT [F ] ≤ α.
If, in addition, ψ is not absolutely continuous, then ρT [F ] = α.

Corollary. Suppose that the conditions of Theorem 2 hold, and τ = 0. Then
ρM [F ] = ρT [F ] + 1 = α + 1.
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On conformal invariants in problems of constructive function theory
V. V. Andrievskii

This is a survey of some recent results by the author and his collaborators in the
constructive theory of functions of a real variable. The results are achieved by the
application of methods and techniques of modern geometric function theory and
potential theory in the complex plane.

Let E ⊂ C be a compact set of positive logarithmic capacity cap(E) with
connected complement Ω := C\E with respect to C = C∪{∞}, gΩ(z) = gΩ(z,∞)
be the Green function of Ω with pole at infinity, and µE be the equilibrium measure
for the set E. The properties of gΩ and µE play an important role in many
problems concerning polynomial approximation of continuous functions on E and
the behavior of polynomials with a known uniform norm along E.

We discuss some of these problems for the case when E is a subset of the real
line R. The main idea of our approach is to use conformal invariants such as the
extremal length and module of a family of curves. The basic conformal mapping
can be described as follows.

Let E ⊂ [0, 1] be a regular set such that 0 ∈ E, 1 ∈ E. Then [0, 1] \ E =∑N
j=1(aj , bj), where N is finite or infinite.
Denote by H := {z : �(z) > 0} the upper half-plane and consider the function

F (z) = FE(z) := exp
(∫

E

log(z − ζ) dµE(ζ) − log cap(E)
)

, z ∈ H.

Using the reflection principle we can extend F to a function analytic in C\ [0, 1]
by the formula

F (z) := F (z), z ∈ C \ H.

F is univalent and maps C \ [0, 1] onto a (with respect to ∞) starlike domain
C \ KE with the following properties: C \ KE is symmetric with respect to the
real line R and coincides with the exterior of the unit disk with 2N slits.

Note that
gΩ(z) = log |F (z)|, z ∈ C \ E.

There is a close connection between the capacities of the compact sets KE and E,
namely

4cap(E)cap(KE) = 1.

The main idea of our results is the investigation of the local properties of the
Green function gΩ, i.e., local properties of conformal mapping F .

The lecture is organized as follows. In part 1 we describe the connection between
uniformly perfect subsets in R and John domains. It allows us to extend well-
known theorem about constructive description of functions with a given majorant
of their best uniform polynomial approximations to the case of C-dense compact
subset of R.

In part 2 we give sharp uniform bounds for exponentials of logarithmic po-
tentials if the logarithmic capacity of the subset, where they are at most 1, is
known.
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In part 3 we give a new interpretation (and a generalization) of recent remark-
able result by Totik [7] concerning the smoothness properties of gΩ and µE . We
also demonstrate that if for E ⊂ [0, 1] the Green function satisfies the 1/2-Hölder
condition locally at the origin, then the density of E at 0, in terms of logarithmic
capacity, is the same as that of the whole interval [0, 1].

In part 4 the Nikol’skii-Timan-Dzjadyk theorem concerning polynomial approx-
imation of functions on the interval [−1, 1] is generalized to the case of approxi-
mation of functions given on a compact set on the real line.

A new necessary condition and a new sufficient condition for the approximation
of the reciprocal of an entire function by reciprocals of polynomials on [0,∞) with
geometric speed of convergence are provided in part 5.
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Dynamics on fractal spheres
Mario Bonk

The point of this talk was to argue the dynamics of Kleinian groups on the 2-
sphere and the dynamics of a rational function under iteration lead to closely
related problems in the theory of analysis on metric spaces.

We first introduce a setting for Kleinian groups that can be considered as the
“standard picture” in this respect. Let M be a closed hyperbolic 3-orbifold, and
Γ = π1(M) the fundamental group of M . The universal covering space of M is
hyperbolic 3-space H3, the group Γ acts on H3 by deck transformations, and the
orbifold is given by the quotient M = H3/Γ.

The action Γ � H3 is isometric, discrete, and cocompact. Let us call a group
standard if it admits an action on H3 with these properties. The basic problem is
to characterize this standard situation from the point of view of geometric group
theory.

There is a well-developed theory due to Gromov of groups that resemble fun-
damental groups of negatively curved manifolds [Gr]. These groups are called
hyperbolic (in the sense of Gromov) [GhHa]. If Γ is a group as above, then Γ
is hyperbolic and its boundary at infinity ∂∞Γ is homeomorphic to the standard
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2-sphere S
2 (abbreviated ∂∞Γ ≈ S

2). According to a conjecture by Cannon [Ca]
this should characterize standard groups.

Cannon’s conjecture. Suppose G is a Gromov hyperbolic group with ∂∞G ≈ S2.
Then G is standard.

In this situation it is enough to show that ∂∞G is homeomorphic to S2 by a
quasisymmetric homeomorphism (abbreviated ∂∞G

qs≈ S2). Indeed, G acts in a
natural way on ∂∞G by uniformly quasi-Möbius homeomorphisms. If ∂∞G

qs≈ S2,
then this action G � ∂∞G conjugates to an action G � S2 of G on the standard
2-sphere by uniformly quasiconformal homeomorphisms. A well-known theorem
due to Sullivan [Su] and to Tukia [Tu] then implies that this action is conjugate to
an action of G on S2 by Möbius transformations. From this it easily follows that
G is standard.

We are lead to the general problem when a fractal 2-sphere such as ∂∞G in the
above situation is quasisymmetrically equivalent to the standard 2-sphere. This
question was studied by B. Kleiner and myself [BK1]. As an application of our
results we obtained the following partial result for Cannon’s conjecture.

Theorem 1. Suppose G is a Gromov hyperbolic group with ∂∞G ≈ S2. If there
exists an Ahlfors 2-regular 2-sphere Z such that ∂∞G

qs≈ Z, then G is standard.

Recall that a (compact) metric space Z is called Ahlfors Q-regular for Q > 0
if the Hausdorff Q-measure of small balls B(a, R) in Z behaves like RQ up to
multiplicative constants independent of the balls.

A stronger result can be obtained by using the concept of the Ahlfors regular
conformal dimension dimAR X of a metric space X . By definition this is the
infimum of all numbers Q > 0 for which there exists an Ahlfors Q-regular space Y

with X
qs≈ Y . Whenever X is the boundary of a Gromov hyperbolic group G, the

set of these numbers Q is nonempty. In particular, dimAR ∂∞G is well defined,
and it is not hard to show that dimAR ∂∞G is at least as large as the topolgical
dimension of ∂∞G.

Theorem 2 [BK2]. Suppose G is a Gromov hyperbolic group with ∂∞G ≈ S
2.

If there exists an Ahlfors Q-regular 2-sphere Z such that ∂∞G
qs≈ Z and Q =

dimAR ∂∞G, then G is standard.

In other words, if the infimum by which dimAR ∂∞G is defined is attained as a
minimum, then G is standard. Note that Theorem 2 contains Theorem 1, because
we have dimAR ∂∞G ≥ 2.

In view of these results it seems worthwhile to study the general question when
the Ahlfors regular conformal dimension of a fractal 2-sphere is attained as a
minimum. Interesting examples are provided by post-critically finite rational maps
R on the Riemann sphere C. The analog of the standard picture in the Kleinian
group case is given by the following setting.

Let R C → C a holomorphic map of C into itself, i.e., a rational function. Let
ΩR denote the set of critical points of R, and PR =

⋃
n∈N

Rn(ΩR) be the set of
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post-critical points of R (here Rn denotes the nth iterate of R). We make the
following assumptions on R:

(i) R is post-critically finite, i.e., PR is a finite set,
(ii) R has no periodic critical point; this implies that JR = C for the Julia set

of R,
(iii) the orbifold OR associated with R is hyperbolic (see [DoHu] for the defini-

tion of OR); this implies that the dynamics of R on JR = C is expanding.

A characterization of post-critically finite rational maps is due to Thurston. The
right framework is the theory of topologically holomorphic self-maps f S2 → S2

of the sphere. By definition these maps have the local form z �→ zn with n ∈ N

in appropriate local coordinates, and one defines the critical set, the post-critical
set, and the associated orbifold similarly as for rational maps. In our context,
Thurston’s theorem can be stated as follows [DoHu]:

Theorem (Thurston). Let f S2 → S2 be a post-critically finite topologically holo-
morphic map with hyperbolic orbifold. Then f is equivalent to a rational map R
if and only if f has no “Thurston obstructions”.

Equivalence has to be understood in an appropriate sense. If f and R are both
expanding, this just means conjugacy of the maps.

The definition of a Thurston obstruction is as follows. A multicurve Γ =
{γ1, . . . , γn} is a system of Jordan curves in S2 \ Pf with the following proper-
ties: the curves have pairwise empty intersection, are pairwise non-homotopic in
S2 \ Pf , and non-peripheral (this means that each of the complementary compo-
nents of a curve contains at least two points in Pf ). A multicurve Γ is called
f -stable if for all j every component of f−1(γj) is either peripheral or homotopic
in S2 \ Pf to one of the curves γi.

If Γ is an f -stable multicurve, fix i and j and label by α the components γi,j,α

of f−1(γj) homotopic to γi in S2 \ Pf . Then f restricted to γi,j,α has a mapping

degree di,j,α ∈ N. Let mi,j =
∑
α

1
di,j,α

and define the Thurston matrix A(Γ) of

the f -stable multicurve Γ by A(Γ) = (mij). This is a matrix with nonnegative
coefficients; therefore, it has a largest eigenvalue λ(f, Γ) ≥ 0. Then Γ is a Thurston
obstruction if λ(f, Γ) ≥ 1.

Post-critically finite rational maps are related to subdivision rules [CFP]. For
example, if R is a real rational map (i.e, R(R) ⊆ R) satisfying the above conditions
(i)–(iii), then R−1(R) is a graph providing a subdivision of the upper and lower
half-planes whose combinatorics determines R (up to conjugacy by a real Möbius
transformation). The combinatorics of the graphs R−n(R) is determined by iter-
ating the subdivisions of the upper and lower half-planes by the complementary
components of R−1(R) n-times. One can ask whether every rational map satisfy-
ing (i)–(iii) (or at least a sufficiently high iterate) is associated with a (two-tile)
subdivision rule. This reduces to the following problem.

Problem. Let R be a rational function satisfying (i)–(iii). Does there exist a
quasicircle C ⊆ C such that PR ⊆ C and C ⊆ R−1(C)?
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Conversely, one can start with a (two-tile) subdivision rule of the sphere S
2. One

can associate a natural (class of) metric(s) on S2 associated with a subdivision rule
(of appropriate type). If we denote by X the sphere S2 equipped with this metric,
then the subdivision rule produces a topologically holomorphic expanding map
fX → X which is post-critically finite. It turns out that f is conjugate to a rational
function R if and only if X

qs≈ S2. So we have a situation that is very similar to the
Kleinian group setting. In view of this it would be very interesting to find dimAR X
for these fractal spheres. In discussions with L. Geyer and K. Pilgrim we were
lead to a conjecture on the Ahlfors regular conformal dimension of these spaces
X . To state this conjecture let Q ≥ 2 and Γ be an f -stable multicurve, define the

modified Thurston matrix A(Γ, Q) as A(Γ, Q) = (mQ
i,j), where mQ

ij =
∑

α

1

dQ−1
i,j,α

,

and let λ(f, Γ, Q) be the largest nonnegative eigenvalue of A(Γ, Q).
Conjecture. If X comes from a subdivision rule with associated expanding map
f , then dimAR X is the infimum of all Q ≥ 2 such that λ(f, Γ, Q) < 1 for all
f -stable multicurves Γ. Moreover, dimAR X is never attained unless X

qs≈ S2.
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Inverse Source Problem in a 3-D Ball from Meromorphic
approximation on 2-D Slices

L. Baratchart
(joint work with J. Leblond and E.B. Saff)

1. Notations and Preliminaries

Let T be the unit circle, D the unit disk, PK the set of probability measures on
a compact set K, Pn the space of algebraic polynomials of degree ≤ n, H∞ the
Hardy space of the disk, H∞

n = {h/qn; h ∈ H∞, qn ∈ Pn} the set of meromorphic
functions with n poles in D that are bounded near the boundary, Ω the unit ball
of R3 and S2 the unit sphere.

The Green capacity of K is the nonnegative number CT,K given by

1
CT,K

= inf
µ∈PK

∫ ∫
log

∣∣∣∣1 − t̄z

z − t

∣∣∣∣ dµ(t)dµ(x).

If CT,K > 0, there is a unique measure ωK ∈ PK to meet the infimum, called
the Green equilibrium measure on K. The measure ωK is difficult to compute in
general, but charges the endpoints if K is a system of arcs. We need the notion
of extremal domain, which is specialized below to the case of a disk

Theorem [8] Let f be holomorphic in Cε = {z; 1 − ε < |z| < 1} and continuous
in Cε. Set

Vf = {V ; V connected open in D with Cε ⊂ V, f extends holomorphically to V }.
There is a unique Vm ∈ Vf such that CT,D\Vm

= infV ∈Vf
CT,D\V which contains

every other member of Vf with this property.

We shall be concerned here with the class :

BLP
∆= {f continuous in Cε, holomorphic in

◦
Cε,can be continued analytically in

D except for finitely many poles,branchpoints, and log singularities}
For such functions, more is known on the structure of extremal domains.

Theorem [9] If f ∈ BLP, then D \ Vf consists of its poles, its branchpoints,
its log singularities, and finitely many analytic cuts. A cut ends up either at a
branchpoint, a log singularity, or at an end of another cut. The diagram thus
formed has no loop.

For more than two points, D\Vf is a trajectory of a rational quadratic differen-
tial, but there is no easy computation. The situation is similar to that in problems
of Tchebotarev-Lavrentiev type, where one must find the continuum of minimal
capacity that connects prescribed groups of points [6, 7]. The difference is that,
here, the connectivity is not known a priori.
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2. Meromorphic Approximation

By a best meromorphic approximant with at most n poles of f , we mean some
gn ∈ H∞

n such that :

‖f − gn‖L∞(T) = inf
g∈H∞

n

‖f − g‖L∞(T).

Clearly this notion is conformally invariant.
By the Adamjan-Arov-Krein theory [1], a best meromorphic approximant with

at most n poles uniquely exists provided that f ∈ C(T). Moreover, it can be com-
puted from the singular value decomposition of the Hankel operator with symbol
f .

If gn is the sequence of best meromorphic approximants to f , whose poles are
numbered as ξj , n for 1 ≤ j ≤ dn ≤ n, we form the sequence of counting probability
measures µn =

∑
j δξj,n/dn.

Theorem [2] If f ∈ BLP is not single-valued, the counting measure µn of the poles
of its best meromorphic approximants converges weak* to the Green equilibrium
distribution of D\Vf . Moreover, each neighborhood of a pole of f contains at least
one pole of the approximant as n → ∞, and only finitely many poles can remain
in a compact subset of Vf .

3. An Inverse Source Problem in 3-D.

If we are given m1 monopolar sources S1, . . . , Sm1 and m2 dipolar sources
C1, . . . , Cm2 in Ω, the potential u satisfies :

−∆u = F in Ω

∂u

∂ν |S2

= φ current flux

u|S2
= g electric potential

F =
m1∑
j=1

λj δSj +
m2∑
k=1

pk .∇ δCk

The inverse problem is to locate the monopolar sources Sj with their intensities
λj and the dipolar sources Ck with their momentums pk from the knowledge of
Φ and u on S2. Such problems arise in Electro-Encephalography, see for instance
[3, 5].

The fundamental solution is (4π‖X‖)−1 so the potential assumes the form :

u(X) = h(X) −
m1∑
j=1

λj

4π ‖X − Sj‖+3
m2∑
k=1

< pk , X − Ck >

4π ‖X − Ck‖3

where h is harmonic. Using the Green formula and the expansion into spherical
harmonics, one can then recover h|S2

, although we do not explain this in details
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here. This is just to say we can assume h = 0 by subtraction. We shall assume
that all sources lie in general position, in the sense that none of them lies on the
vertical axis {x = y = 0}.

Put : ξj = xSj + iySj where Sj = (xSj , ySj , zSj)T , ξk = xCk
+ iyCk

where
Ck = (xCk

, yCk
, zCk

)T , and let the dipolar moments be expressed in coordinates
as : pk = (pk,x, pk,y, pk,z).

When we slice the ball Ω along the horizontal plane {z = zp}, the intersection
with Ss is a circle Cp of radius rp with r2

p = 1 − z2
p. If we let ξ = x + iy be the

complex variable in the plane {z = zp}, the restriction g|Cp
is the trace on Cp of

the function f(ξ) given by

i

4 π
×
− m1∑

j=1

Λj,p

(ξ − ξ−j,p)1/2
+ 3

m2∑
k=1

Rk,p(ξ)
(ξ − ξ−k,p)3/2


where

Ql,p(ξ) = |ξ − ξl|2 + (zp − zl)2 = −1
ξ

ξl (ξ − ξ−l,p) (ξ − ξ+
l,p), l = {j, k},

with
|ξ−l,p| < rp, |ξ+

l,p| > rp, ξ−l,p/ξl ∈ R, ξ+
l,p/ξl ∈ R

and where

Λj,p =
λj

√
ξ√

ξj(ξ − ξ+
j,p)

,

Rk,p(ξ) =

√
ξ
[
p̃kξ2 + 2(pk,zhp,k − Re {p̃kξk})ξ + p̃k r2

p

]
2
√

ξk(ξ − ξ+
j,p)3/2

with
p̃k = pk,x − ipk,y and hp,k = zp − zk.

Although f(ξ) may not lie in BLP, its square does. We can in principle locate the
branchpoints using the convergence of poles in meromorphic approximation from
the previous section. To solve the inverse problem, it remains to connect ξ−l,p with
the original sources :

Proposition For f as above, each branchpoint ξ−j,p or ξ−k,p has maximum modulus
when zp = zSj in which case they coincide with the corresponding source.
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Introduction by the Organisers

What is the state-of-the-art of abstract spectral and eigenvalue theory for non-
linear operators, and how may this theory be applied to nonlinear equations in-
volving the p-Laplace operator? These two questions have provided the main focus
of the Mini-Workshop. Accordingly, the main topics covered by the talks on this
Mini-Workshop have been

• spectra for nonlinear operators,
• nonlinear eigenvalue problems, and
• equations involving the p-Laplace operator.

Of course, these three topics are not mutually independent, but there are various
interconnections between them which are of particular interest. For example,
sets of eigenvalues (point spectra) may be regarded, as in the linear case, as an
important part of the spectrum; conversely, nonlinear eigenvalue theory is one of
the historical roots of nonlinear spectral theory. Moreover, the p-Laplace operator
is one of the most interesting homogeneous (though nonlinear) operators which
may not only serve as a “model operator” in nonlinear eigenvalue problems, but
also occurs quite frequently in various applications to physics, mechanics, and
elasticity.
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The aim and scope of the Mini-Workshop was to bring together experts on non-
linear spectral analysis and operator theory, on the one hand, and more application-
oriented specialists in eigenvalue problems for nonlinear partial differential equa-
tions (like the p-Laplace equation), on the other. As a result, 15 leading experts in
the field from 10 different countries discussed recent progress and open problems
in the theory, methods, and applications of spectra and eigenvalues of nonlinear
operators.
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Abstracts

Asymmetric Eigenvalue Problems with Weights for the p-laplacian
with Neumann Boundary Conditions

M. Cuesta (Calais)
(joint work with M. Arias (Granada), J.-P. Gossez (Bruxelles))

The motivation of this work is the study of

(1) −∆pu = f(x, u) in Ω, ∂u
∂n = 0 on ∂Ω,

where ∆pu := div(|∇u|p−2∇u), 1 < p < ∞, and Ω is a bounded smooth do-
main of RN and |f(x, s)| ≤ a(x)|s|p−1 + b(x) with a, b belonging to suitable
Lebesgue spaces. Our ultimate goal is to find optimal conditions on the lim-
its at +∞ and −∞ of the quotients f(x, s)/|s|p−2s and pF (x, s)/|s|p (where
F (x, s) :=

∫ s

0
f(x, t) dt) as s → +∞ and s → −∞ to assure solvability of (1).

When considering m(x) = lims→+∞
f(x,s)
|s|p−2s , n(x) = lims→−∞

f(x,s)
|s|p−2s , we are

lead to study weighted asymmetric eigenvalue problems of the form

(2) −∆pu = λ(m(x)(u+)p−1 − n(x) (u−)p−1) in Ω, ∂u
∂n = 0 on ∂Ω

We will always assume that the weights m(x) and n(x) are possibly non constant,
different, indefinite and belong to Lr(Ω) where r > N/p if p ≤ N and r = 1 if
p > N . We will also assume that m+ and n+ �≡ 0 and we are only interested on
positive eigenvalues. Notice that 0 is always an eigenvalue of (2).

The case m(x) ≡ n(x) have been studied [5]. When m(x) are n(x) are constant
and different, (2) leads to the notion of Fučik spectrum and the so-called problems
of Ambrosetti-Prodi type. Analogous problems (1) and (2) have been treated with
Dirichlet boundary conditions by [1].

The study of (2) start with the following symmetric eigenvalue problem

(3) −∆pu = λm(x)|u|p−2u in Ω, ∂u
∂n = 0 on ∂Ω.

The following value introduced by [5] plays a crucial role:

λ∗(m) := inf{
∫

Ω

|∇u|p dx :
∫

Ω

m |u|p dx = 1}.

which satisfies: (1) If
∫
Ω m dx < 0 then λ∗(m) > 0 is the unique non zero princi-

pal eigenvalue, it admits a non negative eigenfunction and there is no eigenvalue
on ]0, λ∗(m)[. (2) If

∫
Ω

m dx > 0 then λ∗(m) = 0 is the unique non negative
principal eigenvalue and (3) If

∫
Ω m dx = 0 then λ∗(m) = 0 is the unique prin-

cipal eigenvalue. Besides a sequence of eigenvalues can be constructed using the
Ljusternik-Schnirelmann critical point theory, cf. [3].

It follows straightforward that the principal eigenvalues of (2) are λ = λ1(m)
and λ = λ1(n). We present in this work a construction of a non principal eigenvalue
of (2) by considering the functionals A(u) :=

∫
Ω |∇u|p, Bm,n(u) :

∫
Ω(m(u+)p +
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n(u−)p) and Ã the restriction of A to the C1 manifold Mm,n := {u ∈ W 1,p
0 (Ω) :

Bm,n(u) = 1}. We prove

Theorem 1. Let Γ := {γ ∈ C([0, 1], Mm,n) : γ(0) ≤ 0 and γ(1) ≥ 0}. Then
(1) Γ �= ∅.
(2) The value c(m, n) := infγ∈Γ maxu∈γ[0,1] Ã(u) is an eigenvalue of (2) which

satisfies
c(m, n) > max{λ∗(m), λ∗(n)}.

(3) There is no eigenvalues of (2) between max{λ∗(m), λ∗(n)} and c(m, n).

The proof of this theorem relies on a critical point theorem of [2] for C1 function-
als restricted to C1-manifolds that satisfy the Palais-Smale condition of Cerami
(denoted (PSC) for short). This is one of main issues of the paper. Presicely
we can prove that (1) Ã satisfies (PS)c along bounded sequences ∀c ≥ 0, (2) Ã

satisfies (PSC)c ∀c > 0, (3) if
∫
Ω

m dx �= 0 and
∫
Ω

n dx �= 0 then Ã satisfies (PS)c

for all c ≥ 0, (4) if
∫
Ω

m dx = 0 or
∫
Ω

n dx = 0 then Ã does not satisfy (PSC)0
and (5) if p = 2 then Ã satisfies (PS)c for all c > 0.

As an application of our main theorem we study the Fučik spectrum with
weights. This spectrum is defined as the set Σ(m, n) of those (α, β) ∈ R2 such
that

(4) −∆pu = αm(x)(u+)p−1 − βn(x)(u−)p−1 in Ω, ∂u
∂n = 0 on ∂Ω

has a nontrivial solution. If we denote by Σ∗(m, n) the set Σ(m, n) amputed of
the lines {λ∗(m)}×R et R×{λ∗(n)}, we prove that for any s > 0, the line β = sα
in the (α, β) plane intersects Σ∗(m, n) ∩ (R+ × R+). Moreover the first point in
this intersection is given by α(s) = c(m, sn), β(s) = sα(s).

We obtain in this way a first curve C := {(α(s), β(s)) : s > 0} in Σ∗(m, n) ∩
(R+ × R+).
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Antimaximum principle and Fučik spectrum
J.-P. Gossez (Bruxelles)

It is well-known that the antimaximum principle holds uniformly for the problem

(5)

{
−u′′ = λu + h(x) on ]0, π[,
u′(0) = u′(π) = 0,

and that the interval of uniformity is λ ∈]0, 1/4[. It is also well-known that the
first curve in the Fučik spectrum for the problem

(6)

{
−u′′ = αu+ − βu− on ]0, π[,
u′(0) = u′(π) = 0

exhibits a gap at infinity with respect to the trivial horizontal and vertical lines,
and that the value of this gap is equal to 1/4. When the Neumann conditions
are replaced in (5) and (6) by the Dirichlet conditions, the antimaximum principle
does not hold uniformly and there is no gap at infinity in the Fučik spectrum.

It is our purpose in this talk to survey some results which show that the above
qualitative and quantitative correspondance between “uniformity of the antimax-
imum principle” and “gap at infinity in the Fučik spectrum” holds in various
other situations (general elliptic operators, p-laplacian). However it does not hold
anymore in general when weights are introduced.
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The Fredholm alternative for the p-Laplacian: bifurcation from
infinity, existence and multiplicity

P. Drábek (Rostock), P. Girg (Plzeň), P. Takáč (Rostock)

We discuss the existence and multiplicity of solutions to the following boundary-
value problem for the Dirichlet p-Laplacian in a bounded domain Ω ⊂ RN :

(7)
{ −∆pu − λ |u|p−2

u = f(x) in Ω ;
u = 0 on ∂Ω .

Here, ∆pu
def= div (|∇u|p−2 ∇u) where p ∈ (1,∞) is a fixed number, f ∈ L∞(Ω),

and λ ∈ R is spectral parameter. Given λ ∈ R, the solvability of (7) is closely
related to the existence of a nontrivial solution of the corresponding eigenvalue
problem

(8)
{ −∆pu = λ |u|p−2

u in Ω ;
u = 0 on ∂Ω ,

which is nonlinear if p �= 2 and linear for p = 2.
The first results applicable to the solvability of (7) go back to the works of

Fuč́ık et al. [10] and Pohozaev [11]: If λ ∈ R is not an eigenvalue of (8) then
(7) has at least one solution for any f ∈ W−1,p′

(Ω), p = p/(p − 1).
Let λ1 > 0 be the principal eigenvalue of −∆p subject to homogeneous Dirichlet

boundary conditions. We concentrate on the behavior of the solutions under the
assumption that λ is near λ1 (and possibly λ = λ1). Our main tool combines
bifurcation theory and asymptotic estimates.

We first motivate our results by considering the linear boundary value problem

(9)
{−∆u − λu = f in Ω ;

u = 0 on ∂Ω ,

which corresponds to p = 2 in (7). Let f ∈ L2(Ω) be given, f �≡ 0. Then the set of
all pairs (λ, u) ∈ (−∞, λ2)×W 1,2

0 (Ω) that satisfy (9) can be interpreted by means
of a bifurcation diagram in R×W 1,2

0 (Ω). Namely, let us write u = cϕ1 + u� with∫
Ω u�ϕ1 dx = 0. Here, ϕ1 is the eigenfunction of the positive Dirichlet Laplacian
−∆ associated with the (simple) principal eigenvalue λ1 that is normalized by
ϕ1 > 0 in Ω and

∫
Ω

ϕ2
1 dx = 1, and λ2 stands for the second eigenvalue of −∆.

Then problem (9) is equivalent to{−∆u� − λu� + (λ1 − λ)cϕ1 = f� + aϕ1 in Ω ;

u� = 0 on ∂Ω ,

where
∫
Ω f�ϕ1 dx = 0 and a =

∫
Ω fϕ1 dx. Clearly, (λ1 − λ)c = a. The linear

Fredholm alternative implies that the problem{−∆u� − λu� = f� in Ω ;

u� = 0 on ∂Ω ,
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has a unique solution u� ∈ W 1,2
0 (Ω) with

∫
Ω u�ϕ1 dx = 0. We have the following

two different cases:
(i) If

∫
Ω

fϕ1 dx = 0 then
(a) for any λ ∈ (−∞, λ1) ∪ (λ1, λ2), problem (9) has a unique solution uλ =

u�;
(b) for λ = λ1, all solutions of problem (9) can be written in the form

uλ1 = cϕ1 + u� with c ∈ R arbitrary.
(ii) If

∫
Ω

fϕ1 dx �= 0 then
(a) there is no solution of (9) for λ = λ1;
(b) for any λ ∈ (−∞, λ1)∪(λ1, λ2) there is a unique solution of (9) expressed

by uλ = cϕ1 + u� where

c = (λ1 − λ)−1
∫
Ω

fϕ1 dx.

The solution pairs (λ, u) ∈ R × W 1,2
0 (Ω) of (9) can thus be sketched in the

bifurcation diagrams indicated in Figure 1

c

λλ2λ1

∫
Ω

fϕ1 dx < 0

c

λλ2λ1

∫
Ω

fϕ1 dx = 0

c

λλ2
λ1

∫
Ω

fϕ1 dx > 0

Figure 1. Bifurcations from infinity of solutions to (9), c
def=
∫
Ω uϕ1 dx.

Motivated by this picture of the solution set of (9), we have decided to study
the nonlinear problem (7) for p �= 2 and to investigate the solution pairs (λ, u) ∈
R × W 1,p

0 (Ω) for λ near λ1. Again, ϕ1 is the eigenfunction of the positive p-
Laplacian associated with λ1 and normalized by ϕ1 > 0 and

∫
Ω ϕp

1 dx = 1. Notice
that a =

(∫
Ω

ϕ2
1 dx

)−1 ∫
Ω

fϕ1 dx.

The existence of solutions (λ, u) ∈ R × W 1,p
0 (Ω) to (7) with λ → λ1 and

‖u‖W 1,p
0 (Ω) → ∞ is guaranteed by Dancer’s type global bifurcation result for bifur-

cations from infinity at λ = λ1. Roughly speaking, two continua C± ⊂ R×W 1,p
0 (Ω)

of solutions to (7) emanate from (λ1,∞). Moreover, λ → λ1, ‖u‖W 1,p
0 (Ω) → ∞

and u ∈ C± imply u/ ‖u‖W 1,p
0 (Ω) → ±ϕ1/ ‖ϕ1‖W 1,p

0 (Ω). If there is no sequence
{(λ1, un)}∞n=1 of solutions to (7) such that ‖un‖W 1,p

0 (Ω) → ∞, these two continua
satisfy some very important global properties in addition; we refer to [4, 8] for a
precise statement of this result.

We will establish an asymptotic estimate that plays the key role in the study
of the structure of the solution set to (7). We assume 1 < p < ∞, p �= 2, if



416 Oberwolfach Report 8/2004

not explicitely mentioned otherwise. From now on, we denote by λ2 (λ2 > λ1)
the second eigenvalue of the positive Dirichlet p-Laplacian −∆p. We use only the
well-known fact from [2] that there is no eigenvalue of −∆p in the open interval
(λ1, λ2), by a variational characterization of λ2. All results presented here have
been proved and reported in [8].

For the behavior of solutions u with large norm, the following a priori estimate
plays the key role. We introduce some notation first. We introduce a new norm
on W 1,p

0 (Ω) by

‖v‖Dϕ1

def=
(∫

Ω
|∇ϕ1|p−2 |∇v|2 dx

)1/2

for v ∈ W 1,p
0 (Ω),(10)

and denote by Dϕ1 the completion of W 1,p
0 (Ω) with respect to this norm. The

Hilbert space Dϕ1 is compactly imbedded in the Lebesgue space L2(Ω); see [13,
Lemma 4.2]. It is also shown there that the seminorm (10) is in fact a norm on
W 1,p

0 (Ω), if 2 < p < ∞. For the case 1 < p < 2 the space Dϕ1 needs to be
redefined. We do not need it for the formulation of any theorem here. Therefore
its definition is omitted though it plays a key role in the proofs (see [8, 12, 13] for
details).

For the sake of brevity, we also define

Aϕ1

def= |∇ϕ1|p−2

(
I + (p − 2)

∇ϕ1 ⊗∇ϕ1

|∇ϕ1|2
)

for ∇ϕ1 ∈ R
N , ∇ϕ1 �= 0 ∈ R

N ,

with I being the n × n identity matrix and ⊗ the tensor product.

c

λ

1 < p < 2

c

λ

p > 2

Figure 2. A priori bounds and bifurcations from infinity of so-
lutions to (7) for p > 1, p �= 2 and a = 0 . There is no solution in
the shaded regions (owing to a priori bounds).

Theorem 2. ( [8, Thm. 4.1]) Let {µn}∞n=1 ⊂ R, {fn}∞n=1 ⊂ L∞(Ω), {un}∞n=1 ⊂
W 1,p

0 (Ω) be sequences, and let δ > 0 be such that

(i) λ1 + µn < λ2 − δ for all n ∈ N;
(ii) fn

∗
⇀ f weakly-star in L∞(Ω);

(iii) ‖un‖W 1,p
0 (Ω) → ∞ as n → ∞;

(iv) in addition, assume that for all n ∈ N and φ ∈ W 1,p
0 (Ω),
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(11)
∫

Ω

|∇un|p−2 〈∇un,∇φ〉dx = (λ1 + µn)
∫

Ω

|un|p−2
un φdx +

∫
Ω

fn φdx .

Then µn → 0 and, writing un = t−1
n (ϕ1 + v�n ) with tn ∈ R, tn �= 0, and

v�n ∈ W 1,p
0 (Ω)�, we have tn → 0, |tn|−p

tn v�n → V � strongly in Dϕ1 if p > 2 and
in W 1,2

0 (Ω) if 1 < p < 2, and

µn = − |tn|p−2
tn

∫
Ω

fn ϕ1 dx + (p − 2) |tn|2(p−1) Q0(V �, V �)

+ (p − 1) |tn|2(p−1)

(∫
Ω

f ϕ1 dx

)(∫
Ω

ϕp−1
1 V � dx

)
+ o

(
|tn|2(p−1)

)
.

(12)

In particular, if
∫
Ω

fn ϕ1 dx = 0 for all n ∈ N, then

µn = (p − 2) |tn|2(p−1) Q0(V �, V �) + o
(
|tn|2(p−1)

)
.

Moreover, V � ∈ Dϕ1 ∩ {ϕ1}⊥,L2
is the (unique) solution to

2 · Q0(V �, φ) =
∫

Ω

f † φdx for all φ ∈ Dϕ1 ,(13)

where we have denoted

2 · Q0(V �, φ) =
∫

Ω

〈
Aϕ1∇V �, ∇φ

〉
dx − λ1 (p − 1)

∫
Ω

ϕp−2
1 V � φdx

and f † = f − (∫Ω f ϕ1 dx
)
ϕp−1

1 .

Remark 1. The linear equation (13) represents the weak form of the “limiting”
Dirichlet boundary value problem for the limit function |tn|−p

tn v�n → V � in
the approximation scheme with un = t−1

n (ϕ1 + v�n ). This is a resonant problem
to which a standard version of the Fredholm alternative for a selfadjoint linear
operator in a Hilbert space applies. More precisely, given a function f ∈ L2(Ω), a
weak solution V ∈ Dϕ1 to the equation

2 · Q0(V, φ) =
∫
Ω

f φdx for all φ ∈ Dϕ1 ,(14)

exists in Dϕ1 if and only if
∫
Ω

f ϕ1 dx = 0. Such a solution is always unique under
the orthogonality condition

∫
Ω

V ϕ1 dx = 0.
Note that (14) written in divergent form reads as follows (see e.g. [8, 12, 13])

div (Aϕ1∇V �) − λ1ϕ
p−2
1 V � = f in Ω ;

V � = 0 on ∂Ω ;∫
Ω

V �ϕ1 = 0 .

Remark 2. In fact we also use a variant of Theorem 2 (see [8, Cor. 4.4] for
details) in order to prove the following uniform result.
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Let K be a closed bounded ball in L∞(Ω). Assume that fn ≡ f (n = 1, 2, . . . ) and
tn → 0 as n → ∞. Then there exists a sequence {ηn}∞n=1 ⊂ (0, 1), ηn → 0 as
n → ∞, such that for all f ∈ K and for all n = 1, 2, . . . we have∣∣∣∣|tn|−2(p−1)

(
µn − |tn|p−2

tn

∫
Ω

f ϕ1 dx

)
− (p − 2) · Q0(V �, V �)

− (p − 1)
(∫

Ω

f ϕ1 dx

)(∫
Ω

ϕp−1
1 V � dx

)∣∣∣∣ ≤ ηn.

(15)

The main results concerning the asymptotic behavior of the solution set to (7)
as λ → λ1 are sketched in Figures 2 and 3. We assume that f� ∈ L∞(Ω) is a given
function satisfying

∫
Ω

f�ϕ1 dx = 0 and f� �≡ 0. In (7) we write f = aϕ1 + f�,
a ∈ R, and split the solution as u = cϕ1 + u�. Note, that there are no solutions
in the shaded regions (we have a priori bounds) while there may be many other
solutions in the nonshaded regions.

c

λλ1

a > 0, |a| � 1,
1 < p

c

λ

λ1

a > 0, |a| � 1,
1 < p < 2

c

λ

λ1

a > 0, |a| � 1,
p > 2

c

λ

λ1

a < 0, |a| � 1
1 < p

c

λ

λ1

a < 0, |a| � 1,
1 < p < 2

c

λ

λ1

a < 0, |a| � 1,
p > 2

Figure 3. A priori bounds and bifurcations from infinity of so-
lutions to (7) for a �= 0, 1 < p < 2 and/or p > 2.

We rewrite problem (7) as follows, with f = f� + aϕ1:

(16)

{
−∆pu − λ |u|p−2

u = f� + aϕ1 in Ω ;
u = 0 on ∂Ω .

Here, f� ∈ L∞(Ω) is a given function, with
∫
Ω

f�ϕ1 dx = 0 and f� �≡ 0, and
λ, a ∈ R are real parameters. We split the solution as u = cϕ1 + u�. Basic
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multiplicity results are obtained from the shape of the continua emanating from
(λ1,∞). Additional multiplicity results are deduced from the shape of the continua
using the method of upper and lower solutions. For the convenience of the reader,
we organize these results in following two tables. Dependence of the existence,
multiplicity and a priori bounds of the solutions on the spectral parameter λ can
easily be deduced from these tables.

Let us note that the theory developped in [8] can be used in the study of a more
general boundary value problem

(17) −∆pu − λ |u|p−2 u = h(u, x) in Ω u = 0 on ∂Ω .

Interested reader is refered to [7].
Finally, we would also like to note that the strongly nonlinear boundary value

problems emphasize the importance of the interplay between numerical experi-
ments and development of new theoretical methods, see e.g. [3].
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Perturbation of the simple eigenvalue by 1-homogeneous operators
Raffaele Chiappinelli (Siena, Italy)

Let T be a bounded linear operator acting in a real Banach space E and suppose
that T has an isolated eigenvalue of finite multiplicity λ0. If we add to T a
perturbation term εB, with B (positively) homogeneous of degree 1, continuous
and such that B(0) = 0, then we ask the following questions:

1) Do we find eigenvalues of T + εB near λ0?
2) If this is the case, are these eigenvalues isolated themselves?
(An eigenvalue of an operator F : E → E such that F (0) = 0 is a λ ∈ R such

that F (u0) = λu0 for some eigenvector u0 �= 0; in this case we say that

N(F − λI) ≡ {u ∈ E : F (u) − λu = 0}
is the eigenset corresponding to λ. If F is (1-)homogeneous, this notion of

eigenvalue coincides with that of connected eigenvalue proposed in [4]).
Simple examples in finite dimension show the answer to both questions may be

“No”. In particular, as for question 2) one may consider the equation

(18) x + εφ
( x

‖x‖
)
x = λx, x ∈ R

N

where φ : S ≡ {x ∈ RN : ‖x‖ = 1} → R is continuous. Then Tx ≡ x, B(x) ≡
φ( x

‖x‖)x for x �= 0, B(0) = 0 satisfy the above assumptions. However, each x ∈ S

is an eigenvector of (18) corresponding to the eigenvalue λ = λ(x) = 1 + εφ(x);
thus if N > 1, then - as S is connected in this case - {1 + εφ(x) : x ∈ S} is an
interval of eigenvalues (except when φ is constant on S) which for ε small is close
as we wish to the ”unperturbed” eigenvalue 1 of T .

On the other hand, it is possible to provide an affirmative answer when λ0

is (algebraically) simple and B is Lipschitz continuous: indeed, in this case we
essentially prove that λ0 splits (for each ε �= 0) into precisely two eigenvalues
λ±(ε) , while the eigenline N(T−λ0I) correspondingly ”breaks” into two eigenrays
N±(ε). For the Hilbert space case, the precise statement is as follows:

Theorem 3. Let T be a bounded linear operator in H (a real Hilbert space with
scalar product denoted by 〈, 〉), and let B : H → H be such that B(0) = 0. Suppose
that:

(i) T is selfadjoint and λ0 is an isolated and simple eigenvalue of T ;
(ii) B is Lipschitz continuous of constant k;
(iii) B is homogeneous.
Then there exist δ0 > 0, ε0 > 0 (depending only on λ0 and k) such that for
every ε with |ε| ≤ ε0, T + εB has precisely two (possibly coinciding) eigenvalues
λ+(ε), λ−(ε) in the interval [λ0 − δ0, λ0 + δ0]: that is, for |λ − λ0| ≤ δ0 nontrivial
solutions of the equation

(19) Tu + εB(u) = λu
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exist if and only if λ = λ±(ε). Moreover, the eigensets N±(ε) ≡ N(T + εB −
λ±(ε)I) corresponding to λ±(ε) are rays in H, that is, there exist nonzero vectors
z±(ε) ∈ H such that

N±(ε) = {tz±(ε) : t ≥ 0}.
Finally λ±(ε) and z±(ε) depend Lipschitz-continuously upon ε for |ε| ≤ ε0,

and if φ is a normalized eigenvector of T corresponding to λ0, then as ε → 0
z±(ε) → ±φ and

λ±(ε) = λ0 + ε〈B(±φ),±φ〉 + o(ε).

Theorem 3 is proved in [1] by first using the Lyapounov-Schmidt reduction
for (19), and then making full use of the homogeneity of B in the resulting bi-
furcation equation. In a sense, this generalizes a result of Ruf [3] concerning the
existence and uniqueness of two eigenvalues µ1

k, µ2
k ∈ [µ0

k, µ0
k+1[ for the problem

(in a bounded open set Ω ⊂ R
N )

(20) Lu = γu− + µu in Ω, u = 0 on ∂Ω

with L linear elliptic selfadjoint and u− = max(−u, 0), near each simple eigenvalue
µ0

k of L. In fact, similar results hold (see [1]) for the problem

(21) Lu = µ(u + ε(α(x)u+ − β(x)u−)) in Ω, u = 0 on ∂Ω

with u = u+ − u− and α, β ∈ L∞(Ω). Moreover, in the special case α, β = const
we obtain informations about the structure of the “Fučik spectrum” Σ of L near
(µ0

k, µ0
k), which agree with classical results [2].

Open problem: Describe what happens when λ0 is not simple. Also, single out
a class of homogeneous mappings in RN all of whose eigenvalues are isolated (as
for linear mappings).
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Remarks on some inhomogeneus eigenvalue problems
Vesa Mustonen (Oulu)

We discuss the “principal” eigenvalues of the problem

(22)

{
−∆m(u) = λm(u) in Ω
u = 0 on ∂Ω

where m : [0,∞) �→ [0,∞) is nondecreasing continuous function with m(0) = 0,
m(t) > 0 and t > 0, lim

t→∞ = ∞, m(−t) = −m(t) ∀t ∈ Rn, Ω ⊂ Rn bounded open
subset and

∆m(u) := div
(

m(|∇u|)
|∇u| ∇u

)
(generalized Laplacian).

It is known ( [2], [1]) that for each r > 0 the solutions ur ∈ W 1
0 LM (Ω) of the

minimization problem

inf
{∫

Ω

M(|∇u|) : u ∈ W 1
0 LM (Ω),

∫
Ω

M(u) = r

}

are solutions for (22) with some λ = λr > 0. (Here M(t) =
∫ t

0 m(s)ds). Some
examples for the ODE-case suggest that the set of “principal” eigenvalues λ > 0
obtained is not necessarily bounded from above or bounded from below away from
zero ( [3]) Therefore we suggest to modify the problem (22) to the form

(23)

{
−∆m(u) = λm(λu) in Ω
u = 0 on ∂Ω.

For the ODE-case

(24)

{
−(m(u′))′ = λm(λu) in (0, a)
u(0) = u(a) = 0

one can use the time map which suggests that all principal eigenvalues for (24)
are in the bounded interval [2/a, 4/a]. This is joint work with Matti Tienari,
University of Oulu /Central Laboratory, Helsinki.
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Applications of the degree for Fredholm maps to elliptic problems
C. A. Stuart (Lausanne)

A topological degree for C1-Fredholm maps of index zero that are proper on closed
bounded sets, has been defined by several approaches in a way that makes it
possible to track the change in the degree under homotopy. See the work by
Fitzpatrick, Pejsachowicz and Rabier [3,4,7] and then by Benevieri and Furi [1,2].
For the case of a map F : X → Y acting between two real Banach spaces X and
Y , the following properties of the F are required.

(1) F ∈ C1(X, Y )
(2) F (u) ∈ B(X, Y ) is a Fredholm operator of index zero for all u ∈ X
(3) F : W → Y is proper for all closed bounded subsets W of X .

In a series of papers written in collaboration with H. Jeanjean, M. Lucia, P. J.
Rabier, S. Secchi and H. Gebran, we have used this degree to obtain results about
the existence and bifurcation of solutions of systems of differential equations in
several situations where the Leray-Schauder degree is not directly applicable. My
lecture started with a summary of this work and then I presented in more detail
the treatment of quasilinear systems that are elliptic in the sense of Petrovskii. I
illustrated one of the keys steps in the case of a simple but typical example of a
second order quasilinear elliptic equation.
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On the sign-jump of one-parameter families of Fredholm operators
and bifurcation

Massimo Furi (Florence, Italy)

In [1] (see also [2] for more details) a fairly simple notion of orientation for Fredholm
linear operators of index zero between real vector spaces was introduced. Any
such operator, invertible or noninvertible, admits exactly two orientations, and
the choice of an orientation makes, by definition, the operator oriented. However,
if an operator is invertible, one of the two orientations is more relevant than the
other, and for this reason called natural. Thus it makes sense to assign to any
oriented isomorphism a sign: 1 if the orientation is natural and −1 in the opposite
case. For a singular Fredholm operator of index zero no one of the two orientations
is more relevant than the other.

A crucial fact is that in the framework of Banach spaces the orientation has a
sort of stability; in the sense that an orientation of an operator L induces, in a
very natural way, an orientation to any operator which is sufficiently close to L.
Using this fact, the notion of orientation was extended (in [1]) to the nonlinear case;
namely, to the case of a C1 Fredholm map of index zero between real Banach spaces
(and Banach manifolds). Such an extension coincides (in the C1 case) with the
notion given by Dold in [4, exercise 6, p. 271] for maps between finite dimensional
manifolds and, in the most important cases, with the notion due to Fitzpatrick,
Pejsachowicz and Rabier for maps between Banach manifolds (see [5–9]).

In [1], by means of the concept of orientation, a degree theory for Fredholm
maps between Banach manifolds was introduced. This theory is purely based
on the Brouwer degree, and in the most important cases agrees with the theory
developed by Fitzpatrick, Pejsachowicz and Rabier in a series of papers ranging
from 1991 to 1998. The difference between the two theories is mainly in the
construction method and in a different definition of orientation.

This talk is inspired by a recent joint work with Benevieri, Pera and Spadini
(see [3]), and it concerns methods for computing the degree by counting the sign-
jumps in a continuous curve of Fredholm operators of index zero.

Some consequences in global bifurcation theory are derived from the detection
of a sign-jump.
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Applications of nonlinear and semilinear spectral theory to boundary
value problems

Wenying Feng (Peterborough, Canada)

We study the nonlinear spectrum σ(f) and semilinear spectrum σ(L, N), when L
is Fredholm of index zero, f and N are asymptotically linear or positively homo-
geneous, thus close to a linear operator. The results generalize a previous result
which required N to be a linear operator and L to be the identity map. To prove
a theorem on the spectrum of asymptotically linear operator, we introduce the
field of regularity for semilinear operators. When N is a positively homogeneous
operator, we give a condition that ensures the existence of a positive eigenvalue
for the semilinear pair (L, N).

The theorems can be applied to the study of some integral equations involving
Urysohn and Hammerstein operators. Results on existence of solutions, bifurcation
points, asymptotic bifurcation points are obtained. We also apply our theorems
to the study of the second order differential equation:

(25) u′′ + f(t, u) = 0

with one of the boundary conditions (0 < η < 1 fixed):

x(0) = 0, x(1) = αx(η),(26)

x′(0) = 0, x(1) = αx(η).(27)

By making use of a upper bound that involves the parameters α, η, we prove
results on the existence of a solution, which in some cases are better than previous
results (required a constant upper bound of f) of Gupta, Ntouyas and Tsamatos.
Some examples show that there are equations that can be treated by our theorems
but the previous results can not be applied. Moreover, with the assumption that
f is positively homogeneous, we study the existence of an eigenvalue for the more
general equation

(28) u′′ = f(t, u, u′), t ∈ (0, 1)

with one of the boundary condition (26) and (27). We give an alternative condition
for existence of a positive eigenvalue and being a surjective map. Two examples
are constructed to show that there are equations that satisfy our condition and so
existence of an eigenvalue can be proved.



428 Oberwolfach Report 8/2004

References

[1] J. Appell, E. De Pascale and A. Vignoli, A comparison of different spectra for nonlinear
operators, Nonlinear Anal. TMA. 40 (2000), 73–90.

[2] M. Furi, M. Martelli, A. Vignoli, Contributions to the spectral theory for nonlinear operators
in Banach spaces, Ann. Mat. Pura Appl. 118 (1978), 229–294.

[3] W. Feng, Nonlinear spectral theory and operator equations, Nonlinear Funct. Anal. & Appl.,
Vol. 8, No. 4 (2003), pp. 519-533.

[4] W. Feng, A new spectral theory for nonlinear operators and its applications, Abstr. Appl.
Anal. 2 (1997), 163–183.

[5] W. Feng, Nonlinear and semilinear spectrum for asymptotically linear or positively homo-
geneous operators, to appear in Nonlinear Anal. TMA.

[6] W. Feng and J. R. L. Webb, A spectral theory for semilinear operators and its applications,
Recent trends in nonlinear analysis, 149–163, Progr. Nonlinear Differential Equations Appl.,
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Epi and Coepi Maps, and Further?
Martin Väth

This is a survey talk on the current state and possible developments of topolog-
ical methods for coincidence points of function pairs which is one of the crucial
ingredients of nonlinear spectral theory.

On the one hand, the concept of 0-epi maps (see e.g. [3]) can be considered
as a definition of a homotopically stable coincidence point of two functions. On
the other hand, there exist various degree theories for coincidence points which
might be considered as a corresponding homologic approach: Degree theories for
coincidence points of compact maps with linear Fredholm maps of zero or positive
index [8, 9], with nonlinear Fredholm maps of index zero [2], or with monotone
maps [11]. The link between these two kind of approaches (0-epi maps and degree
theory) can be established by the famous Hopf theorems [5].

A third approach to coincidence points is given by various fixed point indices of
multivalued maps (each of these indices is based on one of four essentiallz different
ideas [1, 6, 7, 10] which are briefly sketched in the talk). This index approach is
somewhat dual to the above coincidence degree theories and might be considered
as an application of cohomology theory. It is possible to give a corresponding
cohomotopic definition of a “coepi” concept which relates to these index theories
by Hopf type theorems [13]. So, roughly, one has the following picture:
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homotopic homologic

Epi Maps
Homotopy

Degree
Homology

Coepi Maps
Cohomotopy

Index
Cohomology

All these concepts and Hopf theorems generalize also to noncompact but only
condensing functions pairs. Moreover, it seems now that there is a natural notion
of a degree for function triples which covers and extends all the above theories in
a unified manner [4, 12].

As this is a survey talk, it would be too long to give a complete list of references
in this abstract: For each referred subject only the historically first paper dealing
with that topic is cited here.
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Spectral theory for homogeneous operators: part I
Elena Giorgieri (Rome)

The aim of this talk is to present a part of a joint work with J. Appell and M. Väeth,
contained in the paper Nonlinear spectral theory for homogeneous operators [2],
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where, starting from the work [4], [3], [5], [6], and [1], we develop a parallel theory of
spectra and phantoms which better describes properties of homogeneous operators
of general degree. The above papers, with the exception of [5] and [6], deal with an
operator F acting on a Banach space E and define the spectra by using some metric
and topological characteristics and some notion of solvability of the equation

(λI − F )(u) = G(u),

where G : X → Y varies in a suitable subset of the space of continuous operators.
Moreover, the spectra introduced in [4] and in [1] depend essentially on the as-
ymptotic properties of the operators involved and do not contain the eigenvalues
(in the classical sense), while the spectrum in [3] is an example of “global” spec-
trum, because it is meant to contain all the eigenvalues. Regarding the papers [5]
and [6], they deal with operators acting between two different Banach spaces and
the spectra they define, called phantoms, describe the “local” behaviour of the
operator. One of the main features of their work is the introduction of a new
notion of eigenvalue for a pair of operators (F, J), where J replaces the identity
(F acts between two different Banach spaces).

The basic idea of our work [2] is to modify the definitions given in the above
papers in a way that takes into account the special behaviour of homogeneous
operators. Indeed, we deal with continuous operators F, J : X → Y acting between
two different Banach spaces X ,Y (over the same field K = R or C) and satisfying
F (θ) = J(θ) = θ. Here J is some “well-behaved” operator that replaces the role
of the identity, for example a homeomorphism, while F denotes the operator we
want to analyse. The modified metric and topological characteristics we use are
then the following.

Metric characteristics

Mτ (F ) = sup
u	=θ

‖F (u)‖
‖u‖τ , mτ (f) = inf

u	=θ

‖F (u)‖
‖u‖τ ,

|F |τ = lim sup
‖u‖→∞

‖F (u)‖
‖u‖τ , dτ (F ) = lim inf

‖u‖→∞
‖F (u)‖
‖u‖τ , τ > 0

Topological characteristics

ατ (F ) = inf
{

L ≥ 0 : α(F (M)) ≤ Lα(M)τ

for all bounded M ⊂ X

}
,

βτ (F ) = sup
{

� ≥ 0 : α(F (M)) ≥ �α(M)τ

for all bounded M ⊂ X

}
, τ > 0.

(α(M) is the usual Kuratowski measure of noncompactness of the bounded subset
M).

By adapting the definitions in [4], [3], [5], [6] and [1] to these new characteristics,
we obtain spectra that maintain all the topological properties of the related ones
(included compactness under some additional conditions), and this is precisely
what I am going to present today. In the case when F and J are τ -homogeneous
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operators, these modified spectra say more on the properties of F then the previous
spectra, as it will be shown in the second part of this talk by J. Appell.
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Spectral theory for homogeneous operators: part II. Applications
Jürgen Appell (Würzburg)

This is a continuations of the previous talk by Elena Giorgieri on nonlinear spectral
theory for homogenous operators. The following table gives a general comparison
of the three spectra introduced in Elena’s talk.

Author Spectrum Point spectrum Character
Furi-Martelli- FMV-spectrum asymptotic eigenvalues asymptotic

Vignoli [9] σFMV (F, J) σq(F, J) (||u|| → ∞)
Feng Feng spectrum classical eigenvalues global
[7] σF (F, J) σp(F, J) (u ∈ X)

Väth phantom connected eigenvalues local
[13] φ(F, J) φp(F, J) (u ∈ Ω)

As one could expect, there are some relations between all these spectra and
point spectra. For example, the Väth phantom φ(F, J) is always contained in
the Furi-Martelli-Vignoli spectrum σFMV (F, J), which in turn is contained in the
Feng spectrum σF (F, J). Moreover, the point phantom φp(F, J) is contained im
the asymptotic point spectrum σq(F, J). So for general operators F, J : X → Y
we get the following relations.
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φ(F, J) ⊆ σFMV (F, J) ⊆ σF (F, J)

⊆ ⊆ ⊆

φp(F, J) ⊆ σq(F, J) σp(F, J)

In the linear case L ∈ L(X) (and J = I) this table essentially simplifies. Here
all the spectra in the first row coincide with the usual spectrum σ(L), and both
the point spectrum σp(L, I) and point phantom φp(L, I) coincide with the usual
point spectrum σp(L).

Even if one restricts the class of nonlinear operators in consideration, the above
table may simplify. We confine ourselves to the case of τ-homogeneous operators
F and J , i.e.

(29) F (tu) = tτF (u), J(tu) = tτJ(u) (t > 0, u ∈ X).

The following two theorems have been proved in [2].

Theorem 4 (Coincidence theorem). Let X and Y be infinite dimensional
Banach spaces, and suppose that F, J : X → Y satisfy (29) for some τ > 0. Then

σFMV (F, J) = σF (F, J) = φ(F, J), σq(F, J) ⊇ σp(F, J) = φp(F, J).

Theorem 5 (Discreteness theorem). Let X and Y be infinite dimensional
Banach spaces, and suppose that F, J : X → Y are odd, [F ]A = 0 (i.e., F is
compact), and [J ]a > 0. Then

σFMV (F, J) \ {0} ⊆ σq(F, J), σF (F, J) \ {0} ⊆ σp(F, J),

and
φ(F, J) \ {0} ⊆ φp(F, J).

Theorem 5 shows that, for F compact and odd, and J “sufficiently regular” and
odd, each nonzero spectral value is actually an eigenvalue (in a sense to be made
precise). For F compact and linear and J = I this is a classical fact.

To illustrate how these theorems apply to nonlinear problems, we consider the
eigenvalue problem for the p-Laplacian which consists in finding solutions u �≡ 0
of

(30)

{
−div (|∇u|p−2 ∇u)(x) = µ |u(x)|p−2

u(x) in G

u(x) ≡ 0 on ∂G

where G ⊂ Rn is a bounded domain. Although this problem makes sense for
1 < p < ∞, we restrict ourselves to the case 2 ≤ p < ∞. The problem (30) may
be reformulated as equivalent operator equation in weak form

(31) Fp(u) = λJp(u),



Nonlinear Spectral and Eigenvalue Theory and the p-Laplace Operator 433

where λ = 1/µ, and Fp, Jp : W 1,p
0 (G) → W−1,p′

(G) (p′ = p/(p − 1)) are defined
by Fp(u) = |u|p−2

u and

〈Jp(u), v〉 = −
∫

G

(|∇u(x)|p−2 ∇u(x),∇v(x)) dx (u, v ∈ W 1,p
0 (G)),

respectively. Equation (31) has been studied by many authors, e.g. by Drábek et
al. in [3–6]. Interestingly, the eigenvalue theory for the problem (30) has many
features in common with the classical linear eigenvalue problem −∆u(x) = µu(x),
which is a special case of (30) for p = 2. For instance, the first eigenvalue µ1 of (30)
is always positive and simple and may be “calculated” as Rayleigh quotient

µ1 = inf
u∈W 1,p

0 (G)
u	=0

∫
G

|∇u(x)|p dx∫
G

|u(x)|p dx

.

Moreover, the corresponding eigenfunction u1 ∈ W 1,p
0 (G) is positive on G and

simple (in the sense that any other eigenfunction is a scalar multiple of u1). This
function has the same “variational characterization” as in the linear case p = 2:
it minimizes the functional Ψp : W 1,p

0 (G) → R defined by Ψp(u) = 1
p 〈Jp(u), u〉,

subject to the constraint
1
p

∫
G

|u(x)|p−2
u(x) dx = 1.

Finally, we point out that there is a famous so-called nonlinear Fredholm al-
ternative (see [8, 11, 12]) which implies that the operator Jp − µFp = µ(λJp − Fp)
is onto for µ < µ1, while it is not onto for µ = µ1. However, the coincidence
and discreteness theorems given above allow us a more precise statement. The
following is just a reformulation of Theorems 4 and 5.

Theorem 6 (Nonlinear Fredholm alternative). Suppose that J : X → Y is
an odd τ-homogeneous homeomorphism with [J ]a > 0, and F : X → Y is odd,
τ-homogeneous and compact. Let λ �= 0. Then the following four assertions are
equivalent.
(a) The eigenvalue problem (30) has only the trivial solution u = 0.
(b) The operator λJ − F is stably solvable, [λJ − F ]a > 0, and [λJ − F ]q > 0.
(c) The operator λJ−F is epi on each Ω ∈ O(X), [λJ−F ]a > 0, and [λJ−F ]b >

0.
(d) The operator λJ − F is strictly epi on some Ω ∈ O(X), and

inf {‖λJ(u) − F (u)‖ : u ∈ ∂Ω} > 0.

We claim that the operators Fp and Jp satisfy the hypotheses of Theorem 6 in
the spaces X = W 1,p

0 (G) and Y = X∗ = W−1,p′
(G). In fact, since Jp : X → Y

is continuous, strictly monotone, coercive (it is here that we use the restriction
p ≥ 2!), odd, and (p−1)-homogeneous, it is an isomorphism, by Minty’s celebrated
theorem [10]. Moreover, the coercivity also implies that [Jp]a > 0. Finally, the
operator Fp : X → Y is continuous, compact (by Krasnosel’skij’s theorem and the
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compactness of the imbedding X ↪→ Lp(G)), odd, and also (p − 1)-homogeneous.
So Theorem 6 implies that, whenever µ is not a classical eigenvalue of (2), then
the operator Jp − µFp is not only onto, but even stably solvable and strictly epi.
This makes it possible to obtain existence, uniqueness, and stability results for
nonlinear perturbations of (31).

Several other applications of nonlinear spectra may be found in Chapter 12 of
the recent monograph [1].
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[2] J. Appell, E. Giorgieri, M. Väth, Nonlinear spectral theory for homogeneous operators,
Nonlin. Funct. Anal. Appl. 7 (2002), 589–614.
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Numerical Ranges for Nonlinear Operators: A Survey
Jürgen Appell (Würzburg)

This talk was supposed to be given by E. De Pascale (Cosenza, Italy) who was
unable to come to Oberwolfach.

The purpose of the talk is to give an overview of the definition and properties
of numerical ranges for both linear and nonlinear operators in Hilbert or Banach
spaces. For linear operators in Hilbert spaces this goes back to Toeplitz [12], for
linear operators in Banach spaces to Bauer [1], and, independently, to Lumer [7]. In
the nonlinear case, corresponding definitions have been given in the Hilbert space
setting by Zarantonello [13–15], and in the Banach space setting by Rhodius [9–11],
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Martin [8], Dörfner [4], and Feng [5]. Somewhat different notions of numerical
ranges are due to Furi, Martelli and Vignoli [6], Bonsall, Cain and Schneider [2],
and Canavati [3].

Numerical ranges and radii have applications in matrix theory, numerical analy-
sis, approximation theory, functional analysis, operator theory, system theory, and
even in quantum mechanics. There are also useful for “localizing” the spectrum
of an operator in the complex plane. This provides the connection with the topics
dealt with in the Miniworkshop.
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Introduction by the Organisers

This mini-workshop has been organized by Fabrizio Catanese and Ciro Cilib-
erto. Unfortunately Catanese was unable to participate.

The classification of algebraic surfaces is a long-standing research subject in
algebraic geometry, started by Castelnuovo and Enriques more than one hundred
years ago, and continued by the Italian school (Severi, de Franchis, etc.) until
about 1950.

In more recent times, fundamental contributions have been given by Kodaira
in the 1950’s and later in the 1970’s by Bombieri, whose works on pluricanonical
maps gave a strong impulse in studying surfaces of general type, and Mumford.

Adding important information to classical results by Noether and Castelnuovo,
sharp bounds on the invariants have been given by Miyaoka and Bogomolov-Yau,
allowing many authors to develop a systematic study of the “geography” of surfaces
of general type.

Interesting investigations about the moduli space of surfaces of general type
have been worked out in the last twenty years by Catanese, Manetti, and others.

Despite the intensive effort made in the last decades in order to make more
precise our knowledge about surfaces of general type, their fine classification is still
an open problem, even for small invariants. It is actually rather embarassing that,
after more than one century of research on the subject, a complete classification
of surfaces with geometric genus zero or one is still lacking.



440 Oberwolfach Report 9/2004

This mini-workshop carried together 14 mathematicians actively working on
this subject, and related arguments, with the idea of updating the state-of-the-
art, exchanging information, discussing interesting open problems and stimulating
collaborations. In this respect, the workshop has been very successful.

The atmosphere has been lively and very collaborative. During every talk,
several questions have been posed and interesting problems pointed out. It has
been especially remarkable the active presence of young participants.

During the week, 16 formal lectures have been given by the participants. This
report contains extended abstracts of all the talks and also a contribution by
Catanese, in collaboration with Pignatelli, about the lecture he was supposed to
give.

The topics include: pluri-canonical maps for surfaces of general type (M. Mendes
Lopes), canonical rings, projective embeddings and birational techniques (C. Böhn-
ing, F. Catanese, S. Papadakis, U. Persson, R. Pignatelli), irregular surfaces with
low invariants (F. Polizzi, F. Zucconi), surfaces with pg = 0 (A. Calabri, C. Cilib-
erto, K. Keum, M. Mendes Lopes, C. Werner), general techniques (V. Br̂ınzănescu,
K. Konno). Ulf Persson chaired an “open problem and discussions” session, which
especially concerned surfaces with pg = 0.

The organizers thank the Institute staff for providing a comfortable environment
to the participants.
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Abstracts

Canonical surfaces in P
4 and Gorenstein algebras in codimension 2
Christian Böhning

Consider minimal surfaces of general type S with pg = 5, q = 0 such that
the 1-canonical map π is a birational morphism onto a surface Y ⊂ P4, the
latter being referred to as a canonical surface in P4. The canonical ring R :=⊕

n≥0 H0(S,OS(nK)) is then a Gorenstein algebra of codimension 2 with twist
−6 over A := C[x0, . . . , x4], the homogeneous coordinate ring of P4. In general I
make the

Definition. Let S = S0 ⊕ S1 ⊕ S2 ⊕ . . . be a positively graded ring with S0 a
field, S finitely generated over S0 as an algebra; a finite graded perfect S-algebra
B is called a Gorenstein S-algebra of codimension c (and with twist t ∈ Z) if
B ∼= ExtcS(B, S(t)) as B-modules where c = dimS − dimS B.

By Castelnuovo’s second inequality and Bogomolov-Miyaoka-Yau 8 ≤ K2 ≤ 54
for the above surfaces, the complete intersections of type (2, 4) resp. (3, 3) being
the only solutions for K2 = 8 resp. = 9. Moreover (cf. [Cil], [Cat4], [Böh1])

Theorem 1. For a canonical surface in P4 with q = 0, pg = 5, K2 ≥ 10 one has
a resolution of the canonical ring R

(1) R• : 0 → A(−6) ⊕A(−4)n (−βt

αt )
−−−−→ A(−3)2n+2 (α β)−−−→ A⊕A(−2)n → R → 0,

where n := K2 − 9.

Resolution (1) displays the symmetry of a “generalized” Koszul complex (cf.
[Gra]). The important point, however, is that knowledge of the resolution (1)
easily allows us to reconstruct our entire geometric set-up; more precisely (cf.
[Böh1], [Böh2])

Theorem 2. Let R be some finite A-module with minimal graded free resolution
as in (1). Write A := (α β), A′ := A with first row erased, In(A′) = Fitting ideal
of n × n minors of A′, and assume depth In(A′) ≥ 4.

Then R is a Gorenstein algebra, and if one assumes that AnnA(R) is a prime
ideal, then Y := Supp(R) ⊆ P

4 with its reduced induced subscheme structure (thus
the ideal of polynomials vanishing on Y is IY = AnnA R) is an irreducible surface,
and if furthermore one assumes X := Proj(R) has only rational double points as
singularities, then X is the canonical model of a surface S of general type with
q = 0, pg = 5, K2 = n + 9. More precisely, writing AY for the homogeneous
coordinate ring of Y , one has that the morphism ψ : X → Y ⊂ P4 induced by the
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inclusion AY ⊂ R is a finite birational morphism, and is part of a diagram

S
π

κ

Y ⊂ P4

X
ψ

where S is the minimal desingularization of X, κ is the contraction morphism
contracting exactly the (-2)-curves of S to rational double points on X, and the
composite π := ψ ◦ κ is a birational morphism with π∗OP4(1) = OS(KS) (i.e. is
1-canonical for S).

In some sense the most delicate part of the above theorem consists in recovering
the ring structure of R from the resolution (1), cf. [Böh2], thm. 1.3 and 2.5.
To see how the above theorem may be applied, take K2 = 11 as sample case: here
the symmetry condition αβt = βαt can be explicitly solved (cf. [Böh1], section 2)
in order to re-prove by this method a result previously obtained by D. Roßberg
(cf. [Roß]) with different techniques:

Theorem 3. There is a unique irreducible component of the moduli space of regu-
lar surfaces of general type with pg = 5, K2 = 11 containing points corresponding
to surfaces with canonical map a birational morphism onto a surface Y ⊂ P4 with
only isolated singularities, which is unirational and of dimension 38.

It may be hoped that this method will facilitate the study of canonical surfaces
with higher K2, the first unsolved case being K2 = 13.
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On the classification of surfaces of general type with non birational
bicanonical map and Du Val double planes

Giuseppe Borrelli

Let S be a minimal surface of general type and consider the bicanonical map ϕ2K

associated to the linear system |2KS|. If there exists a rational map S → B onto
a curve B with the general fiber a smooth irreducible curve of genus 2 then ϕ2K

is not birational, and in this situation one says that S presents the standard case
(for the non birationality of ϕ2K). By a theorem of I. Reider the standard case is
the only possible exception to ϕ2K being birational when K2

S ≥ 10. In the 1950’s
P. Du Val [6] considered the problem for regular surfaces (q = h1(S,OS) = 0), he
obtained a list of possible surfaces with non birational bicanonical map and do not
presenting the standard case. The examples of Du Val are as follows. Let X be a
smooth surface and G ⊂ X a reduced curve such that

B) either X = F2 and G = C0 + G′, where G′ ∈ |7C0 + 14Γ| and G′ has at
most non essential singularities;

D) or X = P2 and G is a smooth curve of degree 8;
Dn) or X = P2 and G = G′ + L1 + · · · + Ln, with n ∈ {0, 1, . . . , 6} (G = G′ if

n = 0), where L1, . . . , Ln are distinct lines meeting at a point γ and G′ is
a curve of degree 10 + n. The singularities of G, besides the non essential
ones, are a (2n+2)-tuple point at γ, a [5, 5]-point lying on Li, i = 1, . . . , n,
possibly some 4-tuple points or [3, 3]-points;

then S is the smooth minimal model of the double cover X ′ → X branched along
G. Here F2 is the Hirzebruch surface P(OP1 ⊕ OP1(2)) and Γ, C0 its fibre and
negative section with C2

0 = −2. We will refer to X ′ as a Du Val double plane (of
type B, D or Dn).

The exceptions to the standard case have been classified for surfaces with pg ≥ 4
by C. Ciliberto, P. Francia and M. Mendes Lopes [4]; F. Catanese, C. Ciliberto
and M. Mendes Lopes classified those with pg = 3, q > 0 [3], and C. Ciliberto
and M. Mendes Lopes worked out the regular case with pg = 3 [5]. Finally, I
classified the regular case with pg = 2 under the assumption that the canonical
system has no fixed part [1]. It follows from [5, 4], that if q = 0, pg ≥ 3 and ϕ2K
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is non birational then S either presents the standard case or is one of the Du Val
examples.

It is easy to see that if ϕ2K is non birational, the conditions pg ≥ 2, q = 0 force
ϕ2K to be a map of degree 2 (generically) onto a rational ruled surface. Hence,
it is natural to consider more in general a surface whose bicanonical map factors
through a rational map of degree 2 onto a rational or ruled surface, that is if there
exists the following commutative diagram

S

φ

ϕ2K
S2

Σ

φ2

where φ is a (generically finite) rational map of degree two and Σ is a rational or
ruled surface. The result is the following,

Theorem 1. Let S be a smooth minimal surface of general type which does not
present the standard case. Then the following three conditions are equivalent:

a) the bicanonical map of S factors through a rational map of degree 2 onto
a rational or ruled surface

b) the bicanonical map of S factors through a rational map of degree 2 onto
a rational surface

c) S is the smooth minimal model of a Du Val double plane.
Moreover, let S be as in (c) (resp. (a) or (b)) then:

d) q(S) = 0 unless pg(S) = q(S) = 1;
e) unless KS is ample and pg(S) = 6, K2

S = 8 or pg(S) = 3, K2
S = 2, there

is a rational pencil whose general member is a smooth hyperelliptic curve
of genus 3 such that the bicanonical map of S induces the hyperelliptic
involution on it.

Sketch of the proof of Theorem 1, (a) ⇒ (b), (c). (See [2] for the complete proof.)
Consider the quotient Σσ of S by the involution σ induced by φ. Then Σσ is a
rational or ruled surface birational equivalent to Σ whose only singularities are the
k nodes, which corresponds to the isolated fixed points of σ. Let Σ̂ → Σσ be the
minimal resolution, then we have the commutative diagram

Ŝ

ρ

S

Σ̂ Σσ

where Ŝ is the blow up of S at the isolated fixed points of σ and ρ is a finite double
cover branched along a smooth curve B. Since Σ̂ is smooth it is either P2 or ruled.
When Σ̂ ∼= P2 one has that Ŝ = S and B has degree 8 or 10. Otherwise we have
that
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i) Σ̂ is rational,
ii) there exists a suitable birational morphism ψ : Σ̂ → X such that G :=

ψ∗(B) and X are as in B or Dn,
iii) Ŝ is the canonical resolution of the double cover X ′ → X branched along

G.
For the proof of i), ii) one uses a result of Xiao [9] who studied the possible images
of the bicanonical map. �

As we remarked, the result for regular surfaces with pg ≥ 3 was already known
and Theorem 1 extends the classification to regular surfaces with pg = 2,

Theorem 2. Let S be a regular surface of general type with pg ≥ 2 and non
birational bicanonical map. Then either S presents the standard case or it is the
smooth minimal model of a Du Val double plane.

For pg = 0, 1 we get some corollaries of Theorem 1.

Theorem 3 ([2, 9]). Let S be a regular surface of general type with pg = 1 and
bicanonical map of degree 2. Then,

i) either S presents the standard case
ii) or S is the smooth minimal model of a Du Val double plane of type Dn,
iii) or S2 is a K3 surface.

Theorem 4 ([2, 7, 9]). Let S be a minimal surface of general type with pg =
0, K2

S ≥ 2 and bicanonical map of degree 2. Then,
i) either S presents the standard case
ii) or K2

S = 3 and ϕ2K(S) is an Enriques surface,
iii) or S is the smooth minimal model of a Du Val double plane of type Dn

with K2
S and n as in the following table

K2
S 2 3 4 5 6 7 8

n 0, 1, 2, 3 1, 2, 3 2, 3, 4 3, 4 4, 5 5 6
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Twisted Fourier-Mukai transforms on some elliptic surfaces
Vasile Br̂ınzănescu

(joint work with Ruxandra Moraru)

Let X be a non-singular projective variety. The derived category D(X) of X is a
triangulated category whose objects are complexes of sheaves on X with bounded
and coherent cohomology sheaves. In general, there exist pairs of non-singular
projective varieties (X, Y ) for which there are triangle-preserving equivalences Φ :
D(Y ) → D(X). Such equivalences are called Fourier-Mukai transforms. In some
cases, Φ takes sheaves to sheaves (not complexes) and this fact is used to study
moduli spaces of some sheaves (for example, vector bundles). Sometimes, Fourier-
Mukai transforms can be constructed on non-projective complex varieties.

Let π : X → B be a minimal non-Kähler elliptic surface (B a smooth compact
connected curve). It is well-known that X → B is a quasi-bundle over B, i.e. all
the smooth fibres are pairwise isomorphic and the singular fibres are multiples of
elliptic curves (see [24], [8]). Let T denote the general fibre of π, which is an elliptic
curve and let T ∗ denote the dual of T (i.e. T ∗ := Pic0(T ) ∼= T non-canonically).
It is known that the Jacobian surface associated to π : X → B, in this case, is
simply J(X) = B×T ∗ → B and the surface X → B is obtained from its Jacobian
surface B × T ∗ by a finite number of logarithmic transformations.

Now, we shall define a twisted Fourier-Mukai transform on non-Kähler elliptic
surfaces. For simplicity, we shall consider that π : X → B has no multiple fibres,
i.e. X is a principal elliptic bundle over B. Then, X = Θ∗/ < τ >, where Θ
is a line bundle over B with positive Chern class l, Θ∗ is the complement of the
zero section in the total space of Θ, and < τ > is the multiplicative cyclic group
generated by a fixed complex number τ with | τ |> 1. The standard fibre of this
bundle is T ∼= C∗/ < τ >. Multiplication by τ defines a natural Z-action on X×C∗

that is trivial on X , inducing the quotient (X × C
∗)/Z = X × T ∗ = X ×B J(X).

Since X does not have multiple fibres, then the set of all holomorphic line
bundles on X with trivial Chern class is given by the zero component of the
Picard group Pic0(X) ∼= Pic0(B) × C∗. In this case, any line bundle in Pic0(X)
is therefore of the form H ⊗ Lα, where H is the pullback to X of an element
of Pic0(B) and Lα is the line bundle corresponding to the constant automorphy
factor α ∈ C∗; in particular, there exists a universal (Poincaré) line bundle U on
X ×Pic0(X) whose restriction to X ×C∗ := X ×{0}×C∗ is constructed in terms
of constant automorphy factors (for details, see [10]).
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Given a rank two vector bundle over X , its restriction to a generic fibre of π is
semistable. More precisely, its restriction to a fibre π−1(b) is unstable on at most
an isolated set of points b ∈ B; these isolated points are called the jumps of the
bundle. Furthermore, there exists a divisor in the relative Jacobian J(X) = B×T ∗

of X , called the spectral curve or cover of the bundle, that encodes the isomorphism
class of the bundle over each fibre of π. The spectral curve can be constructed as
follows: we associate to the rank-2 vector bundle E the sheaf on B × C∗ defined
by

L̃ := R1π∗(s∗E ⊗ U),

where s : X × C∗ → X is the projection onto the first factor, id is the identity
map, and π also denotes the projection π := π× id : X×C∗ → B×C∗. This sheaf
is supported on a divisor S̃E , defined with multiplicity, that descends to a divisor
SE in J(X) of the form

SE :=

(
k∑

i=1

{xi} × T ∗
)

+ C,

where C is a bisection of J(X) and x1, · · · , xk are points in B that correspond to
the jumps of E. The spectral curve of E is defined to be the divisor SE . Note
that there is also a natural Z-action on B × C∗ defined as multiplication by τ on
the second factor and (B × C∗)/Z ∼= J(X). Moreover, this action extends to the
torsion sheaf L̃ := R1π∗(s∗E ⊗ U), taking the stalk L̃(x,α) to L̃(x,τα) ⊗ Lτ−1,x.
Therefore, L̃ cannot descend to J(X) because it is not invariant with respect to
this action. To fix this problem, we construct a sheaf N on B×C∗ and a Z-action
that leaves the tensor product L̃ ⊗ N invariant (see [10], [11]). We denote the
quotient sheaf

L := (L̃ ⊗ N )/ ∼ .

Note that the support of L is SE ; moreover, if we take the pull back of L to B×C
∗

and tensor it by N ∗, then we recover L̃ (we also denote N ∗ the sheaf on B × C∗

obtained by extending the line bundle N ∗ on S̃E by zero outside S̃E).
Given a locally free sheaf E on X , we define the twisted Fourier-Mukai transform

to be the complex of sheaves Φ(E) on J(X) given by

Φ(E) := (Rπ∗ (s∗E ⊗ U) ⊗N ) / ∼ .

Conversely, if L is a sheaf on J(X), we define the “inverse” twisted Fourier-Mukai
transform as the complex of sheaves Φ̂(L) on X given by

Φ̂(L) := Rs∗ ((π∗ ((ρ∗L) ⊗N ∗) ⊗ U∗) / ∼) ,

where s : X ×B J(X) → X is projection onto the first factor, q : X × C∗ →
X × T ∗ = X ×B J(X) and ρ : B ×C∗ → B × T ∗ = J(X) are the natural quotient
maps induced by the Z-actions and π and s are the projections defined above.

We state some of their properties in:
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Theorem 1. (i) Suppose that E is a rank-2 vector bundle on X without jumps.
Then, Φ0(E) = 0 and Φ̂0(Φ1(E)) = E.

(ii) If L is a torsion sheaf on J(X), supported on a bisection C ⊂ J(X), that
has rank 1 on the smooth points of C and rank at most 2 on the singular ones,
then Φ̂1(L) = 0 and Φ1(Φ̂0(L)) = L.

For the proof, see [11].
We use this result in the classification of rank two vector bundles over non-

Kähler elliptic surfaces, including the study of moduli spaces of stable vector bun-
dles (see [11], [12]).

References

[1] W. Barth, C. Peters, and A. Van de Ven, Compact complex surfaces, Springer-Verlag, Berlin,
Heidelberg, New York, 1984.

[2] C. Bartocci, U. Bruzzo, D. Hernández Ruipérez, and J. Muños Porras, Mirror symmetry on
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[11] V. Br̂ınzănescu and R. Moraru, Twisted Fourier-Mukai transforms and bundles on non-
Kähler elliptic surfaces, preprint.
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On the classification of numerical Godeaux surfaces with an involution
Alberto Calabri and Ciro Ciliberto

(joint work with Margarida Mendes Lopes)

In the one-century-and-a-half history of algebraic geometry in dimension two,
projective surfaces with geometric genus pg = 0 and irregularity q = 0 have been
studied from the very beginning. They were supposed to be rational by Max
Noether, until Enriques suggested the existence of the surfaces with pg = q = 0
and bi-genus P2 = 1 which now bear his name, and Castelnuovo proved in 1896
his celebrated rationality criterion, which states that a surface X is rational if and
only if P2(X) = q(X) = 0.

In 1931–32, Godeaux and Campedelli gave the first two examples of minimal
surfaces of general type with pg = 0 and K2 = 1, 2, respectively. Godeaux consid-
ered a quotient of a quintic surface in P3 by a Z/5Z-action, whereas Campedelli
constructed a double plane, i.e. a double cover of P2, branched along a degree 10
curve with six points of type [3, 3], that is a triple point with another infinitely
near triple point, not lying on a conic.

Campedelli also suggested the construction of a minimal surface of general type
with pg = 0 and K2 = 1 as the smooth minimal model of a double plane branched
along a curve C of degree 10 with a 4-tuple point and five points of type [3, 3], not
lying on a conic. The existence of a curve like C was proved only 50 years later by
Kulikov, Oort and Peters. We will say that a double plane is of Campedelli type
if the branch curve is of this type.

Minimal surfaces of general type with pg = 0 and K2 = 1, nowadays called
numerical Godeaux surfaces, have been studied by several authors in the last 30
years: Miyaoka (1976), Dolgachev (1977), Reid (1978, 1988), Barlow (1984–85),
which gave the first example of a simply connected one, Werner, Craighero-Gattaz-
zo, Naie (1994), Stagnaro (1997), Dolgachev-Werner (1999), Catanese-Pignatelli,
Keum-Lee (2000), and others (cf. e.g. [CP]).



452 Oberwolfach Report 9/2004

Miyaoka proved that the subgroup Tors(S) of torsion elements of the Picard
group of a numerical Godeaux surface S is a cyclic group of order strictly less than
6. He classified those with Tors(S) = Z/5Z by describing the canonical ring of
the 5-tuple covering given by the torsion, and similarly Miles Reid classified those
with Tors(S) = Z/4Z or Z/3Z.

Some examples of those with Tors(S) = Z/2Z or Tors(S) = 0 have been found
by Barlow, Werner and Craighero-Gattazzo (as shown by Dolgachev and Werner);
nonetheless the classification problem is still open.

Note that these surfaces are interesting also because of Bloch’s conjecture, which
states that the Chow group of degree zero 0-cycles on a surface with pg = q = 0 is
trivial.

Here we report on a work in progress about the classification of numerical
Godeaux surfaces S with an involution, i.e. with an automorphism σ : S → S
of order 2. A first investigation of this subject has been done by J. Keum and
Y. Lee in [KL]: under the assumption that the bicanonical system has no fixed
components, they described all the possibilities for the fixed locus of the involution.

We make no assumption on fixed components of the bicanonical system |2KS |
and we follow the ideas contained in joint works of the third author and Rita
Pardini, namely we combine the topological and the holomorphic fixed point for-
mulas for involutions on surfaces and the Kawamata-Viehweg vanishing theorem,
in order to prove the following:

Theorem 1. Let S be a minimal surface of general type with pg(S) = q(S) = 0
and an involution σ : S → S. The fixed locus of σ is composed of a smooth curve
R and k isolated fixed points. Then:

• 4 ≤ k ≤ K2
S + 4;

• k ≡ K2
S (mod 2);

• KS · R ≤ K2
S and equality holds if and only if k = K2

S + 4;
• if k = K2

S + 4, then the bicanonical map φ : S ��� PK2
S is composed with

σ;
• if |2KS| has no fixed component, then φ is composed with σ if and only if

k = K2
S + 4.

In particular, if S is a numerical Godeaux surface, i.e. K2
S = 1, then k = 5, φ

is composed with σ, KS ·R = 1 and R = Γ + Z, where Z are disjoint (−2)-curves,
and 0 ≤ pa(Γ) ≤ 2 (cf. also [KL]).

Then we study the quotient surface S/σ, and, by a fine use of adjunction on
S/σ and a deep analysis of some Del Pezzo surfaces, we prove the following:

Theorem 2. A numerical Godeaux surface S with an involution σ is birationally
equivalent to one of the following:

(1) a double plane of Campedelli type;
(2) a double plane branched along the union of two distinct lines r1, r2 and a

curve B of degree 12 with the following singularities:
• the point p0 = r1 ∩ r2 of multiplicity 4;
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• a point pi ∈ ri, i = 1, 2, of type [4, 4], where the tangent line is ri;
• further three points p3, p4, p5 of multiplicity 4 and a point p6 of type

[3, 3], such that there is no conic through p1, . . . , p6;
(3) a double cover of an Enriques surface.

In case (3), Tors(S) = Z/4Z, whilst in case (2), Tors(S) is either Z/2Z or Z/4Z.
Moreover if the fixed locus R of σ has an irreducible component Γ of genus 2,

then S belongs to case (3).

All the previously known constructions of numerical Godeaux surfaces as double
planes belong to case (1). Examples of case (3) have been given by Keum and
Naie.

We show the existence of examples of case (2) by constructing degree 12 curves
with the required singularities: we found out some examples with Tors(S) = Z/2Z

and some with Tors(S) = Z/4Z. Let us say that a double plane as in case (2) is
of Du Val type, because it is the degeneration of a double plane, described by Du
Val, whose smooth minimal model has pg = 4 and K2 = 8, with non-birational
bicanonical map (see [Ci], [Bo]).

In both cases (1) and (2), it is possible to determine the possible configurations
of components of the branch curve of the double planes.

In case (3) we prove that the double cover of the Enriques surface is branched
along a curve which moves in a pencil whose general member is an irreducible
curve of genus 2.

Theorem 1 suggests that it is possible to study in a similar way minimal surfaces
of general type with an involution, pg = 0 and K2 > 1, in particular with K2 = 2,
i.e. numerical Campedelli surfaces.
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On pencils of small genus
Fabrizio Catanese and Roberto Pignatelli

1. The relative canonical algebra

Throughout this abstract X will be a projective surface, f : X → B a morphism
onto a smooth curve of genus b. Without loss of generality, we may assume that
f has connected fibres F of genus g. These maps are studied (see, e.g., [Fuj1],
[Fuj2], [Xia]) analyzing their relative canonical algebra.

Definition 1. Consider the relative dualizing sheaf

ωX|B := ωX(−f∗KB).

Then the relative canonical algebra R(f) is the commutative graded algebra
⊕∞

0 Vn, where Vn is the vector bundle on B given as the direct image sheaf f∗(ωn
X|B)

Definition 2. The multiplication maps µn,m : Vn ⊗ Vm → Vn+m yield natural
sheaf homomorphisms

Sn(V1) = Sn(f∗(ωX|B)) σn−→ Vn = f∗(ωn
X|B),

and we define Tn = coker σn.

Remark 1. By Noether’s theorem on canonical curves, Tn is a torsion sheaf if the
general fibre of f is non-hyperelliptic.

Remark 1 shows that the hyperelliptic and the non hyperelliptic case should
be treated separately; assume in fact for the time being that a general fibre is
hyperelliptic. Then there is a birational involution σ on X , and σ acts linearly
on the space of sections OX(U, ωn

X/B), which splits as the direct sum of the (+1)-
eigenspace and the (−1)-eigenspace. Accordingly, we get direct sums Vn = V +

n ⊕
V −

n : therefore, in the hyperelliptic case, where obviously V1 = V −
1 , the cokernels

Tn will be bigger than in the non hyperelliptic case.

2. The structure theorems

Let f : X → B be a genus 2 fibration. The rank 2 vector bundle V1 := f∗ωX|B
induces a natural factorization of f as π ◦ ϕ, where ϕ : X ��� P(V1) is a rational
map of degree 2, and π : P(V1) → B is the natural projection.

The indeterminacy locus of ϕ is contained in the fibres of f which are not 2-
connected, i.e., which split as E1 + E2 with E1E2 = 1. Then E2

i = −1, Ei has
arithmetic genus 1 and is called an elliptic cycle. These fibres are recognizable
through T2 as follows.

Lemma 1. Let f : X → B be a genus 2 fibration. Then T2 is the structure sheaf
of an effective divisor τ ∈ Div≥0(B), whose support is given by the points whose
corresponding fibres of f are not 2-connected.



Classification of Surfaces of General Type with Small Invariants 455

The typical example is given by a fibre consisting of two smooth elliptic curves
E1, E2 meeting transversally in a point P ′. The blow-up of the point P ′ maps
isomorphically to the fibre F ′′ of P over the point P ∈ B, while the elliptic curves
E1, E2 are contracted to two distinct points of the fibre F ′′.

The resolution ϕ̃ of ϕ is the composition of the contraction of E1, E2 to two simple
−2-elliptic singularities, with a finite double cover where the branch curve ∆ in P

contains the fibre and has two distinct 4-tuple points on it. More complicated fibres
containing elliptic tails can produce different configurations of singularities of the
branching divisor of ϕ: a complete list is the one given by Ogg and by Horikawa
in [Ogg],[Hor]. This approach is widely used to construct genus 2 fibrations; the
main difficulty is in the construction of ∆, often very singular.

Definition 3. We denote by A the graded subalgebra of R generated by V1 and
V2; let An be its graded part of degree n, Aeven = ⊕kA2k.

It is easy to see that the natural map Sym(V2) → Aeven is surjective with
kernel generated by the image of the map i2 : detV 2

1 ↪→ S2(V2) defined locally by
i2(x0 ∧ x1)2 = σ2(x0)2σ2(x1)2 − σ2(x0x1)2.

Concretely, this gives explicit equations for Proj(A) as conic subbundle of
the P2-bundle P(V2). Proj(A) and P(V1) are clearly birationally equivalent and
biregularly equivalent outside the fibers over supp(T2). One can check that the
fibres of supp(T2) are in fact the reducible fibres of the conic bundle.

If we consider the natural morphism ϕA : X → Proj(A) induced by the inclu-
sion A ⊂ R and the natural projection morphism πA : Proj(A) → B we get a new
factorization of the fibration (‘birational’ to the previous one): f = πA ◦ ϕA. The
advantage in considering ϕA instead of ϕ is that the branch curve ∆A has only
simple singularities. In the typical example above described, the elliptic curves Ei

will not be contracted by ϕA but they will be double covers of the two lines of the
corresponding fibre of the conic bundle.

Lemma 2. A6 is the cokernel of the map detV 2
1 ⊗V2 → S3(V2) naturally induced

by the map i2 above; note that A6 depends only on B, V1 and σ2. The branch curve
∆A is induced by a map (det(V1) ⊗OB(τ))⊗2 → A6.

We can now introduce the building package of a genus 2 fibration:

Definition 4. Define the associated 5-tuple (B, V1, τ, ξ, w) of a genus 2 fibration
f : X → B as follows:

• B is the base curve;
• V1 = f∗(ωX|B);
• τ is the effective divisor of B with Oτ

∼= T2;
• ξ ∈ Ext1OB

(Oτ , S2(V1))/AutOB (Oτ ) the class induced by σ2;
• w ∈ P(H0(B,A6 ⊗ (det(V1) ⊗OB(τ))⊗−2)) inducing ∆A on Proj(A).

Definition 5. We will say that a a 5-tuple (B, V1, τ, ξ, w) is admissible if
• B is a smooth curve;
• V1 is a vector bundle on B of rank 2;
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• τ ∈ Div+(B);
• ξ ∈ Ext1OB

(Oτ , S2(V1))/AutOB (Oτ ) yields a vector bundle V2;
• w ∈ P(H0(B,A6 ⊗ (det(V1) ⊗OB(τ))⊗−2)) inducing ∆A on Proj(A),

where A6 is the vector bundle induced by ξ;
and if moreover they satisfy some open conditions ensuring that the associated
double cover has Rational Double Points as singularities.

We do not specify here the open conditions in detail for lack of space. The
vector bundle A6 is ‘induced’ taking the map σ2 induced by ξ and defining A6 as
the cokernel of the map in lemma 2.

Theorem 1. Let f be a relatively minimal genus 2 fibration. Then its associated
5-tuple is admissible. Viceversa, every admissible 5-tuple is the associated 5-tuple
of a genus 2 fibration f : X → B, and the surface X has invariants χ(OX) =
deg(V1) + (b − 1), K2 = 2 deg V1 + deg τ + 8(b− 1). Two relatively minimal genus
2 fibration having the same associated 5-tuple are isomorphic.

We can prove a very similar statement for a genus 3 fibrations f with non hy-
perelliptic general fibre, under the assumption that every fibre of f is 2-connected.

3. Applications

The first application of theorem 1 is a short proof of the following theorem
(already proved by Bombieri ([Bom]) using Ogg’s list of genus 2 fibres (cf. [Ogg])).

Theorem 2. Let S be a Godeaux surface, and let f : S → P1 be the fibration
induced by the bicanonical pencil of S. Then the genus of the fibre can only be 3
or 4.

We have an interesting application of theorem 1 to minimal surfaces of general
type with pg = q = 1. In this case 2 ≤ K2

S ≤ 9 and the Albanese map is a
morphism f : S → B where B is a smooth elliptic curve.

The case K2
S = 2 is completely described in [Cat1] where it is proved (among

other things) that the moduli space is generically smooth, unirational of dimension
7.

The class of surfaces of general type with K2 = 3, pg = q = 1 is studied in
[CC1], [CC2]. In [CC1] it is proved that for this class of surfaces the genus of the
Albanese fibre is 2 or 3. The second case is completely classified in [CC2], where
it is shown that the corresponding moduli space is generically smooth, unirational
of dimension 5.

In [CC1] all surfaces with pg = q = 1, K2 = 3 and genus 2 of the Albanese fibre
are described as double covers of B(2). It was conjectured there (see problem 5.5)
that this family of surfaces should form an irreducible family of the moduli space.
We can disprove this conjecture. More precisely (considering also the family in
[CC2])

Theorem 3. The family, in the moduli space of the minimal surfaces of general
type, corresponding to the surfaces S with pg(S) = q(S) = 1, K2

S = 3 has at least
4 connected components and at most 5 irreducible components, all of dimension 5.
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Numerical Godeaux surfaces with an involution
JongHae Keum

A minimal surface of general type with pg = 0 and K2 = 1 is called a numerical
Godeaux surface, or simply a Godeaux surface. A joint work with Y. Lee [2]
describes all possible fixed loci of an involution acting on a numerical Godeaux
surface, under an assumption that the bicanonical system has no base components.
Recently M. Mendes Lopes, R. Pardini [3] have proved the same result without
the assumption.

Let X be a numerical Godeaux surface and σ be an involution acting on it.
Its fixed locus consists of 5 isolated points, a curve l with KX l = 1, and at most
g(l) + 2 nodal curves. The genus g(l) can take values 0, 1 and 2.

Let h denote the number of nodal curves. All known examples of Godeaux
surfaces have an involution, and the corresponding (g(l), h) is as follows:

a classical Godeaux surface from D10-invariant quintic, Beauville’s example,
Barlow surface, and Craighero-Gattazzo-Dolgachev-Werner surface have (0, 0);
Werner’s example with Tors = Z/2, (1, 1); Stagnaro’s example, (1, 2); Oort-Peters’
example, (1, 3).

In [2], two families of Godeaux surfaces with Tors = Z/4 were constructed via
canonical ring method due to M. Reid. These have involutions with (g(l), h) =
(1, 0), (2, 0), respectively.

In this talk, I give an improvement as follows:

Theorem 1. If g(l) = 2, then h = 0.

Sketch of the proof of Theorem 1. If g(l) = 2, then the quotient surface X/σ is bi-
rational to an Enriques surface. This was one of the result presented by C. Ciliberto
and A. Calabri [1] during this workshop. Let W → X/σ be a resolution of the five
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nodes. Then the branch B ⊂ W is of the form B = B0 + N1 + · · ·+ N5, where Ni

are nodal curves coming from the resolution. From the double covering formulas,
we see that B0 is a smooth curve of genus 2 with B2

0 = 2. We also see that B0

is disjoint from the exceptional curves on W which are to be blown down to an
Enriques surface W ′. On W ′, the branch consists of a genus 2 curve and 5 nodal
curves. This means that no components other than l arise by the double covering
process. �

I also suggest a way of constructing examples of Godeaux surfaces as double
Enriques surfaces, whose covering involutions have (g(l), h) = (0, 1), (0, 2), the
only missing cases.
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On fibred rational surfaces
Kazuhiro Konno

(joint work with Shinya Kitagawa)

Let X be a non-singular projective surface with pg = q = 0 and f : X → P1 a
relatively minimal fibration of curves of genus g ≥ 2. We denote by F a general
fibre of f . Then KX + F is nef and the restriction map H0(X, KX + F ) →
H0(F, ωF ) is an isomorphism, because pg = q = 0. In particular, h0(X, KX +F ) =
g. If (KX + F )2 < 2g − 2, then X is automatically a rational surface. Assume
that the rational map defined by |KX + F | is generically finite onto the image W .
Then,

Theorem 1. |KX+F | is free from base points if (KX+F )2 ≤ 2g−4. Furthermore,
the ring ⊕n≥0H

0(X, n(KX + F )) is generated in degree 1 if (KX + F )2 ≤ 2g − 5.

Such an analysis is carried out by passing through the reduction (Y, G) obtained
from (X, F ) by blowing down all the (−1)-curves E satisfying (KX + F )E = 0,
where G is the image of F by the natural map µ : X → Y . The original fibration
f is obtained from a pencil Λf ⊂ |G| by blowing up the base points.

When X is a rational surface which is not P2, we can find a base point free
pencil |D| of rational curves on Y such that c = (KY + G)D is minimal among
such pencils. Then going down further to its #-minimal model (Y #, G#), we get

(KX + F )2 =
2c

c + 1
(g − c − 1) +

1
c + 1

N∑
i=1

(c + 1 − mi)(mi − 1),
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where the mi denotes the multiplicity of a singular point of G#, mi ≤ c/2 + 1.
Furthermore, we can show the following by Serrano’s theorem [5]:

Theorem 2. Assume that c ≥ 2 and G2 > (c + 2)2. Then every morphism
φ : G → P

1 of degree at most c + 2 can be extended to a morphism φ̃ : Y → P
1.

Furthermore,

(1) gon(F ) = c + 2, and

(2) the number of g1
c+2’s on G is finite. In particular, Cliff(F ) = c.

We use these results to study the Mordell-Weil lattice MWL(f) of f . Recall that
the Mordell-Weil lattice is the group of sections of f endowed with a symmetric
bilinear form coming from the intersection pairing on X . Put r = rank MWL(f).
Then Shioda [6] shows

r = ρ(X) − 2 −
∑

P∈P1

(vP − 1),

where ρ(X) denotes the Picard number and vP the number of irreducible compo-
nents of the fibre f−1(P ). In particular, we have r = ρ(X)− 2 if f has irreducible
fibres only.

MWL(f) of maximal rank for fibred rational surfaces is determined so far by
Saito-Sakakibara when f is hyperelliptic [3], by Saito-Nguyen Khac when f is of
Clifford index one [4] and by Kitagawa when f is bi-elliptic [1]. As to the general
fibrations of Clifford index two, we have the following:

Theorem 3. Let X be a non-singular rational surface, f : X → P1 a relatively
minimal fibration of genus g and of Clifford index 2. Let r be the Mordell-Weil
rank of f .

(1) If 5 ≤ g ≤ 10, then r ≤ 3g + 5.

(2) If g ≥ 11, then r ≤ 3g + 8 − (g + ε)/3, where ε is the smallest non-negative
integer with g + ε ≡ 0 modulo 3.

Assume that r attains the maximum. Then all the fibres of f are irreducible and
the reduction Y is obtained as the image of Φ|KX+F |. Furthermore, Y is a del
Pezzo surface and Λf ⊂ | − 2KY | when 5 ≤ g ≤ 10; it is a Hirzebruch surface
blown up ε points and Λf comes from a linear system of quadruple sections when
g ≥ 11.

We can completely determine MWL(f) when the rank is maximum. For exam-
ple, when 5 ≤ g ≤ 10 and Y is obtained from P2 by blowing up 10 − g points in
general position, we get the following Dynkin diagram:

��
��
2 � � �

��
��
2

��
��
2

��
��
2

��
��

3

��
��
2 � � � ��

��
2 ��

��
2

��
��

5

��
��
2 ��

��
2 ��

��
2 ��

��
2 ��

��
2

1 9−g 10−g 3g+5

11−g 12−g 13−g 3g−2 3g−1 3g 3g+1 3g+2 3g+3 3g+4
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where the numbers in circles are self-pairing numbers of elements of a suitably
fixed basis whose numbering is given near the circles. Therefore, it is an odd
unimodular lattice of rank 3g + 5.

For g ≥ 11, the maximal MWL(f) depends not only on g but also on ε and is
much more complicated. We have four different types when ε = 0, two types for
each when ε = 1, 2. The most interesting phenomena can be observed when ε = 0,
because the degree d of the Hirzebruch surface Y is an invariant of the fibration
in this case. The parity of the lattice is the same as that of g − d + 1 and the
structure of MWL(f) depends on the combination of g mod 4 and the parity of d.
In particular, even and odd lattices both occur for a fixed g. See [2] for the detail.
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The bicanonical map of surfaces of general type with pg = 0 and K2 = 6
Margarida Mendes Lopes

(joint work with Rita Pardini)

Many examples of complex surfaces of general type with pg = 0 are known,
but a detailed classification is still lacking, despite much progress in the theory of
algebraic surfaces. Surfaces of general type are often studied using properties of
their canonical curves. If a surface has pg = 0, then there are of course no such
curves, and it is natural to look instead at the bicanonical system, which is not
empty.

Let S be a minimal surface of general type with pg = 0. It is well known that
1 ≤ K2

S ≤ 9. By a theorem of Xiao Gang [12], for K2
S ≥ 2 the image of the

bicanonical map of S is a surface Σ and, by Reider’s theorem [11], the bicanonical
map ϕ is a morphism if K2

S ≥ 5.
Assume that K2

S ≥ 3. Since h0(S, 2KS) = K2
S + 1, the bicanonical image of S

is a surface of degree m ≥ K2
S − 1 in PK2

S . If, in addition, ϕ is a morphism (so, in
particular, if K2

S ≥ 5), one has dm = (2KS)2 = 4K2
S, where d is the degree of ϕ.

It is known that, if K2
S ≥ 3 and ϕ is a morphism, then d ≤ 4 [4]. Furthermore if
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K2
S = 9, ϕ is birational [3], whilst if K2

S = 7, 8 the degree of ϕ is at most 2 and
this bound is effective [6, 7, 9].

In the case K2
S = 6 one has the following numerical possibilities for the pair

(d, m): (1, 24), (2, 12), (3, 8), (6, 4).
The latter possibility occurs and in fact it can be completely characterized.

Such surfaces turn out to be Burniat surfaces (see [2, 10]). More precisely one has
the following:

Theorem 1. [5] Let S be a minimal complex surface of general type such that
pg(S) = 0 and K2

S = 6 and let ϕ : S → PK2
S the bicanonical map of S. Then

deg ϕ = 4 if and only if S is a Burniat surface.
In particular, KS is ample.

Theorem 2. [5] Smooth minimal surfaces of general type S with K2
S = 6, pg(S) =

0 and bicanonical map of degree 4 form an unirational 4-dimensional irreducible
connected component of the moduli space of surfaces of general type.

In this talk we discuss the other possible cases of non birationality of the bi-
canonical map, i.e., degrees 2 and 3. The results are the following:

Theorem 3. Let S be a minimal surface of general type with pg(S) = 0 and
K2

S = 6 for which the bicanonical map ϕ is not birational. Then the degree of ϕ
is either 2 or 4 and the image of ϕ is a rational surface.

Theorem 4. Let S be a minimal surface of general type with pg(S) = 0 and
K2

S = 6 for which the bicanonical map ϕ has degree 2. Then there is a fibration
f : S → P

1 such that the general fibre F of f is hyperelliptic of genus 3 and f
has 4 or 5 double fibres. Furthermore the bicanonical involution of S induces the
hyperelliptic involution on F .

Idea of the proof of Theorem 3. It is necessary to exclude the possibility that d =
3 occurs. For d = 3 the bicanonical image would be a rational surface of degree 8
in P6. By using repeated adjunction (an idea which dates back to Enriques), such
surfaces are studied and their geometry is used to show that d = 3 does not occur.
For details see [8]. �

Idea of the proof of Theorem 4. Let σ be the bicanonical involution. The quotient
surface T := S/σ is a rational surface whose only singularities are nodes (corre-
sponding to the isolated fixed points of σ). Since the bicanonical map factors
through T it is possible to show that T has exactly 10 nodes. The statement of
the theorem is obtained by a careful analysis of the binary linear code associated
to the nodes. For details see again [8]. �

Remark. Note that Theorem 4 is not a mere list of possibilities because there
are examples of both situations (see again [8]). G. Borrelli (see [1]) has obtained
recently with different methods the same list of possibilities and a description of
them as double planes.
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Remark. It would be very interesting to describe the moduli space of the surfaces
appearing in Theorem 4 and in particular to find whether these surfaces deform to
surfaces with birational bicanonical map (no such example is known for K2

S = 6).
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A new family of surfaces with pg = 0 and K2 = 3
Margarida Mendes Lopes

(joint work with Rita Pardini)

The starting point of the subject of this talk is the following Theorem:

Theorem 1 (Xiao Gang, [5]). Let S be a minimal complex surface of general type
with pg(S) = 0 such that the bicanonical map ϕ is not birational and let T be
the bicanonical image. If T is not a rational surface, then T is birational to an
Enriques surface and ϕ is a degree 2 morphism.

Furthermore K2
S = 3 or K2

S = 4.

This theorem lists possibilities and a natural question is whether it is sharp.
Both J. Keum, [1], and D. Naie, [4], constructed examples of surfaces S with

pg(S) = 0 and K2
S = 3 or K2

S = 4 as double covers of nodal Enriques surfaces.
For these surfaces the bicanonical map, although it factorizes through the covering
map, has degree 4 and the bicanonical image is a rational surface.
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In [2], it is shown that, in fact, if the bicanonical image of a surface S with
pg(S) = 0 is birationally an Enriques surface then, necessarily, K2

S = 3. So the
case with K2

S = 4 of Theorem 1 does not occur. Furthermore it is shown that
the minimal surfaces S with pg(S) = 0 and K2 = 4 having an involution σ such
that S/σ is birational to an Enriques surface and such that the bicanonical map
is composed with σ are precisely the Keum-Naie examples.

No example of a surface S with pg(S) = 0 and K2
S = 3, with bicanonical image

birational to an Enriques surface appears in the literature, and so the question is
whether it can occur at all. It turns out such surfaces exist.

The subject of this talk is not only showing the existence of surfaces S with
pg(S) = 0 and K2

S = 3, with bicanonical image birational to an Enriques surface,
but also explaining an explicit construction of all such surfaces. This explicit
construction enables us to show that the corresponding subset of the moduli space
of surfaces of general type is irreducible and uniruled of dimension 6. Since the
closure of this subset contains the Keum-Naie surfaces, whose fundamental group
is isomorphic to Z2

2 ×Z4 (cf. [4]), also the fundamental group of all these surfaces
is Z

2
2 × Z4.

The description of these surfaces is based on a very detailed study of the nor-
malization of their bicanonical images. These are polarized Enriques surfaces of
degree 6 with 7 nodes, satisfying some additional conditions.

For the proofs and details we refer to [3].
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Kustin–Miller unprojections
Stavros Papadakis

Kustin-Miller unprojection is a method that constructs more complicated Goren-
stein rings from simpler data. Geometrically it corresponds to the inverse of the
classical method of projection. The first talk was about the scheme–theoretic foun-
dations of the simplest type of Kustin–Miller unprojection called Type I, which
is joint work with M. Reid [3], and algebraically corresponds to the unprojection
of a codimension one ideal I of a Gorenstein ring R with the quotient R/I being
Gorenstein. In addition, I gave examples and mentioned a method, essentially due
to A. Kustin and M. Miller [1], which calculates type I unprojection in the relative
setting using projective resolutions and maps between complexes.
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The second talk was about Tom and Jerry. They are two families of codimension
four Gorenstein rings defined by M. Reid and studied by me at [2], which are
constructed as Type I unprojection and appear in a variety of examples coming
from Algebraic Geometry. Moreover, I talked about Type II unprojection, which
is work in progress, and constructs a codimension n + 2 conjecturally Gorenstein
ring, starting from a codimension n complete intersection containing a certain
codimension n + 1 subscheme.
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Surfaces in your backyard
Ulf Persson

How do you give elementary examples of surfaces? Hypersurfaces in P3 are
obvious candidates, but of course they are far too restrictive to present a wide
variety of phenomena. It is e.g. impossible to give an example of a so called
honestly elliptic surface (i.e. κ = 1 in the Kodaira classification). A natural
thing is to consider imposing singularities. Just imposing ordinary double points
(or more generally simple-singularities i.e. A-D-E singularities) does not give you
anything new, although it certainly gives you interesting ecxamples with high
Picard numbers. The next step is to consider ordinary triple points, i.e. points
whose resolutions give you smooth elliptic curves with self-intersection −3. It is
an elementary but instructive exercise to present the following list of quintics with
ordinary triple points

Theorem 1. If Q is a quintic with k ordinary triple points then 0 ≤ k ≤ 5 and
its resolution Q̃ satisfies

k = 0, c2
1 = 5, χ = 5 (minimal of general type)

k = 1, c2
1 = 2, χ = 4 (minimal of general type, a double octic)

k = 2 c2
1 = −1, χ = 3 (an elliptic surface blown up once)

k = 3 c2
1 = −4, χ = 2 (a K-3 surface blown up four times)

k = 4 c2
1 = −7, χ = 1 (a rational surface)

k = 5 c2
1 = −10, χ = 0 (a ruled surface over an elliptic curve blown up

ten times)
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The proof is completely elementary. The interesting feature is the way those
surfaces are geometrically realised. To take the example of k = 2. The line joining
the two triple points becomes exceptional, and the elliptic fibration is given by
the pencil of planes through it, intersecting the quintic residually in quartics with
two double points. Those planes incidentally cut out the canonical divisors. In
the case of k = 3 the canonical divisor consists of the plane through the three
triple points, whose intersection is a triangle of lines and a circumscribed conic,
all four easily seen to be exceptional. And finally the case of k = 5 the ruling
consists of twisted cubics passing through the five triple points. By Bezout, any
such twisted cubic having an additional intersection will be contained, and clearly
through any six points, there is a twisted cubic. The degenerate fibers will be ten
by choosing two points out of the five, defining a line and a residual conic through
the remaining three. This distinction between the reducible components allow a
canonical minimal model, which turns out to be a ruled surface over an elliptic
curve defined by a stable rank-two bundle.

Now with my co-workers Endrass and Stevens I considered whether a similar
classification can be effected for degree six, and the surprising answer is yes! How-
ever, the situation becomes more complicated. For one thing one can now no
longer in general choose the locations of the triple points arbitrarily (there will
be two many conditions). E.g. there will be no examples of eight generic triple
points, but if the triple points happen to form the base points of a net of quadrics
one can write down a simple example C(Q1, Q2, Q3) where Qi span the net, and C
is a plane cubic. This will actually be an honestly elliptic surface fibered over an
elliptic curve (given by C = 0). Other special choices of eight points will also yield
examples. In the case of nine triple points we get examples of non-minimal K-3
surfaces, as well as non-minimal fake K-3 surfces, namely honestly elliptic surfaces
gotten from elliptic K-3 surfaces through logarithmic transforms. One may also
find rational sextics with ten triple points, but ten is the upper limit.

For the complete classification I refer to the paper below. Let me only note that
a typical construction is to consider a linear space made up by highly reducible,
often not even reduced, hypersurfaces, such that the base points are of multiplicity
three. (As a simple example consider a quintic Qu with five nodes on a conic
C = H ∩ Q, where H is a plane and Q a quadric. Then consider the generic
member of the pencil spanned by HQu and Q3).

One may wonder where to go from here? One may note that we prove that for
degree seven or higher only minimal surfaces of general type occur in this way.
Thus one should either consider other elementary constructions of low degree,
like complete intersections in P

4, P5 and maybe P
6. The same thing for multi-

projective spaces. In short, I suspect that there will be no more than perhaps
a dozen different cases, similar to the ones I have refered to above. To be more
specific, try to do a similar analysis for hypersurfaces of low degree in P1×P1×P1.
The case of tri-degree (3, 3, 3) is analogous to the case of quintics, (but of course
more involved). It turns out that its chern-invariants are given by c2

1 = 18, χ = 9.
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So I would like to point this out by describing an analogy to the Godeaux
quotient, which although elementary, has never been written down and published
to my knowledge1. The key point is an action of Z9 on P1 × P1 × P1 inducing an
action on the monomials xiyjzk involving an amalgation of the cyclic permutation
of the co-ordinates and the action of a primitive 9-th root of unity. More precisely
letting a generator of Z9 act accordingly

(x, y, z) �→ (ρz, ρx, ρy)

It is easy to find the fixed points of the actions, and just like in the quintic case,
avoid those by a judicious inclusion of certain extreme monomials. Once we have
a fixed point free action the quotient will have c2

1 = 2, χ = 1. As the quotient is
regular, we conclude that pg = 0.

Finally instead of considering just triple points, one may take into account four-
tuple points, or other more subtle singularities, one thinks of elliptic singularities
with E2 = −2,−1. Those two types are easily exhibited on double covers, by
considering four-tuple points or so called infinitely close triple points.

All of those obviously are directed to the main question

Question. Is it possible to classify all surfaces of small invariants?

One first attempt would be to classify all such surfaces which can be deformed
into double coverings, especially double planes.

References

[1] S. Endrass, U. Persson, J. Stevens, Surfaces with Triple Points, Journal of Algebraic Geom-
etry 12 (2003), 367–404.

Extrasymmetric matrices and surfaces with pg = 4 and K2 = 6
Roberto Pignatelli

(joint work with Ingrid Claudia Bauer and Fabrizio Catanese)

Minimal surfaces with pg = 4 have been studied by several mathematicians since
the publication of the famous book of Enriques [Enr]. By the standard inequalities
of Noether and Bogomolov-Miyaoka-Yau, for these surfaces it holds 4 ≤ K2 ≤ 45.

The case K2 = 4 is completely described in [Hor2]. All these surfaces are double
covers of an irreducible quadric in P3. Their moduli space is generically smooth,
unirational, of dimension 42; its singular locus has codimension 1, and it is exactly
the locus corresponding to the double covers of the quadric cone.

In [Hor1] (see also [Rei2], [Gri]) the case K2 = 5 is completely described: the
canonical map is either a birational morphism to a quintic in P3, or a rational
map of degree 2 onto an irreducible quadric. Their moduli space has two irre-
ducible unirational components of dimension 40 whose general point corresponds
to surfaces with canonical image respectively a quintic or a smooth quadric. The

1 I thought of it some twenty years ago, and may have circulated it around privately.
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surfaces whose canonical image is a quadric cone form a 39-dimensional subvariety
of this moduli space, the intersection of the two irreducible components.

The case K2 = 6 is the first case not completely solved. In [Hor3] Horikawa
listed all possibilities for the canonical map, dividing these surfaces in 11 classes
(and therefore their moduli space in 11 strata). He proved that each of these cases
occurs, and studying the local deformations of these surfaces (to understand how
these strata can ‘glue’), Horikawa proved that their moduli space has 4 irreducible
components (one of dimension 39, the other three of dimension 38), and at most
3 connected components.

More precisely, Horikawa named the 11 classes as Ia, Ib, II, IIIa, IIIb, IVa1 ,
IVa2 , IVb1 , IVb2 , V1, V2 (see [Hor3] for precise definitions of each class). According
to Horikawa’s notation we define

Definition. Let A and B be two of the above introduced classes. If we write
“A → B”, it means that there is a flat family with base a small disc ∆ε ⊂ C

whose central fibre is of type B and whose general fibre is of type A.

With this notation Horikawa summarized its results in the following picture

IIIa

IVa1 Ia V1 IIIb II

IVa2 IVb1 V2

IVb2 Ib

He could disprove many other degenerations, but he could neither prove nor dis-
prove the specializations II → IIIb, II → V and Ia → V ; we have shown that
the degeneration II → IIIb occurs.

Definition. A minimal surfaces of general type with pg = 4 and K2 = 6 is of
type II if the canonical map has degree 3.

Horikawa proved that in this case the canonical image is a quadric cone.
Surfaces of type IIIb are described by Horikawa as follows:

Theorem (5.2 in [Hor3]). Let S be a surface of type IIIb. Then S is birationally
equivalent to a double covering of F2 whose branch locus B consists of the 0-section
∆0 and B0 ∈ |7∆0 + 14Γ| which has a quadruple point at x ∈ Γ and a 2-fold triple
point at y ∈ Γ on a fibre Γ, with x and y being possibly infinitely near.

The canonical ring of these surfaces is very complicated: it is a quotient of a
polynomial ring of big (at least 6, maybe more) codimension. We do not know how
to investigate the flat deformations of rings of high codimension. We look then
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for a ’bigger’ and easier ring, a ring containing the canonical ring and of smaller
codimension.

By standard computations one can show that the canonical system of S is
|2L| + Z where L is the genus 3 pencil pull-back of the ruling of F2, and Z is a
fundamental cycle. Therefore, even if KS is not 2-divisible in the Picard group,
it can be divided by 2 when considered only as a Weil divisor on the canonical
model.

Definition. Let S be a surface of type IIIb, let Z be the fixed part of its canonical
system, and let δ be a generator of H0(Z).

Let R be the graded ring whose homogeneous components are the spaces Rd :=
H0(dL + �d

2Z�), d ∈ N, with product defined on the homogeneous elements as
ab = a ⊗ b or a ⊗ b ⊗ δ according if the product of the degrees of a and b is even
or odd.

Note that enlarging the ring ‘restricts’ the possible deformations. In fact, if
the canonical rings induce, given a flat family of surfaces, a flat family of rings,
the same does not hold for these ‘half-canonical’ rings, since the 2-divisibility of
the canonical divisor (as a Weil divisor on the canonical model) is not necessarily
preserved by a deformation.

As proved in [MP] (where these surfaces are studied in detail) the canonical
system of a surface of type II, can be written again as 2L+Z with L genus 3 pencils
and Z fundamental cycle. It is then natural to expect, if a family “II → IIIb”
exists, that this family preserves the genus 3 pencils and the ‘half-canonical’ rings.

Theorem 1. We have R ∼= C[x0, x1, y, z, w, v, u]/I with deg(x0, x1, y, z, w, v, u)
= (1, 1, 2, 3, 4, 5, 6), where I has codimension 4, generated by 9 equations yoked by
16 syzygies; the 9 generators of I are homogeneous polynomial of respective degrees
(4, 5, 6, 7, 8, 9, 10, 11, 12).

Miles Reid and Duncan Dicks introduced in [Rei1] (see also [Rei2], [Rei3],
[BCP]) the ‘extrasymmetric format’, for some Gorenstein rings of codimension
4 with 9 relations and 16 syzygies.

Roughly speaking, they noticed that the ideal generated by the pfaffians of order
4 of a 6 × 6 skewsymmetric matrix is, if the matrix has some further symmetry
(it is ‘extrasymmetric’) of codimension 4 with 9 generators and 16 syzygies. This
format is flexible, i.e. every deformation of the matrix preserving the symmetries
induces a flat deformation of the ideal. This property allowed us to prove our main
result.
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Theorem 2. Let (x0, x1, y, z, w, v, u) variables of degrees (1, 1, 2, 3, 4, 5, 6), Let M
be the 6 × 6 skewsymmetric matrix

M =


0 t z v y x1

0 w u P3 y
0 P9 u v

0 wP4 zP4

0 tP4

−sym 0

 .

where the Pi’s are homogeneous of degree i in the above introduced variables and t
is the parameter on a small disc ∆ε ⊂ C.

For general choice of P3, P4 and P9 the 4 × 4 pfaffians of M define a variety
X ⊂ ∆ε × P(1, 1, 2, 3, 4, 5, 6) whose projection on ∆ε is flat, with central fibre a
surface of type IIIb and with general fibre a surface of type II.

Sketch of the proof of Theorem 2. The flatness of the above family (for general
entries) follows directly from the flexibility of the format. One can check that for
general choice of the polynomials Pi and for t small the above equations define
a surface with only rational double points as singularities: the invariants can be
easily computed.

Note that the pfaffians Pf1235 and Pf1236 are of the form tu − · · · and tv −
· · · , and that the pfaffian Pf1256 can, for general choice of P4, be written as
t2w − .... Therefore, for t �= 0, we can ‘eliminate’ the variables u, v, w, and R ∼=
C[x0, x1, y, z]/J for some ideal J : a straightforward computation shows that J is
a principal ideal generated by the equation obtained by Pf1234 after ’eliminating’
u, v, w using Pf1235, Pf1236 and Pf1256.

We get then an hypersurface of degree 9 in P(1, 1, 2, 3), whose canonical system
is induced by O(2): since for general entries of M the coefficient of the monomial
z3 in its equation does not vanish, we see that the canonical map has degree 3
(and image P(1, 1, 2), a quadric cone). This shows that the surface is of type II.

If t = 0, the canonical map is given again by the projection on P(1, 1, 2), but
the surface meets the center of the projection in a point (if P4 = w+ · · · , the point
(0,0,0,0,1,0,1)), therefore the projection has only degree 2; one can easily check
that the branch locus has the behavior described by Horikawa. �

As a corollary, we can improve Horikawa’s bound on the deformation types

Corollary. The number of deformation types of minimal surfaces of general type
with pg = 4 and K2 = 6 is at most 2.
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Surfaces of general type with pg = q = 1, K2 = 8 and bicanonical map of
degree 2

Francesco Polizzi

In [Par03] R. Pardini classified the minimal surfaces S of general type with
pg = q = 0, K2

S = 8 and a rational involution, i.e. an involution σ : S −→ S such
that the quotient T := S/σ is a rational surface. All the examples constructed by
Pardini are isogenous to a product, i.e. there exist two smooth curves C, F and
a finite group G acting faithfully on C, F and whose diagonal action is free on
the product C × F , in such a way that S = (C × F )/G. Pardini’s classification
contains five families of such surfaces; in particular, four of them are irreducible
components of the moduli space of surfaces with pg = q = 0, K2

S = 8, and
represent the surfaces with the above invariants and non- birational bicanonical
map.

In this paper we deal with the irregular case, in fact we study the case pg = q =
1, K2

S = 8. Surfaces with pg = q = 1 are the minimal irregular surfaces of general
type with the lowest geometric genus, therefore they are natural candidates to
starting the investigation of irregular surfaces with q = 1 or, more generally, with
an irrational pencil. However, such surfaces are still quite mysterious, and only a
few families have been hitherto discovered. If S is a surface with pg = q = 1, then
2 ≤ K2

S ≤ 9; the case K2
S = 2 is studied in [Ca81], whereas [CaCi91] and [CaCi93]

deal with the case K2
S = 3. For higher values of K2

S only some sporadic examples
were so far known; see [Ca99], where a surface with K2

S = 4 and one with K2
S = 5

are constructed.
When pg = q = 1, there are two basic tools that one can use in order to study

the geometry of S: the Albanese fibration and the paracanonical system. First of
all, q = 1 implies that the Albanese variety of S is an elliptic curve E, hence the
Albanese map α : S −→ E is a connected fibration; we denote by F the general
fibre of α and by g = g(F ) its genus. Let us fix a zero point 0 ∈ E, and for
any t ∈ E let us write KS + t for the line bundle KS + Ft − F0. By Riemann-
Roch and semicontinuity theorem we have h0(S, KS + t) = 1 for general t ∈ E,
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hence denoting by Ct the only element in the complete linear system |KS + t|
we obtain a 1-dimensional algebraic family {K} = {Ct}t∈E parametrized by the
elliptic curve E. We will call it the paracanonical system of S; according to [Be88],
it is the irreducible component of the Hilbert scheme of curves on S algebraically
equivalent to KS which dominates E. The index ι = ι(K) of the paracanonical
system {K} is the number of distinct curves of {K} through a general point of
S. The paracanonical map ω : S −→ E(ι), where E(ι) := SymιE, is defined in
the following way: if x ∈ S is a general point, then ω(x) = t1 + · · · + tι, where
Ct1 , . . . , Ctι are the paracanonical curves containing x. The best result that one
might obtain would be to classify the triples (K2, g, ι) such that there exists a
minimal surface of general type S with pg = q = 1 and these invariants. Since by
the results of Gieseker the moduli space Mχ, K2 of surfaces of general type with
fixed χ(OS), K2

S is a quasiprojective variety, it turns out that there exist only
finitely many such triples, but a complete classification is still missing.

By the results of [Re88], [Fr91] and [CaCi91] it follows that the bicanonical
system |2KS| of a minimal surface of general type with pg = q = 1 is base-point
free, whence the bicanonical map φ := φ|2K| : S −→ PK2

S of S is a morphism.
Moreover such a morphism is generically finite by [Xi85], so φ(S) is a surface Σ.
We will say that a surface S contains a genus 2 pencil if there is a morphism
f : S −→ B, where B is a smooth curve and the general fibre Φ of f is a smooth
curve of genus 2. Notice that in this case the bicanonical map φ of S is not
birational, since |2KS| cuts out on Φ a subseries of the bicanonical series of Φ
which is composed with the hyperelliptic involution. In this case we say that
S presents the standard case for the non-birationality of the bicanonical map;
otherwise, namely if φ is not birational but S does not contain any genus 2 pencils,
we say that S presents the non-standard case. By the results of Bombieri (later
improved by Reider, see [Bo73] and [Re88] ) it follows that, if K2

S ≥ 10 and the
bicanonical map is not birational, then S contains a genus 2 pencil. Whence there
exist only finitely many families of surfaces of general type presenting the non-
standard case, and one would like to classify all of them; however, this problem
is still open, although many examples are known. In the paper [Xi90] G. Xiao
gave two list of possibilities for the bicanonical image of such a surface; later on
several authors investigated about their real occurrence. For more details about
this argument, we refer the reader to the paper [Ci97].

No examples of surfaces with pg = q = 1 and presenting the non-standard case
were hitherto known; if S is such a surface and K2

S ≥ 5, then a result of Xiao ([see
Xi90, Proposition 5]) implies that the degree of φ is either 2 or 4. In this work we
describe the surfaces of general type with pg = q = 1, K2

S = 8 and such that the
degree of φ is 2. It will turn out that they belong to three distinct families, which
provide as well the first known examples of surfaces which such invariants. None
of these surfaces contains a genus 2 pencil, thus they are three substantially new
pieces in the classification of surfaces presenting the non-standard case.
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What we show is that, as in the case pg = q = 0, the surfaces with pg = q =
1, K2

S = 8 and bicanonical map of degree 2 are isogenous to a product. More
precisely, our result is the following:

Theorem 1. Let S be a minimal surface of general type with pg = q = 1, K2
S = 8

and such that its bicanonical map has degree 2. Then S is a quotient of type
S = (C × F )/G, where C, F are smooth curves and G is a finite group acting
faithfully on C, F and freely on C × F . Moreover C is a curve of genus 3 which
is both hyperelliptic and bielliptic, E := C/G is an elliptic curve isomorphic to the
Albanese variety of S and F/G ∼= P1. The bicanonical map φ of S factors through
the involution σ of S induced by the involution τ × id on C × F , where τ is the
hyperelliptic involution of C. The occurrences for g(F ) and G are the following
three:

I. g(F ) = 3, G ∼= Z2 × Z2;
II. g(F ) = 4, G ∼= S3;

III. g(F ) = 5, G ∼= D4.
The curve F is hyperelliptic in case I, whereas it is not hyperelliptic in cases II
and III.

Surfaces of type I, II, III do exist and they form three generically smooth,
irreducible component SI , SII , SIII of the moduli space M of surfaces with pg =
q = 1, K2

S = 8, whose respective dimensions are:

dim SI = 5, dim SII = 4, dim SIII = 4.

The proof of Theorem 1 is somewhat involved as it requires the understanding
of many different techniques.

Sketch of the proof of Theorem 1. Step 1. We analyze the bicanonical involution
σ of S, following [Xi90] and [CM02]. It turns out that σ has 12 isolated fixed
points and that the divisorial fixed locus of σ is contained in fibres of the Albanese
pencil.
Step 2. Using the results obtained in Step 1 we prove that if S is a minimal surface
of general type with pg = q = 1, K2

S = 8 and bicanonical map of degree 2, then S
contains a rational pencil of hyperelliptic curves of genus 3 with six double fibres.
This in turn implies, by the results of Serrano contained in [Se90] and [Se96], that
S is isogenous to a product, i.e. S = (C × F )/G. We show moreover that there
are at most three families of such surfaces, and we describe them.
Step 3. We show that the three families described in Step 2 actually exist, by
constructing the two curves C, F and by exhibiting explicitly the actions of G on
them.
Step 4. We study the moduli space of the surfaces S constructed in Step 3. This is
not difficult because the group G acts separately on C and F , hence the Kuranishi
family of S turns out to be smooth. �
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On numerical Godeaux surfaces constructed as double planes
Caryn Werner

Let S be a minimal surface of general type with pg = q = 0, K2
S = 1. The

torsion of S, Tors(S), is cyclic of order at most five, and Reid has shown that in
the cases of torsion Z3, Z4, and Z5 the moduli spaces are smooth and irreducible
of dimension eight. In comparison, in the cases of Tors(S) = 0 and Tors(S) = Z2,
little is known about the moduli space; while several examples of these surfaces
have been found a more general classification is still unknown.

Surfaces with these invariants are called numerical Godeaux surfaces, after
Godeaux who provided the first example, as the Z5-quotient of a quintic hyper-
surface in P3. Most known constructions of numerical Godeaux surfaces have an
involution. One particular method for constructing these surfaces was proposed by
Campedelli: as the minimal resolution of the double cover of the plane, branched
along a degree ten curve with one quadruple point, five infinitely near triple points,
such that these six singular points do not lie on a conic. In this talk we survey
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the known numerical Godeaux surfaces constructed as double planes; the cases of
torsion equal to 0, Z2, Z4, and Z5 all occur.

The first construction of a numerical Godeaux as a double plane is due to Oort
and Peters, whose resulting surface has order four torsion. Reid proved that the
classical Godeaux construction can also be realized as a Campedelli double plane;
this construction has torsion of order five. As both the numerical Godeaux surfaces
with torsion group Z4 and Z5 have irreducible moduli spaces, and constructions
as double planes, one can ask if the same will be true for the other three cases.

For trivial torsion, a surface constructed as the resolution of a singular quintic
in P3 by Craighero and Gattazzo has been shown to be a double plane. In the case
of order two torsion there is a four dimensional family of double plane Godeaux
surfaces.

After cataloguing these known double plane Godeaux surfaces, we classify the
possible degree ten branch curves that are invariant under an involution of the
plane. The idea of looking for branch curves with this additional symmetry was
proposed by Stagnaro; following this idea one can prove

Theorem 1. Let C be a degree ten plane curve with the singularities required for
a numerical Godeaux double plane, and suppose C is invariant under involution.
Then the resulting double cover branched along C has torsion group Z4.

Moreover one can determine all possible decompositions of the branch curve;
the example of Oort and Peters belongs to this class of constructions.
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A new proof for the adjoint theorem and a Castelnuovo’s conjecture
Francesco Zucconi

Let ξ ∈ H1(X, TX) be the class of a first order deformation π : X → Spec C[ε]/(ε2)
being X a n-dimensional projective variety. Let 〈η1, . . . , ηn+1〉 be an ordered set of
n+1 linearly independent sections of Ker(δξ : H0(X, Ω1

X) → H1(X,OX)) where δξ

is the coboundary map associated to the sequence: 0 → OX → Ω1
X|X → Ω1

X → 0.

If s1, . . . , sn+1 are liftings in H0(X, Ω1
X|X) of respectively η1, . . . , ηn+1 and Ω ∈

H0(X,∧n+1Ω1
X|X) is the form corresponding to s1∧. . .∧sn+1 ∈ ∧n+1H0(X, Ω1

X|X)
then via the isomorphism Lξ : H0(X,∧n+1Ω1

X|X) → H0(X,∧nΩ1
X) we obtain

a top form ωξ,〈η1,...,ηn+1〉 = Lξ(Ω). This form is called adjoint form of ξ and
〈η1, . . . , ηn+1〉. If W is the subvector space generated by 〈η1, . . . , ηn+1〉 and ∧nW
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is the subvector space of H0(X,∧nΩ1
X) given by 〈η1 ∧ . . . ∧ η̂i . . . ∧ ηn+1〉 the

adjoint theorem states that: if ωξ,〈η1,...,ηn+1〉 ∈ ∧nW then ξ ∈ Ker(H1(X, TX) →
H1(X, TX(D))) where D is the fixed component of the sublinear system given by
| ∧nW |.

In this talk we present a new proof of this theorem based on the natural interpre-
tation of the condition s1 ∧ . . .∧ sn+1 = 0 as integrability condition for the system
s1∧ . . .∧ ŝi∗∧· · ·∧sn+1 = 0, i = 1, . . . , n+1. We explain the relations between the
solution of this system and the geometry of the natural map π : P(Ωn

X|X) → X . In
the second part of the talk we show the proof of the Castelnuovo conjecture stating
that the number m of moduli of an irregular surfaces with q ≥ 4 and Albanese
map of degree 1 is less or equal to pg + 2q − 3. In the final part we discuss some
possible applications to surfaces with q = 4.
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Introduction by the Organisers

The workshop was centered around two important topics in modern harmonic
analysis: “Wavelets and frames”, as well as the related topics “time-frequency
analysis” and “operator algebras”. 1

The theory of frames, or stable redundant non-orthogonal expansions in Hilbert
spaces, introduced by Duffin and Schaeffer in 1952, plays an important role in
wavelet theory as well as in Gabor (time-frequency) analysis for functions in L2(Rd).
Besides traditional and relevant applications of frames in signal processing, image
processing, data compression, pattern matching, sampling theory, communication
and data transmission, recently the use of frames also in numerical analysis for
the solution of operator equation by adaptive schemes is investigated. These im-
portant applications motivated the study of frames as decompositions in classical
Banach spaces, e.g. Lebesgue, Sobolev, Besov, and modulation spaces. Funda-
mental concepts on operator theory, as well as on the theory of representations
of groups and algebras are also involved and they have inspired new directions
within frame theory with applications in pseudodifferential operator and symbolic
calculus and mathematical physics.

1Partial travel funding was provided by grants in Austria, Germany, and the USA. The three
organizers from the US, are part of a Focused Research Group (FRG), funded by the US National
Science Foundation (NSF), and two other participants are in this FRG group, Professors Chris
Heil, GATECH, USA, and Akram Aldroubi, Vanderbilt University, USA. The organizers thank
the US NSF for partial support.
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Any element f of the Hilbert space H can be expanded as a series with respect
to a frame G = {gn}n∈Z2d in H, and the coefficients of such expansion can be
computed as scalar products of f with respect to a dual frame G̃ = {g̃n}n∈Z2d :

(1) f =
∑

n∈Z2d

〈f, g̃n〉gn, for all f ∈ H.

In particular, G is a frame if (and only if) the so called frame operator

Sf =
∑

n∈Z2d

〈f, gn〉gn,

is continuous and continuously invertible on its range. Then there exists a canoni-
cal choice of a possible dual frame (delivering the minimal norm coefficient) defined
by the equation

SG̃ = G.

The existence of a dual frame makes the expansion (1) work. On the other hand,
it may be a hard problem to predict properties of the canonical dual frame since
it is only implicitly defined by the previous equation, and not always is there
an efficient way of computation approximations at hand. This motivated the so
called localization theory for frames, making use of well-chosen Banach ∗-algebras
of infinite matrices. They allow to deduce relevant properties of the canonical
dual and to extend the Hilbert space concept of frames to Banach frames which
characterize corresponding families of Banach spaces.

Another problem within frame theory concerns structured families of functions,
depending perhaps on several parameters, and the question of whether such a
family constitutes a frame for L2(Rd). Classical examples are the following ones.
Gabor frames are frames in L2(Rd) constructed by modulations and translations :
given a square-integrable function g our sequence is gnm(x) = e2πi(m,x)g(x − n),
(n, m) ∈ Λ, where Λ is a discrete subset of R2d. The wavelet frames are constructed
using dilations and translations : given a set ∆ ⊂ GL(d, R) and Γ ⊂ R

d, as well
as a suitable square integrable function ψ, we set ψD,γ(x) = | detD|1/2ψ(Dx + γ)
for D ∈ ∆ and γ ∈ Γ. They are canonically related to Besov spaces. The reader
can find several interesting questions and problems related to those concepts in
the following abstracts.

We would like to exemplify here two simple existence problems. If the density
of the points in Λ is too small, then a Gabor frame cannot be constructed, and if
the density is too large, then one can construct a frame, but not a basis. Suitable
definitions of density and their relations with respect to the existence of frames in
one of the current relevant topics in the frame theory.

In the wavelet case, an interesting problem has been the construction of wavelet
sets. Given the set ∆ and Λ, find the measurable subsets Ω ⊂ Rd of positive,
and finite measure, such that, with ψ̂ = χΩ, the sequence {ψD,γ}D∈∆,γ∈Γ, is an
orthogonal basis for L2(Rd). Such a set is called a wavelet set. This line of work
includes both geometry (tilings of Rd) and analysis (the Fuglede conjecture). More
general question is when {ψD,γ}D∈∆,γ∈Γ can be a frame.
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Other more general frames, called wave packets, can be constructed as combina-
tions of modulations, translations and dilations to interpolate the time-frequency
properties of analysis of Gabor and wavelet frames. Interesting problems related
to density and existence of such frames are an important direction of research
and connections with new Banach spaces (for example α-modulation spaces), Lie
groups (for example the affine Weyl-Heisenberg group), and representation theory
(for example the Stone-Von Neumann representation) are currently fruitful fields
of investigation. All these families of frames are generated by the common action
of translations. Shift invariant spaces and their generators constituted the main
building blocks from which to start the construction of more complicated systems.
They showed relevant uses in engineering, signal and image processing, being one
of the most prominent branch in the applications.

Rather than formal presentations of recent advances in the field, this workshop
tried instead to aim at outlining the important problems and directions, as we
see it, for future research, and to discuss the impact of the current main trends.
In particular, the talks were often informal with weight on interaction between
the speaker and the audience, both in form of discussion and general comments.
A special problem session was organized by D. Larson one afternoon. Another
afternoon session was devoted to talks and informal discussions of further open
problems, new directions, and trends.

The topics that emerged in these discussions included the following general
areas:

(1) Functional equations and approximation theory: wavelet approximation
in numerical analysis, PDE, and mathematical physics. At the meeting,
we discussed some operator theoretic methods that resonate with what
numerical analysts want, and questions about localizing wavelets. We
refer to the abstracts by M. Frank and K. Urban for more details. Two
workshop lectures covered connections to numerical analysis and PDE.

(2) Gabor frames: We had many discussions, much activity, and several talks
on aspects of this. H. Feichtinger explained some important results and dis-
cussed some open problems involving frames and Gelfand triples. K. Gröch-
enig gave a lecture on new formulations and results generalizing Wiener’s
inversion theorems, in particular for twisted convolution algebras and Ga-
bor frames. The applications are striking in that they yield sharper frame
bounds. And they involve non-commutative geometry and other operator
algebraic tools. C. Heil discussed the basic properties of frames which are
not bases, and in particular he discussed the current status of the still-open
conjecture that every finite subset of a Gabor frame is linearly indepen-
dent. A related problem is that there do not exist any explicit estimates
of the frame bounds of finite sets of time-frequency shifts.

(3) Continuous vs. discrete wavelet transforms: We had several talks at the
Oberwolfach workshop where the various operations, translation, scaling,
phase modulation, and rotation, get incorporated into a single group. H.
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Führ and G. Ólafsson gave talks, where links to Lie groups and their rep-
resentations were discussed. This viewpoint seems to hold promise for
new directions, and for unifying a number of current wavelet construc-
tions, tomography, scale-angle representations, parabolic scaling, wavelet
packets, curvelets, ridgelets, de-noising . . . Wavelets are usually thought
of as frames in function spaces constructed by translations and dilations.
Much less is understood in the case of compact manifolds such as the
n-dimensional sphere, where both “dilations” and “translations” are not
obviously defined. The talk by Ilgewska–Nowak explained some of her
joint work with M. Holschneider on the construction of discrete wavelet
transforms on the sphere.

(4) Harmonic analysis of Iterated Function Systems (IFS): Several of the par-
ticipants have worked on problems in the area, and P. Jorgensen spoke
about past work, and directions for the future. The iterated function sys-
tems he discussed are closely related to the study of spectral pairs and
the Fuglede problem. Recent work by Terence Tao makes the subject
especially current.

(5) Multiplicity theory, spectral functions, grammians, generators for trans-
lation invariant subspaces, and approximation rates: We had joint activ-
ity at the workshop on problems in the general area, and we anticipate
joint papers emerging from it. A. Aldroubi lectured on the engineering
motivations. In particular he discussed translation invariant subspaces
of L2(R) where two lattice-scales are involved, and issues about localizing
the corresponding generating functions for such subspaces. O. Christensen
presented an equivalent condition for two functions generating dual frame
pairs via translation. The result lead to a way of finding a dual of a given
frame, which belongs to a prescribed subspace. Several open questions
related to this were discussed.

(6) Decompositions of operators and construction of frames: D. Larson dis-
cussed the problem of when is a positive operator a sum of finitely many
orthogonal projections, and related it to frame theory. Problems and some
recent results and techniques of D. Larson and K. Kornelson were discussed
in this context, involving other related types of targeted decompositions
of operators. In response, H. Feichtinger and K. Gröchenig pointed out
that similar techniques just may lead to progress on a certain problem in
modulation space theory. There are plans to follow up on this lead.

(7) Wave packets: We had two talks at the workshop about this broad re-
search area. G. Kutyniok gave a talk about the role of the geometric
structure of sets of parameters of wave packets for the functional proper-
ties of associated systems of functions. In this context some recent results
of D. Speegle, G. Kutyniok, and W. Czaja were discussed. M. Fornasier
presented the construction of a specific family of wave packet frames for
L2(R) depending on a parameter α ∈ [0, 1), as a mixing tuner between
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Gabor and wavelet frames. These more classical and well-known frames
arise as special and extreme cases.

The organizers:

H. Feichtinger, P. Jorgensen, D. Larson, and G. Ólafsson
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Gestur Ólafsson
Groups, Wavelets, and Function Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519

Karsten Urban
Adaptive Wavelet Methods for the Numerical Solutions of
Operator Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522

Eric Weber (joint with Ryan Harkins and Andrew Westmeyer)
Orthogonal Frames for Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525



486 Oberwolfach Report 10/2004

Hans G. Feichtinger
How close can an L1-Function be to a Convolution Idempotent? . . . . . . . . 528

Michael Frank
Approximation of Frames by Normalized Tight Ones . . . . . . . . . . . . . . . . . . . . 528

Hartmut Führ
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Abstracts

Almost Translation Invariant Spaces
Akram Aldroubi

Shift invariant spaces that are considered are of the form

(1) V 2(Φ) =
{∑

j∈Z

D(j)T Φ(· − j) : D ∈ (�2)(r)
}

for some vector function Φ = (φ1, . . . , φr)T ∈ (L2)(r), where D = (d1, . . . , dr)T

is a vector sequence such that di := {di(j)}j∈Z ∈ �2, i.e., D ∈ (�2)(r). Thus∑
j∈Z

D(j)T Φ(· − j) =
∑r

i=1

∑
j∈Z

di(j)φi(· − j).
We also assume that the Gramian satisfies

(2) GΦ(ξ) :=
∑
k∈Z

Φ̂(ξ + k)Φ̂(ξ + k)
T

= I, a.e. ξ,

where I is the identity matrix.
An important and prototypical space is the space of band-limited functions

where r = 1, φ = sin(πx)
πx . This space is translation invariant for all translates.

This feature is important in applications since it allows the construction of sig-
nal/image processing algorithms that are invariant under time or space transla-
tions. However, band-limited functions are analytic and are not always well suited
as signal models or for computational purposes. For this reason, we wish to in-
vestigate spaces that are almost translation invariant, thereby allowing for almost
reproducibility and origin independence of the algorithms without the limitation
of analyticity and the computational complexity of band-limited function space.

Let Ta be the translation operator by a factor a, i.e., (Taf)(x) = f(x − a),
then obviously T1V = V . We would like to characterize the generators Φ such
that T1/nV = V for some fixed integer n. This problem has been studied and
Φ characterized for a particular case by Weber in [3] and for the general case by
Chui and Sun in [1]. For the case r = 1 and n = 2 we have the following useful
characterization:

Let E0 := {ξ ∈ [0, 1) : φ(ξ + 2j) �= 0 for some j ∈ Z}, E1 := {ξ ∈ [0, 1) :
φ(ξ + 2j + 1) �= 0 for some j ∈ Z}, then T1/nV = V if and only if E0 ∪E1 = [0, 1),
and E0 ∩ E1 = ∅. We conjecture that a similar characterization which is not an
easy or direct consequence of [1] can be obtained for the general case.

Another direction that we will investigate is the problem of ε-1/n translation
invariant: Given ε > 0 we wish to study the set Aε of generators Φ such that

sup{‖f(· − 1/n)− Pf(· − 1/n)‖, f ∈ V, ‖f‖ = 1} ≤ ε

where P is the orthogonal projection on V . This problem is related to the prob-
lem discussed in [2]. The problems under considerations are currently investigated
in collaboration with C. Heil, P. Jorgensen, K. Kornelson, and G. Olafsson.
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Trends in Frame Theory
Ole Christensen

The increased flexibility (compared to orthonormal bases) is often an argument for
the use of frames. However, in most cases we also want our frames to have some
structure, and there are cases where this additional constraint limits (or removes)
the freedom. For this reason we seek to extend classical frame theory by allowing
duals belonging to a different space than the frame.

Given a frame for a subspace W of a Hilbert space H , we characterize the set of
oblique dual frame sequences (i.e., dual frame sequences that are not constrained
to lie in W ). We then consider frame sequences in shift invariant spaces, and
characterize the translation invariant oblique dual frame sequences. For a given
translation invariant frame sequence an easily verifiable condition on another shift-
invariant frame sequence implies that its closed linear span contains a generator for
a translation invariant dual of the frame sequence we start with; in particular, this
result shows that classical frame theory does not provide any freedom if we want
the dual to be translation invariant. In the case of frame sequences generated by
B-splines we can use our approach to obtain dual generators of arbitrary regularity.

Some open problems were presented during the lecture:

• It is well known that the canonical dual of a wavelet frame does not nec-
essarily have the wavelet structure. Which conditions on the generator
implies that the canonical dual has wavelet structure? The answer is
known for quasi-affine systems, cf. [1].

• Frazier et. al have characterized all dual wavelet frame pairs for L2(R).
How can this be extended to frames for subspaces?

• Is it possible to construct a tight Gabor frame for which the generator g
as well as ĝ decay exponentially and g is given explicitly in closed form as
a linear combination of elementary functions?

References

[1] Bownik, M. and Weber, E.: Affine frames, GMRA’s, and the canonical dual. Studia Math.
159 (2003), 453-479.

[2] Christensen, O. and Eldar, Y.: Oblique dual frames and shift-invariant spaces. 27 pages. To
appear in Appl. Comp. Harm. Anal., 2004.
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Banach frames, Banach Gelfand Triples, and Wiener Amalgam Spaces
Hans G. Feichtinger

The theory of frames is usually described in the context of Hilbert spaces. One
may consider frames as those sequences in a Hilbert spaces which rich enough
to allow the representations of all the elements in a given Hilbert space, using a
series expansion with square summable coefficients. Equivalently to the standard
definition one can say that the coefficient mapping C : f �→ (〈f, fn〉)n∈N estab-
lishes an isomorphism between the Hilbert space and a its closed range in �2. The
natural inversion (the Moore-Penrose inverse to the coefficient mapping) - we will
call it R - is defined on all of �2, projecting a given sequence onto the range of the
coefficient mapping and then back to the uniquely determined function having the
given coefficients. As a matter of fact R is realized by the usual (canonical) dual
frame, called (f̃n), via c �→

∑
n cnf̃n. Obviously one has R ◦ C = IdH , which is

just another form of describing the standard frame expansion for f ∈ H . Since
R is bounded and any sequence in �2 is the norm limit of its finite sections, the
convergence of the series is unconditional as well.

From a more abstract point one can say that the pair (C, R) establishes a
retract between the Hilbert space H and the sequence space �2, making H iso-
morphic to a subspace of �2 (via C) and at the same time to a quotient of �2

(namely �2/null(R)).
The established notion of a Banach frame (as formalized by K. Gröchenig in

[Grö91]) extends some aspects of this situation to the case where H is replaced be
some Banach space and �2 by some Banach space of sequences (such as a weighted
mixed-norm �p-space). We would like to suggest to add to these assumptions that
the Banach space of sequences is also solid (i.e. |xn| ≤ |yn| for some sequence
y, and all n should imply that ‖x‖B ≤ ‖y‖B). This would imply unconditional
convergence of the reconstruction process (which is not granted by the standard
terminology). 2 We will see in a moment that this is not merely an abstract gener-
alization of the frame concept but contributes very much to the actual usefulness
of Gabor or wavelet frames.

It is however true that this is only part of the story. Wavelet and Gabor systems
would not be so useful for applications if aside from the fact that their coefficients
have a specific “meaning” in terms of time, frequency or scale they would not be
useful to characterize various functions spaces (for example Besov-Triebel-Lizorkin
spaces, with wavelet coefficients in suitable weighted mixed-norm spaces). So, in a
way, the Banach frames for individual couples (one Banach space of functions and
its corresponding Banach space of sequences) are just continuous extension of the
corresponding mappings C and R defined on the smaller spaces. While “Banach
frames for compatible families of Banach spaces” are an important mathematical
concept they are not so easy to explain to non-experts, and therefore we discuss
Banach Gelfand Triples: Given a Banach space (B, ‖ · ‖B) and some Hilbert space
H are forming a Banach Gelfand Triple (B,H, B′) if the following is true:

2We suggest the term “unconditional Banach frame”.
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• B ↪→ H ↪→ B′;
• B is norm dense in H and w∗-dense in B′.

The prototypical example consists of the sequence space (�1, �2, �∞). For many
applications in Gabor Analysis the (minimal TF-shift invariant) Segal algebra S0

(cf. [Fei81]) plays an important role. Together with it’s dual it establishes a
Banach Gelfand triple (S0, L

2, S′
0), the S0-GT.

There is a natural concept of “Gelfand triple morphism”: bounded linear map-
pings at each level, mapping the corresponding “small spaces” into each other, also
the corresponding Hilbert spaces, and finally the dual spaces with respect to two
topologies, their standard norm topologies and their w∗-topologies respectively. If
such a mapping is unitary at the level of Hilbert spaces we will call it a “unitary
Gelfand triple isomorphism”.

A really basic example of such a unitary GT-isomorphism is the Fourier trans-
form, acting on (S0, L

2, S′
0). While Plancherel’s theorem takes care of the L2

case, this statement includes the fact that the Fourier transform maps S0 into
itself, but also extends to the (not too large) dual space S′

0(G). At the S0 level
one can use ordinary Riemannian integrals while at the S′

0−level one finds that
“pure frequencies” are mapped into point-measures (i.e. Dirac Deltas). This is
the correct analogue of the “linear algebra situation” (connected with the DFT or
FFT), describing it simply as a (orthogonal) change of bases. Moreover, due to
the w∗−density of the linear span of pure frequencies resp. discrete measures in
S′

0 the Fourier transform is uniquely determined by these properties as a unitary
Gelfand triple isomorphism.

There are plenty of other Gelfand triple isomorphisms resp. Gelfand triple Ba-
nach frames (i.e. retracts between GTs of functions to sequence spaces GTs): Any
Gabor frame of the form (π(λ)g)λ∈Λ, with a Gabor atom in S0(Rd), and some
lattice Λ = A ∗ Z2d, for some non-singular 2d × 2d matrix A has the property
(as shown by Gröchenig and Leinert in their recent paper) that the canonical dual
window g̃ also belongs to S0(Rd), and therefore the mappings establishing the
standard frame diagram, C(f) = Vgf(λ) and R(c) =

∑
λ∈Λ cλπ(λ)g̃ extend to a

retract between the Gelfand triples (S0, L
2, S′

0)(R
d) and the GT (�1, �2, �∞)(Λ).

Wilson bases built from S0 atoms are in fact establishing unitary GT isomorphisms
between the same GTs (this is the perfect analogue to the statement of linear al-
gebra: bases are in a one-to-one correspondence to isomorphisms between a finite
dimensional vector space and its canonical version Rk).

In connection with operators (relevant for time-frequency analysis) one should
point at various representations of operators. While we know from linear algebra
that linear mappings from Rn to Rm can be uniquely determined by their matrices
(with respect to given matrices) we have to look for a GT analogue in the case of
non-finite groups. As already in the case of the finite groups (e.g ZN , the cyclic
group of order N) we have different choices by just making use of the standard
basis (of “unit vectors” which then turn into Diracs, resp. pure frequencies, for
example). We mention here only the the most important ones (one can find many
applications in [FK98]).
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Writing L for the space of bounded linear operators one finds that L(S′
0, S0) is

identified with “smooth kernels”, i.e. any such operator T has a nice (continuous
and integrable) kernel K = K(x, y) such that for functions f as input one has
Tf(x) =

∫
K(x, y)f(y)dy. Just as one would identify the matrix of a linear map-

ping by realizing its columns as the images of the unit vectors, one expects that
K(x, y) = T (δy)(x), which makes sense, because δy ∈ S′

0 while T (δy) is a continu-
ous function in S0. Of course it is important to see that this functional connection
can be extended to a unitary GT isomorphism. The Hilbert space (of operators)
being now the space of Hilbert-Schmidt operators HS. Since they are exactly
the integral operators with kernel K ∈ L2(G×G), acting on L2(G) they are also
contained in L(S0, S

′
0), which makes (L(S′

0, S0),HS,L(S0, S
′
0)) a GT. The kernel

theorem can be interpreted as a unitary GT-isomorphism between this triple and
their kernels in (S0, L

2, S′
0)(G ×G). The so-called spreading symbol of operators.

It can be characterized as the uniquely determined unitary GT isomorphism be-
tween the GT of operator spaces given above to the S0-GT over phase space (i.e.
G× Ĝ), which identifies the pure time-frequency shifts π(λ) = MωTt for λ = (t, ω)
with δλ. An often used argument in Gabor analysis is the fact that Gabor frame
operators commute with TF-shifts from a given TF-lattice Λ and therefore have
a so-called Janssen representation: they can be written as an infinite series of the
form T =

∑
λ◦∈Λ◦ cλ◦π(λ◦) can be seen as a consequence of the following GT

statement. Here Λ◦ is the “adjoint lattice” to Λ, which in the case of aZd × bZd

equals (1/b)Zd × (1/a)Zd. The operators in L(S0, S
′
0) which commute with TF-

shifts from Λ are exactly the ones having a Janssen representation. Moreover, the
mapping between the operators in HS− GT of operator spaces with this extra
property is isomorphic to the GT (�1, �2, �∞)(Λ◦) through the mapping from T to
it’s Janssen coefficients (cλ).

While the spreading function is an important tool in communication theory,
because it is used to model slowly time-variant channels occurring in wireless
communication, the Kohn-Nirenberg symbol of an operator is more popular in the
context of pseudodifferential operators. However, it is not difficult to show that the
symplectic Fourier transform, which is another unitary Gelfand triple isomorphism
onto itself establishes in a natural link between spreading symbol and KN-symbol
of a linear operator. Needless to say that, as a consequence of the statements above,
the membership of the KN-symbol in the GT (S0, L

2, S′
0) is again equivalent to the

membership of the operator in the corresponding member of the HS-GT. It turns
out to be also an appropriate tool to establish a connection between the theory
of Gabor multipliers and the theory of spline type (resp. principal shift invariant)
spaces. The most interesting case for Gabor multipliers, i.e. operators of the form
Tf =

∑
λ∈Λ mλPλf , with Pλ(f) = 〈f, π(λ)g〉π(λ)g arises when these operators

form a Riesz basis for their closed linear span within HS, which is the case if and
only if the Λ- Fourier transform of the function |Vgg(λ)|2 is free of zeros. One can
show that in this case there is a canonical bi-orthogonal family (Qλ) in their closed
linear span GM2 (within HS). Hence the orthogonal projection of HS onto GM2

takes the form T �→
∑

λ〈T (π(λ)g), π(λ)g〉Qλ. If the atom g is in S0(Rd) then one



492 Oberwolfach Report 10/2004

can also show that Pλ ∈ L(S′
0, S0) and that that orthogonal projection extends

to a bounded GT-mapping from the HS-GT onto the Gelfand triple of Gabor
multipliers (GM1,GM2,GM∞) with coefficients in the GT triple (�1, �2, �∞)(Λ).

Finally we mention that Wiener amalgam spaces are at the technical level an
important tool. It can be used to show the boundedness of coefficient operators
(between suitable couples of Banach spaces), respectively the corresponding syn-
thesis operators, but we cannot go into details here. A report on the use of Wiener
amalgam spaces in the context of Gabor analysis is under preparation.
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Building a Bridge between Gabor and Wavelet Worlds
Massimo Fornasier

The theory of frames or stable redundant non-orthogonal expansions in Hilbert
spaces, introduced by Duffin and Schaeffer [DS52] plays an important role in
wavelet theory [Dau92, Kai94] as well as in Gabor analysis [Grö02, FS98, FS03].
Many relevant contributions describe Gabor and wavelet analysis as two parallel
theories with similar, but different structures and typically different applications.
In [FGr88, FGr89, FGr89I, Grö91] Feichtinger and Gröchenig presented a uni-
fied approach to Gabor and wavelet analysis, which cannot be used to describe
any intermediate theory. Therefore, as a further [HN03, Tor91, Tor92] answer to
the theoretical need of a common interpretation and framework between Gabor
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and wavelet frames, the author has recently proposed [FF04] the construction of
frames, which allows to ensure that certain family of Schwartz functions on R

obtained by a suitable combination of translation, modulation of dilation

Tx(f)(t) = f(t− x),

Mω(f)(t) = e2πiω·tf(t),

Da(f)(t) = |a|−1/2f(t/a), x, ω, t ∈ R, a ∈ R+,

form Banach frames for the family of L2-Sobolev spaces of any order. In the
construction a parameter α ∈ [0, 1) governs the dependence of the dilation factor
on the frequency parameter. The well-known Gabor and wavelet frames arise as
special case (α = 0) and limiting case (α → 1) respectively. One example of such
intermediate families is given as follows. Consider the two functions

pα(j) := sgn(j)
(
(1 + (1 − α)|j|) 1

1−α − 1
)

, sα(j) := (1 + (1− α)(|j| + 1))
α

1−α ,

and g0 is the Gaussian function. Then the family{gα
j,k :=Mpα(j)Dsα(j)−1Takg0}j,k∈Z

is in fact a frame for Hs(R) for s > 0 and for a > 0 small enough. The parameter α
functions as a tuning tool of the mixture of the modulation and dilation operators,
like “walking on a bridge” between the Gabor and wavelet worlds. Moreover, to
frames endowed with intrinsic localization properties [FoGr04], i.e. the Gramian
of the frame has nice off-diagonal decay, one can associate natural Banach spaces
[Grö04] defined as the spaces of the frame series expansions with coefficients in
suitable corresponding Banach sequence spaces. The associated spaces to Gabor
and wavelet frames are the well-known families of modulation [Fei89I, Fei03] and
Besov spaces [FJ85] respectively. A natural question arises: which are the as-
sociated spaces to the intermediate α-Gabor-wavelet frames? An answer to this
question has been given in [For02, For04I], where it has been shown that the asso-
ciated spaces are in fact the so called α-modulation spaces, introduced by Gröbner
in 1992 [Grö92] in his Ph.D. thesis (see also [PS88]), as an intermediate family
of spaces between modulation and Besov spaces This family is appearing also in
other contributions and we refer to [For04I] for an extended literature. Let us just
mention here that Borup [Bor04], Holschneider, and Nazaret [HN03] have recently
described the mapping properties of pseudodifferential operators on α-modulation
spaces as an extension of the earlier work of Cordoba and Fefferman [CF78]. From
this, relevant open problems for applications arise, for example, on the behaviour
of the spectrum of matrices

(
〈Tgα

j,k, gα
j′,k′〉

)
j,k,j′,k′∈Z

, depending on α ∈ [0, 1), as-

sociated to symmetric operators T acting on Hs. Anyway, even the more simple
and related problem of discussing the behaviour of the frame bounds depending
on α ∈ [0, 1) might be indeed quite difficult. Also applications in best n-term
approximation of functions with respect to the dictionary {gα

j,k}j,k∈Z,α∈[0,1) might
be investigated [DT01]. In particular the different approximation properties of
such α-expansions can characterize different classes of functions, may be related
by inclusions to α-modulation spaces.
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Frames for Hilbert C*-Modules
Michael Frank

There is growing evidence that Hilbert C*-module theory and the theory of wavelets
and Gabor (i.e. Weyl-Heisenberg) frames are tightly related to each other in many
aspects. Both the research fields can benefit from achievements of the other field.
The goal of the talk given at the mini-workshop was to give an introduction to the
theory of module frames and to Hilbert C*-modules showing key analogies, and
how to overcome the existing obstacles of Hilbert C*-module theory in comparison
to Hilbert space theory.

The theory of module frames of countably generated Hilbert C*-modules over
unital C*-algebras was discovered and investigated studying an approach to Hilbert
space frame theory by Deguang Han and David R. Larson [7]. Surprisingly, almost
all of the concepts and results can be reobtained in the Hilbert C*-module setting.
This has been worked out in joint work with D. R. Larson in [4, 5, 6]. Comple-
mentary results have been obtained by T. Kajiwara, C. Pinzari and Y. Watatani
in [8] using other techniques and motivations. Frames have been also used by
D. Bakić and B. Guljaš in [1] calling them quasi-bases. Meanwhile, the case of
Hilbert C*-modules over non-unital C*-algebras has been investigated by I. Rae-
burn and S. J. Thompson [14], as well as by D. Bakić and B. Guljaš discovering
standard frames even for this class of countably generated Hilbert C*-modules in
a well-defined larger multiplier module. However, many problems still have to be
solved.

How to link core C*-theory to wavelet theory was first observed by M. A. Ri-
effel in 1997, cf. [15]. His approach has been worked out by J. A. Packer and
M. A. Rieffel [12, 13], and by P. J. Wood [16, 17] in great detail. As major re-
sults a framework in terms of Hilbert C*-modules has been obtained sharing most
of the basic structures with generalized multi-resolution analysis for key classes of
wavelet and Gabor frames. The Gabor case has been investigated by P. G. Casazza,
M. A. Coco and M. C. Lammers [2, 3], and by F. Luef [11] obtaining an adapted
to the Gabor situation variant of the Hilbert C*-module approach. In particular,
the results by J. A. Packer and M. A. Rieffel in [13] indicate that the described
operator algebraic approach to the wavelet theory in L2(R2) is capable to give new
deep insights into classical wavelet theory.

To give an instructive example how to link a particular case of generalized multi-
resolution analysis to Hilbert C*-module theory we explain one of the core ideas of
M. A. Rieffel by example: Assume the situation of a wavelet sequence generated by
a multi-resolution analysis in a Hilbert space L2(Rn). Denote the mother wavelet
by φ ∈ L2(Rn), ‖φ‖2 = 1, and consider Rn as an additive group. The second
group appearing in the picture is Γ = Zn acting on L2(Rn) by translations in the
domains of functions, i.e. mapping φ(x) to φ(x − p) for x ∈ Rn and p ∈ Zn. The
mother wavelet φ has to be supposed to admit pairwise orthogonal Zn-translates,
i.e.

∫
Rn φ(x − q)φ(x − p) dx = δqp for any p, q ∈ Z

n. Introducing the group
C*-algebras A = C∗(Zn) of the additive discrete group Zn into the picture and
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interpreting the set of all Z
n-translates of φ as elements of the ∗-algebra Cc(Rn)

we obtain a right action of A on Cc(Rn) by convolution and an A-valued inner
product there defined by 〈φ, ψ〉A(p) :=

∫
Rn φ(x)ψ(x−p) dx for φ, ψ ∈ Cc(Rn) and

p ∈ Zn, (see below for details). The completion of Cc(Rn) with respect to the
norm ‖φ‖ := ‖〈φ, φ〉A‖1/2

A is a (right) Hilbert C*-module H = Cc(Rn) over A.
Considering the dual Fourier transformed picture things become mathematically

easier. The C*-algebra A = C∗(Zn) is transformed to the C*-algebra B = C(Tn)
of continuous functions on the n-torus. The right action of A on H by convolution
becomes a right action of B on H by pointwise multiplication. Moreover, H =
Cc(Rn) coincides with the set Bφ, i.e. it is a singly generated free B-module with
B-valued inner product 〈φ, ψ〉B(t) :=

∑
p∈Zn(φψ)(t− p) for t ∈ Rn. The set {φ}

consisting of one element is a module frame, even a module Riesz basis. However,
for n ≥ 2 there exist non-free B-modules that are direct orthogonal summands of
H = B, cf. [12] for their construction. For them module Riesz bases might not
exist, and module frames consist of more than one element. In a similar manner
multi-wavelets give rise to Hilbert B-modules Bk of all k-tuples with entries from
B and coordinate-wise operations. Since norm-convergence and weak convergence
are in general different concepts in an infinite-dimensional C*-algebra B (whereas
both they coincide in C). Some more investigations have to be carried out to treat
Gabor analysis, for example.

A pre-Hilbert C*-module H over a (unital) C*-algebra A is a (left) A-module
equipped with an A-valued inner product 〈., .〉 : H×H → A such that (i) 〈x, x〉 ≥ 0
for any x ∈ H, (ii) 〈x, x〉 = 0 if and only if x = 0, (iii) 〈x, y〉 = 〈y, x〉∗
for anyx, y ∈ H, and (iv) 〈., .〉 is A-linear in the first argument. The induced
norm ‖.‖ = ‖〈., .〉‖1/2 opens up the opportunity to restrict attention to norm-
closed A-modules of this kind, i.e. to Hilbert A-modules. The A-module H is
algebraically finitely generated if there exists a finite set {xi}N

i=1 ⊂ H such that
H = span {aixi : ai ∈ A}. A Banach A-module is countably generated if there
exists a finite or countable set {xi}i∈I ⊂ H such that span{aixi : ai ∈ A} is
norm-dense in H. For a comprehensive account to Hilbert C*-module theory we
refer the reader to [10].

For unital C*-algebras A a finite or countable set {xi}i∈I ⊂ H is said to be
a frame for the Hilbert C*-module H if there exist two real constants C, D > 0
such that the inequality C · 〈x, x〉 ≤

∑
i∈I〈x, xi〉〈xi, x〉 ≤ D · 〈x, x〉 is valid for any

x ∈ H. The frame is called standard if the sum in the middle of the inequality
converges in norm in A. A frame is normalized tight if C = D = 1. A sequence
{xi}i∈I ⊂ H is a standard Riesz basis of H if it is a standard frame for H with the
additional property that

∑
i∈S⊆I aixi = 0 if and only if aixi = 0 for any i ∈ S.

Two frames {xi}i∈I and {yi}i∈I for a Hilbert A module H are unitarily equivalent
(resp., similar) if there exists a unitary (resp., invertible adjointable) A-linear
bounded operator T on H satisfying T (xi) = yi for any i ∈ I. By Kasparov’s
stabilization theorem and by tensor product constructions one can easily see that
standard (normalized tight) frames for Hilbert C*-modules over unital C*-algebras
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exist always and in abundance. For canonical examples of Hilbert C*-modules
standard Riesz bases are found not to exist, and so orthogonal Hilbert bases often
may not exist.

As the crucial result that makes the entire theory work one obtains two recon-
struction formulae for standard (normalized tight) frames {xi}i∈I of finitely or
countably generated Hilbert C*-modules H over unital C*-algebras A. If {xi}i is
a standard normalized tight frame for H then the following reconstruction formula
always holds for every x ∈ H:

x =
∑
i∈I

〈x, xi〉xi .

The sum converges with respect to the norm of H. If {xi}i∈I is merely a standard
frame for H then there exists a positive invertible A-linear bounded operator S on
H, the frame operator, such that the reconstruction formula

x =
∑
i∈I

〈x, S(xi)〉xi

is valid for any x ∈ H. The sequence {S(xi)}i∈I is a frame for H again, and it is
said to be the canonical dual frame of for the frame {xi}i∈I . The key point of the
proofs is the existence of the frame transform θ : H → l2(A), θ(x) = {〈x, xi〉}i∈I ,
and its properties which can be found to be guaranteed in any situation - bound-
edness, A-linearity, and, most important, adjointability. The frame operator S
can be expressed by S = (θθ∗)−1, and for every standard frame {xi}i∈I the frame
{S1/2(xi)}i∈I turns out to be a standard normalized tight one.

Starting from this point similarity of standard frames and the image of their
frame transform can be investigated, leading to similar results about the canonical
and alternate duals as in the Hilbert space situation. In the same manner as for
Hilbert spaces results for complementary frames and inner sums of frames can be
obtained giving rise to several types of disjointness of pairs of frames. Standard
frames turn out to be precisely the inner direct summands of standard Riesz bases
for Hilbert A-modules AN , N < ∞, or l2(A). whereas standard normalized tight
frames are the inner direct summands of orthonormal Hilbert bases of AN or l2(A).

Establishing this key point of the theory of standard modular frames of count-
ably Hilbert C*-modules over unital C*-algebras A one (re-)obtains an whole col-
lection of frame theory results in this setting: Every standard frame of a count-
ably generated Hilbert A-module is a set of generators. Every standard Riesz
basis {xi}i∈I with normalized tight frame bounds has the property 〈xj , xk〉 =
δjk · 〈xj , xk〉2 for any j, k ∈ I, i.e. it is orthogonal and “normalized” in some sense.
Every finite set of algebraic generators of a finitely generated Hilbert A-module is
a frame for it. If the equality x =

∑
i∈I〈x, yi〉xi holds for any x ∈ H and for some

standard frame {yi}i∈I for H then this alternate dual frame fulfills the inequality∑
i∈I

〈x, S(xi)〉〈S(xi), x〉 <
∑
i∈I

〈x, yi〉〈yi, x〉

for any x ∈ H.
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Frame Generators and Traces on the Commuting Algebra
Hartmut Führ

Given a representation (π,Hπ) of a unimodular, separable locally compact group
G, we want to discuss the existence and characterization of vectors giving rise to
coherent state expansions on Hπ.
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For this purpose, a vector η ∈ Hπ is called bounded if the coefficient operator

Vη : Hπ → L2(G) , (Vηϕ)(x) = 〈ϕ, π(x)η〉

is a bounded map. A pair of bounded vectors (η, ψ) is called admissible if V ∗
ψ Vη =

IdHπ . This property gives rise to the weak-sense inversion formula

z =
∫

G

〈z, π(x)η〉 π(x)ψ dµG(x) ,

which can be read as a continuous expansion of z in terms of the orbit π(G)ψ ⊂ Hπ .
A single vector η is called admissible if (η, η) is an admissible pair. It is obvious
from the definition that (η, ψ) is admissible iff (ψ, η) is. In such a case η is called
the dual vector of ψ.

If G is a discrete group, the notions of bounded vectors and admissible pairs
can be reformulated in terms of frames: Rewriting the inversion formula as

z =
∑
x∈G

〈z, π(x)η〉 π(x)ψ ,

we see that the (η, ψ) are an admissible pair iff the systems π(G)η and π(G)ψ
are a dual frame pair of Hπ. We want to discuss representation-theoretic criteria
for frame generators. The study of discrete groups necessitates to go beyond the
so-called discrete series or square-integrable representations [3], but also beyond
the type I groups studied in [2].

It turns out that more general statements are possible by use of a particular
trace on the right von Neumann algebra V Nr(G), which is the commutant of the
left regular representation λG on L2(G). Indeed, the following observations can
be made:

1. Up to unitary equivalence, any representation π having an admissible pair
can be realized as a subrepresentation of λG, acting on some leftinvariant
closed subspace H ⊂ L2(G). In particular, the projection onto H is in
V Nr(G).

2. Defining f∗(x) = f(x−1), the coefficient operators acting on L2(G) (or
subspaces) can be written as Vfg = g ∗ f∗.

3. V Nr(G) carries a natural faithful normal, semifinite trace defined for pos-
itive operators S

tr(S) =
{
‖f‖2 : S = V ∗

f Vf for a suitable bounded vector f ∈ L2(G)
∞ : otherwise

Polarisation of the definition yields for bounded vectors

tr(V ∗
g Vf ) = 〈g, f〉 .

4. If G is discrete, any T ∈ V Nr(G) is uniquely determined by its “impulse
response” T (δe). In this case tr is finite and given by

tr(T ) = T (δe)(e) .
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Given a particular trace tr on a von Neumann algebra A, we call a pair of
elements (η, ψ) of the underlying Hilbert space tracial if

∀T ∈ A+ : tr(T ) = 〈Tη, ψ〉 .

Then we have
Theorem 1. Let H ⊂ L2(G) be a closed, leftinvariant subspace, with associated
leftinvariant projection p, and let π denote the restriction of λG to H.

(a) There exists an admissible pair for H iff tr(p) <∞.
(b) For all pairs (η, ψ) ∈ H × H of bounded vectors: (η, ψ) is admissible iff

(η, ψ) is tracial for π(G)′.
We shortly sketch two applications. The first concerns the central decomposi-

tion of λG. Let Ǧ denote the space of quasi-equivalence classes of factor represen-
tations of G, and let

λG �
∫ ⊕

Ǧ

ρσdνG(σ)

denote the central decomposition. This also provides the direct integral decompo-
sitions

V Nr(G) �
∫ ⊕

Ǧ

AσdνG(σ)

tr(T ) =
∫

Ǧ

trσ(Tσ)dνG(σ) ,

where Aσ is the commuting algebra of ρσ, (Tσ)σ∈Ǧ denotes the operator field
corresponding to T under the central decomposition and trσ is a suitable faithful
normal, semifinite trace on the factor Aσ. Standard direct integral arguments then
yield:
Proposition 2. Let π denote the restriction of λG to a closed, leftinvariant sub-
space H ⊂ L2(G). Let P denote the projection onto H, then P decomposes into
a measurable field of projections P̂σ, and π(G)′ decomposes under the central de-
composition into the von Neumann algebras Cσ = P̂σAσP̂σ.

(a) For bounded η, ψ ∈ H, we have

(η, ψ) is admissible for H ⇔ (η̂σ , ψ̂σ) is tracial for Cσ (νGa.e.)

(b) H has an admissible pair of vectors iff
∫

Ǧ
tr(P̂σ)dνG(σ) <∞. In particu-

lar, almost all Cσ are finite von Neumann algebras.
Generally the representations of interest are not realized as acting by left trans-

lations on subspaces of L2(G). Therefore, applying Theorem 1 requires first to
embed the representation into λG. The following corollary sketches an alternative
approach. Roughly speaking, it derives a criterion for admissible pairs based on
one explicitly known admissible pair.
Corollary 3. Suppose we are given

• A family (Ti)i∈I ⊂ π(G)′ spanning a weak-operator dense subspace of
π(G)′.

• An admissible pair (η0, ψ0).
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Then for a pair of bounded vectors (η, ψ) we have the following equivalence:

(1) (η, ψ) is admissible ⇐⇒ ∀i ∈ I : 〈Tiη, ψ〉 = 〈Tiη0, ψ0〉 .

The criterion is explicit as soon as the Ti and the admissible pair (η0, ψ0) are
known explicitly. Using results from [1] it can be shown that the Wexler-Raz
criteria for Gabor frames can be derived this way, thus yielding explicit criteria
for a whole family of type-II representations.
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Frames, Operators, and Banach Algebra Techniques
Karlheinz Gröchenig

Symbolic Calculus. A symbolic calculus is a mapping from a class of symbols
to a class of operators acting on some Hilbert space (or subspace thereof):

σ −→ Op(σ)

In many areas of mathematics one finds manifestations of the following princi-
ple.

Metatheorem. If the symbol σ is nice and Op(σ) is invertible on Hilbert space,
then

(
Op(σ)

)−1 = Op(τ) for nice τ .

An important consequence is the following extension principle.

Meta-Corollary.
(
Op(σ)

)−1 = Op(τ) is bounded on large class of Banach spaces.

We give several examples of a symbolic calculus drawn from different fields of
mathematics. Usually a symbolic calculus is proved by means of some “hard anal-
ysis”, but we will emphasize the role of Banach algebra techniques in the analysis
of symbolic calculi. A second aspect is the role of weights. Weighted versions
of symbolic calculus can usually be derived from the corresponding unweighted
versions and the growth properties of the weights.
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1. Convolution Operators on Groups.
The prototype of a symbolic calculus is Wiener’s Lemma. In its standard form
asserts the following: If f has an non-vanishing absolutely convergent Fourier
series, then so does 1/f .

Wiener’s Lemma can be recast as a statement about convolution operators
defined by Tac = a ∗ c for two sequences a, c on Zd. In this case the symbol is the
sequence a and the operator is Ta. “Nice” symbols are sequences in the weighted �1

space �1
v(Zd) by the norm ‖a‖
1v

=
∑

k∈Zd |ck|v(k). The weight is always assumed
to satisfy v(0) = 1, v(k) = v(−k), and v(k + l) ≤ v(k)v(l), k, l ∈ Zd.

Theorem 1. Assume that
(a) a ∈ �1

v(Zd),
(b) Ta is invertible on �2(Zd) and
(c) limn→∞ v(nx)1/n = 1, ∀x ∈ Zd (GRS-condition).

Then T−1
a = Tb for b ∈ �1

v(Z
d) [2].

Let σ
p
m

(a) be the spectrum of the convolution operator Ta on the weighted
�p-space �p

m(Zd). Then we have

Corollary 2. If m(x + y) ≤ Cv(x)m(y), then

σ
p
m

(a) = σ
2(a)

The role of the GRS condition is illuminated by the following statement.

Theorem 3.
σ
1v

(a) = σ
2(a)

if and only if v satisfies the GRS-condition limn→∞ v(nx)1/n = 1, ∀x ∈ Zd.

Similar types of a symbolic calculus can be shown for “twisted convolution”,
for the rotation algebra [4], and for convolution operators on groups of polynomial
growth [1, 6].

2. Matrix Algebras.
The second type of example concerns matrix algebras. In this case the “symbol”
is an infinite matrix A, the associated operator is obtained simply by the action of
A on a sequence c. “Nice” matrices are determined by their decay off the diagonal.

Theorem 4. [3, 5]. Assume that u is a radial weight function on Zd satisfying
the GRS-condition and that v(x) = u(x)(1 + |x|)s for some s > d. If the matrix A
invertible on �2(Zd) and if

|Akl| ≤ Cv(k − l)−1 ,

then
|(A−1)kl| ≤ C′v(k − l)−1

and
σA1

v
(A) = σ(A) ∀A ∈ A1

v

where σ(A) is the spectrum of A as an operator on �2.
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As a consequence, A and A−1 are bounded on many weighted �p-spaces.
Theorems of this type are important in numerical analysis because they are used

in error estimates, when infinite-dimensional matrix equations are approximated
by finite-dimensional models (finite section method).

3. Self-Localized Frames.
In the final example the “symbols” are frames E = {ex : x ∈ X} and the associated
operator is the frame operator Sf = SEf =

∑
x∈X 〈f, ex〉ex. In the context of

symbolic calculus, “nice” frames are frames with a localization property.
Definition: A frame {ex : x ∈ X} is intrinsically s-self-localized, if

|〈ey, ex〉| ≤ C(1 + |x− y|)−s ∀x, y ∈ X .

Theorem 5 (Fornasier, Gröchenig, 2004). If {ex : x ∈ X} is s-self-localized, then
so is the canonical dual frame {ẽx}, i.e.,

|〈ẽy, ẽx〉| ≤ C(1 + |x− y|)−s x, y ∈ R
d

and
|〈ey, ẽx〉| ≤ C(1 + |x− y|)−s x, y ∈ R

d

This statement has wide applications in sampling theory, time-frequency anal-
ysis, and wavelet theory.

As further examples of a symbolic calculus we mention pseudodifferential oper-
ators and their spectral invariance on various function spaces, and new classes of
matrix algebras that are dominated by a convolution operator.

All the above examples can be viewed as statements about the symmetry and
inverse-closedness of the Banach algebra under discussion.

An involutive Banach algebra A is symmetric, if σ(a∗a) ⊆ [0,∞) for all a ∈ A
(if and only if σ(a) ⊆ R for all a = a∗ ∈ A). Theorems 3 and 4 assert that (�1

v, ∗)
and Av are symmetric Banach algebras.

Another central concept is inverse-closedness. Let A ⊆ B be two Banach alge-
bras with a common identity. Then A is said to be inverse-closed in B, if

a ∈ A and a−1 ∈ B =⇒ a−1 ∈ A .
Other terminology frequently used is that of a Wiener pair, a spectral subalgebra,
or of spectral invariance. Theorems 1 and 4 state that (�1

v, ∗) is inverse-closed in
�1 and B(�2), and that Av is inverse-closed in B(�2).
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The Zero Divisor Conjecture for the Heisenberg Group
Christopher Heil

The following conjecture was introduced in the paper [HRT96], and is still open
today.

Conjecture 1. If g ∈ L2(R) is nonzero and {(αk, βk)}N
k=1 is any set of N distinct

points in R2, then {e2πiβkxg(x−αk)}N
k=1 is a linearly independent set of functions

in L2(R).

The composition MbTag(x) = e2πibxg(x − a) of translation Tag(x) = g(x − a)
and modulation Mbg(x) = e2πibxg(x) is called a time-frequency shift of g, and the
analysis and application of these operators is time-frequency analysis. A beautiful
introduction to time-frequency analysis can be found in [Grö01]. Conjecture1 has
many connections, to harmonic analysis, representation theory, functional analysis,
the geometry of Banach spaces, and even more unexpected areas such as ergodic
theory.

Today Conjecture 1 sometimes goes by the name of the HRT Conjecture or the
Zero Divisor Conjecture for the Heisenberg Group. Despite attacks by a number
of groups, the only published results specifically concerning the conjecture appear
to be [HRT96], [Lin99], and [Kut02], which can be summarized as follows.

The paper [HRT96] introduced the conjecture and obtained some partial results,
including the following.

(a) If a nonzero g ∈ L2(R) is compactly supported, or just supported on a
half-line, then the independence conclusion holds for any value of N .

(b) The independence conclusion holds for any a nonzero g ∈ L2(R) if N ≤ 3.

(c) If the independence conclusion holds for a particular g ∈ L2(R) and a
particular choice of points {(αk, βk)}N

k=1, then there exists an ε > 0 such
that it also holds for any h satisfying ‖g − h‖2 < ε, using the same set of
points.

(d) If the independence conclusion holds for one particular g ∈ L2(R) and
particular choice of points {(αk, βk)}N

k=1, then there exists an ε > 0 such
that it also holds for that g and any set of points in R2 within ε of the
original ones.

Another partial advance was made by Linnell in [Lin99]. He used C∗-algebra
techniques to prove that if the points {(αk, βk)}N

k=1 are a subset of some translate
of a lattice in R2, then the independence conclusion holds for any g (a lattice is
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a set of the form A(Z2), the image of Z2 under an invertible matrix A). Note
that any three points in the plane always lie on a translate of some lattice, so this
recovers and extends the partial result (b) mentioned above. However, given four
arbitrary points in the plane it is not always possible to find a translate of a lattice
that contains those points. Indeed, the case N = 4 of the conjecture is still open.
In fact, the following special case seems to be open.

Conjecture 2. If g ∈ L2(R) is nonzero then

{g(x), g(x− 1), g(x−
√

2), e2πixg(x)}
is a linearly independent set of functions in L2(R).

Conjecture 2 remains open even if we impose the condition that g be continuous.
The real-valued version obtained by replacing e2πix by sin 2πx is likewise open.

One motivation for Conjecture 1 comes from looking at frames, which are pos-
sibly redundant or over-complete collections of vectors in a Hilbert space which
nonetheless provide basis-like representations of vectors in the space. Thus a frame
“spans” the space in some sense, even though it may be “dependent.” However,
in infinite dimensions there are many shades of gray to the meanings of “span-
ning” and “independence.” Some of the most important frames are “dependent”
taken as a whole even though have the property that every finite subset is lin-
early independent. One motivation for Conjecture 1 is the question of whether
the the special class of Gabor frames have this property that every finite subset is
independent.

Gabor frames are related to the Schrödinger representation of the Heisenberg
group. If we instead use the affine group and the standard representation induced
from dilations and translations, we obtain wavelets. However, the analogue of
Conjecture 1 for wavelets fails in general. For example, a compactly supported
refinable function ϕ satisfies an equation of the form

ϕ(x) =
N∑

k=0

ck ϕ(2x− k).

This is an expression of linear dependence among the time-scale translates of ϕ.
In particular, the box function b = χ[0,1) satisfies the refinement equation

b(x) = b(2x) + b(2x− 1).

The more general analogue of Conjecture 1 for the case of other groups is related
to the Zero Divisor Conjecture in algebra; we refer to [Lin99] and the references
therein for more on this connection.
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Poisson Wavelet Frames on the Sphere
Ilona Ilgewska–Nowak

(joint work with Matthias Holschneider)

People would like to create a mathematical repesentation of the Earth’s magnetic
field and how it is changing. One of the most broadly used possibilities is to
represent the magnetic field in terms of spherical harmonics. This method has
some disadvantages. One of them is a poor localization: coefficients obtained
in Europe have influence on the representation of the field over Africa. On the
other hand, it is difficult to distinguish the big–scale field component from the
core and the small–scale field component from the crust. Moreover, changing the
truncation level of spherical harmonics changes all the coefficients, according to
spatial aliasing of the higher–order harmonics.

Another possibility is to use a wavelet representation of the magnetic field.
This would solve some of the problems mentioned above. Here, we would like to
introduce Poisson wavelets and give some ideas how frames of such wavelets could
be constructed.

Note that there exists no natural dilation operator on the sphere, hence, we do
not have a group structure of the wavelet coefficients. Here, the scales are defined
in a more or less ad hoc way, but so that the wavelets behave like wavelets over the
plane. The definition we use goes back to [2], in this talk we base on the simplified
definition given in [3].

If Σ denotes the unit two–dimensional sphere, ê the unit vector in direction of
the north–pole, then Poisson wavelets are defined to be

gn
a (x) =

n∑
l=0

(al)ne−alQl(x),

where Ql(x) = 2l+1
4π Pl(x · ê), Pl – l-th Legendre polynomial. They are equal to the

electromagnetic field caused by a sum of multipoles inside the unit ball:

gn
a = an(2Ψn+1

e−a + Ψn
e−a), where ∆Ψn

λ = (λ∂λ)δλê

(therefore the name Poisson wavelets.)
We obtain explicit expressions in terms of finite sums of Legendre polynomials

if we develop gn
a around the point e−aê:

gn
a (x) = an

n+1∑
k=1

k!(2Cn+1
k + Cn

k )e−kaPk(cosχ)
1

|x − e−aê|k+1
,

where χ is the angle between ê and x− e−aê, and Cn
k are constants defined through

(λ∂λ)n =
∑

Cn
k λk∂k

λ.
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For small scales a the Euklidean limit holds:

lim
a→0

a2gn
a (Φ−1(ax)) = g(x) for some g ∈ L2(R2),

where Φ is the stereographic projection of the sphere onto the plane. This means
that gn

a are scaling like wavelets over R2 assymptitically for small a.
The wavelet transform of a function s is given by

Wgns(x, a) =
∫

Σ

gn
a (x · y)s(y)dσ(y)

and the inverse wavelet transform is given by

Mgnr(x) =
∫

R+

∫
Σ

r(y, a)gn
a (y)dσ(y)

da

a
.

The following holds:
MgnWgns = cs

for some constant c = c(gn), i.e., gn build a continuous frame.
Remark: the wavelet transform with respect to this family can also be obtained

as follows: take s as Dirichlet boundary data for the interior problem. Then apply
a suitable radial derivative to the harmonic extension inside the unit ball.

The image of W is a Hilbert space with reproducing kernel. This reproducing
kernel can be written in terms of the wavelets:

Pgn(x, a; y, b) =
(

ab

(a + b)2

)n

g2n
a+b(x · y)

(if we identify g(x) with g(x · ê) for zonal functions g.)
In applications in geophysics this continuous family has to be discretized over

some grid. We consider the following grid Λ = {(x, a)} in Σ × R+: for a fixed
scale a ∈ {n · 2−j , j ∈ N0} (n – order of the wavelet) we take a cube centered
with respect to the sphere , divide each of its six sides into 4j similar squares
and project the centers of the faces onto the sphere in order to define positions x.
Question: is A = {gx,a, (x, a) ∈ Λ} a frame for L2(Σ) (for some set of weights
µ(x, a))? Some approaches we have considered are:
(1) based on the atomic space decomposition of [1]: if

|
∑

(y,b)∈Λ

Pgn(x, a; y, b)Pgn(y, b; z, c)µ(y, b)

−
∫

R+

∫
Σ

Pgn(x, a; y, b)Pgn(y, b; z, c)dσ(y)
db

b
| ≤ 1

c2
f
(x · z

c
,
a

c

)
for some function f which is L2-integrable with respect to θdθda/a, then A is a
frame;
(2) transform the unit ball onto the upper half–plane (essentially by the Kelvin–
transform) such that harmonic functions remain harmonic functions; consider the
image of Poisson wavelets under this map and check if they build a frame of the
weighted L2(R2);



Wavelets and Frames 509

(3) based on quasi-frames: locally around each point of the sphere we obtain a
quasi-frame; these however have to be patched together to a global frame.

In view of the remark above, having proven that {gλ, λ ∈ Λ} and alike grids
build a frame for L2(Σ), we automatically obtain some interesting results for har-
monic functions (e.g. density of local maxima, sets of uniqueness, ...).
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Duality Principles in Analysis
Palle E. T. Jorgensen

Several versions of spectral duality are presented. On the two sides we present (1)
a basis condition, with the basis functions indexed by a frequency variable, and
giving an orthonormal basis; and (2) a geometric notion which takes the form of a
tiling, or a Iterated Function System (IFS). Our initial motivation derives from the
Fuglede conjecture, see [3, 6, 7]: For a subset D of Rn of finite positive measure,
the Hilbert space L2(D) admits an orthonormal basis of complex exponentials,
i.e., D admits a Fourier basis with some frequencies L from Rn, if and only if D
tiles Rn (in the measurable category) where the tiling uses only a set T of vectors
in Rn. If some D has a Fourier basis indexed by a set L, we say that (D, L) is a
spectral pair. We recall from [9] that if D is an n-cube, then the sets L in (1) are
precisely the sets T in (2). This begins with work of Jorgensen and Steen Pedersen
[9] where the admissible sets L = T are characterized. Later it was shown, [5] and
[10] that the identity T = L holds for all n. The proofs are based on general
Fourier duality, but they do not reveal the nature of this common set L = T . A
complete list is known only for n = 1, 2, and 3, see [9].

We then turn to the scaling IFS’s built from the n-cube with a given expansive
integral matrix A. Each A gives rise to a fractal in the small, and a dual discrete
iteration in the large. In a different paper [8], Jorgensen and Pedersen characterize
those IFS fractal limits which admit Fourier duality. The surprise is that there is a
rich class of fractals that do have Fourier duality, but the middle third Cantor set
does not. We say that an affine IFS, built on affine maps in Rn defined by a given
expansive integral matrix A and a finite set of translation vectors, admits Fourier
duality if the set of points L, arising from the iteration of the A-affine maps in the
large, forms an orthonormal Fourier basis (ONB) for the corresponding fractal µ
in the small, i.e., for the iteration limit built using the inverse contractive maps,
i.e., iterations of the dual affine system on the inverse matrix A−1. By “fractal in
the small”, we mean the Hutchinson measure µ and its compact support, see [4].
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(The best known example of this is the middle-third Cantor set, and the measure
µ whose distribution function is corresponding Devil’s staircase.)

In other words, the condition is that the complex exponentials indexed by L
form an ONB for L2(µ). Such duality systems are indexed by complex Hadamard
matrices H , see [9] and [8]; and the duality issue is connected to the spectral
theory of an associated Ruelle transfer operator, see [1]. These matrices H are the
same Hadamard matrices which index a certain family of quasiperiodic spectral
pairs (D, L) studied in [6] and [7]. They also are used in a recent construction of
Terence Tao [11] of a Euclidean spectral pair (D, L) in R

5 for which D does not a
tile R5 with any set of translation vectors T in R5.

We finally report on joint research with Dorin Dutkay where we show that all
the affine IFS’s admit wavelet orthonormal bases [2] now involving both the Zn

translations and the A-scalings.
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Minimal Generator Sets for Finitely Generated Shift Invariant
Subspaces of L2(Rn)
Norbert Kaiblinger

(joint work with Marcin Bownik)

Given a family of functions φ1, . . . , φN ∈ L2(Rn), let S = S(φ1, . . . , φN ) denote
the closed subspace of L2(Rn) generated by their integer translates. That is, S is
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the closure of the set of all functions f of the form

(1) f(t) =
N∑

j=1

∑
k∈Zn

cj,k φj(t− k), t ∈ R
n,

where finitely many cj,k ∈ C are nonzero. By construction, these spaces S ⊂
L2(Rn) are invariant under shifts, i.e., integer translations and they are called
finitely generated shift-invariant spaces. Shift-invariant spaces play an important
role in analysis, most notably in the areas of spline approximation, wavelets, Ga-
bor (Weyl-Heisenberg) systems, subdivision schemes and uniform sampling. The
structure of this type of spaces is analyzed in [1], see also [2, 3, 4, 9]. Only im-
plicitly we are concerned with the dependence properties of sets of generators, for
details on this topic we refer to [7, 8]. 3

The minimal number L ≤ N of generators for the space S is called the length
of S. Although we include the case L = N , our results are motivated by the case
L < N . In this latter case, there exists a smaller family of generators ψ1, . . . , ψL ∈
L2(Rn) such that

S(φ1, . . . , φN ) = S(ψ1, . . . , ψL), with L < N.

Since the new generators ψ1, . . . , ψL belong to S, they can be approximated in the
L2-norm by functions of the form (1), i.e., by finite sums of shifts of the original
generators. However, we prove that at least one reduced set of generators can be
obtained from a linear combination of the original generators without translations.
In particular, no limit or infinite summation is required. In fact, we show that
almost every such linear combination yields a valid family of generators. On the
other hand, we show that those combinations which fail to produce a generator
set can be dense. That is, combining generators can be a sensitive procedure.

Let MN,L(C) denote the space of complex N × L matrices endowed with the
product Lebesgue measure of CNL ∼= R2NL.

Theorem. Given φ1, . . . , φN ∈ L2(Rn), let S = S(φ1, . . . , φN ) and let L ≤ N
be the length of S. Let R ⊂ MN,L(C) denote the set of those matrices Λ =
(λj,k)1≤j≤N, 1≤k≤L such that the linear combinations ψk =

∑N
j=1 λj,k φj , for k =

1, . . . , L, yield S = S(ψ1, . . . , ψL).
(i) Then R = MN,L(C) \N , where N is a null-set in MN,L(C).
(ii) The set N in (i) can be dense in MN,L(C).

Remark. (i) The conclusions of the Theorem also hold when the complex matrices
MN,L(C) are replaced by real matrices MN,L(R).
(ii) We note that our results are not restricted to the case of compactly supported
generators.

We illustrate the Theorem by an example in the special case of N = 2 given
generators for a principal shift-invariant space, i.e., L = 1. In this case, MN,L(C)

3Our results presented here are available in more detail in the form of a preprint.
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reduces to C
2. We use the following normalization for the Fourier transform,

f̂(x) =
∫

R

f(t)e−2πitxdt, x ∈ R.

Example. For x ∈ R, let �x� denote the largest integer less or equal x. We define
a discretized version of the Archimedean spiral by γ : [0, 1)→ Z2,

γ(x) = (�u cos 2πu�, �u sin 2πu�), u = tan π
2 x, x ∈ [0, 1).

Next, let

γ◦(x) =

{
γ(x)/|γ(x)|, if γ(x) �= 0,

0, otherwise,
x ∈ [0, 1).

Now define φ1, φ2 ∈ L2(R) by their Fourier transforms, obtained from γ◦ = (γ◦
1 , γ◦

2)
by

φ̂j(x) =

{
γ◦

j (x), x ∈ [0, 1),
0, x ∈ R \ [0, 1),

j = 1, 2.

Let S = S(φ1, φ2). Then S is principal. In fact, the function ψ = λ1φ1 + λ2φ2

is a single generator, S = S(ψ), if and only if λ1 and λ2 are rationally linearly
independent. So here the set N of the Theorem is

N = {(λ1, λ2) ∈ C
2 : λ1 and λ2 rationally linear dependent}.

In particular, any rational linear combination of φ1, φ2 fails to generate S. This
example illustrates the Theorem for the case of real coefficients, cf. Remark (i).
Namely, N ∩ R2 is a null-set in R2 yet it contains Q2, so it is dense in R2.

Open Problem. It is interesting to ask whether the Theorem also holds for
finitely generated shift-invariant subspaces of Lp(Rn), where 1 ≤ p ≤ ∞ and
p �= 2. For a few properties of these spaces we refer to [5, 6]. Since the proof
of the Theorem relies heavily on fiberization techniques for p = 2 and on the
characterization of shift-invariant spaces in terms of range functions, this question
remains open for p �= 2.
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Geometry of Sets of Parameters of Wave Packets
Gitta Kutyniok

(joint work with Wojciech Czaja and Darrin Speegle)

The goal of our project is to describe completeness properties of wave packets via
geometric properties of the sets of their parameters. Our research is motivated
by the simple observation that for L2(R) the sets of parameters of Gabor and
wavelet systems form discrete subsets of 2–dimensional linear subspaces in R3 and
that there exists an abundance of sets of parameters which give rise to Gabor or
wavelet frames. On the other hand, it is known that systems associated with either
translations, dilations, or modulations of a single function do not form frames
nor Riesz bases in L2(R), cf., [7] and [3] for systems consisting of translations
(and equivalently modulations) of a single function, and see [4] for systems of
dilations. Furthermore, it is known that systems associated with full lattices of
translations, dilations, and modulations are infinitely over-complete. Therefore,
we shall investigate the role of the geometric structure of sets of parameters of
wave packets for the functional properties of associated systems of functions.

1. Wave packets. In [1], Córdoba and Fefferman introduced “wave packets”
as those families of functions, which consist of a countable collection of dilations,
translations, and modulations of the Gaussian function. Here we will general-
ize this definition to collections of dilations, translations, and modulations of an
arbitrary function in L2(R).

Definition. Given a function ψ ∈ L2(R) and a discrete set M ⊂ R+ × R2, we
define the discrete wave packet WP(ψ,M), associated with ψ and M, to be:

WP(ψ,M) = {DxTyMzψ : (x, y, z) ∈ M},
where Dx, Ty, and Mz are the L2(R) unitary operators of dilations, translations,
and modulations, respectively:

Dx(f)(t) =
√

xf(xt), Ty(f)(t) = f(t− y), Mz(f)(t) = e2πitzf(t).

With this definition, Gabor systems (M = {1}×Λ, Λ ⊂ R2) as well as wavelet
systems (M = B × {0}, B ⊂ R+ × R) are thus special examples of wave packets.

2. Density and Dimension. A successful approach to study Gabor frames
utilizes the notion of Beurling density of the collection of parameters Λ. If Λ =
aZ× bZ, Rieffel proved in 1981 that an associated Gabor system is complete only
if ab ≤ 1. This result has been further extended and generalized, and Ramanathan
and Steger in [8] proved that if a Gabor system associated with an arbitrary set
Λ is a frame then the lower Beurling density of Λ satisfies D−(Λ) ≥ 1. Moreover,
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if this frame is a Riesz basis then D+(Λ) = D−(Λ) = 1. We refer to [3] for further
results in this area and for additional references.

An analogous approach has been undertaken in [4] to study wavelet systems
in terms of an appropriately redefined notion of density that is suitable for the
structure of the affine group associated with the sets of parameters of wavelet
systems. Using these notions, the authors were able to obtain necessary conditions
for the existence of wavelet frames in L2(R).

Our approach shall be an analogue of the two above described methods of char-
acterizations of special wave packets. We introduce a notion of density with respect
to the geometry of the affine Weyl–Heisenberg group, which is the appropriate set-
ting for sets of parameters of wave packets. Since the results for wavelet systems
indicate that we cannot expect to have a critical density for general wave packets,
cf., [4], we need to develop another tool to correlate the geometric properties of
the sets of parameters of wave packets with their functional properties. Based on
density considerations and motivated by the definition of Hausdorff dimension, we
therefore introduce a notion of upper and lower dimension dim±(M) for discrete
subsets M ⊂ R

+ × R
2. The following result shows some basic properties of this

notion.

Theorem. Let M be a subset of R+ × R2. Then,
(i) dim+(M) ∈ [0, 3] ∪ {∞}.
(ii) dim−(M) ∈ {0} ∪ [3,∞].

Moreover, by just employing the definition, we obtain the relation dim−(M) ≤
dim+(M).

3. General Results. Although the situation we consider is more general than
that considered in [4], an analogous necessary condition for the existence of an
upper frame bound for wave packets WP(ψ,M) still holds.

Theorem. Let ψ ∈ L2(R) and let M be a discrete subset of R+ × R2. If
WP(ψ,M) possesses an upper frame bound, then

(1) D+
A(M) < ∞ for all A ≥ 3.

This immediately leads to necessary conditions on the upper and lower dimen-
sion of sets of parameters of wave packets, since (1) implies that dim−(M) ∈ {0, 3}
and dim+(M) ∈ [0, 3]. Thus if WP(ψ,M) has an upper frame bound, then there
are only two possible values for dim−(M). Wavelet frames and Gabor frames are
examples of wave packet frames that satisfy the condition dim−(M) = 0. We
conjecture that this is the only value, which can be attained by sets of parameters
of frames in general.

Conjecture. Let ψ ∈ L2(R) and let M be a discrete subset of R+ × R2. If
WP(ψ,M) possesses an upper frame bound, then dim−(M) = 0.

We can answer this question when the sets of parameters of wave packets have
the special form M = B × Z. Wave packets with such sets of parameters have
been recently studied by Guido Weiss and his collaborators, see, e.g., [5, 6].
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4. Case of Integer Modulations. In this situation we can prove the conjecture
and also obtain additional restrictions for the upper dimension.

Theorem. Let ψ ∈ L2(R) and let B be a discrete subset of R+×R. IfWP(ψ,B×
Z) possesses an upper frame bound, then

dim−(B × Z) = 0 and dim+(B × Z) ∈ [1, 3].

It is natural to ask, whether each value in [1, 3] is indeed attained. To study
this question we need to construct wave packet frames with prescribed dimensions.
Our investigation of this problem leads to multiple examples of non–standard wave
packets.

We split our study into two cases. If 1 ≤ d ≤ 2, we are even able to construct
orthonormal wave packet bases, not only just wave packet frames. It turns out
that the most difficult examples to construct are for large dimensions. In this
situation by using a highly technical construction, we obtain wave packet frames
but no orthonormal wave packet bases so far.

We obtain the following results:

Theorem.
(i) For every 1 ≤ d ≤ 2, there exists a discrete subset B ⊂ R+ × R such that

dim+(B×Z) = d andWP(χ[0,1],B×Z) is an orthonormal basis for L2(R).
(ii) For every 2 < d ≤ 3, there exists a discrete subset B ⊂ R+ × R such that

dim+(B × Z) = d and WP(χ[− 1
2 , 1

2 ],B × Z) is a frame for L2(R).

Thus we obtain a full description of which values the upper and lower dimension
associated with a frame wave packet can attain in the case M = B × Z under
consideration.

For more detailed information on this project we refer to [2].
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Decomposition of Operators and Construction of Frames
David R. Larson

The material we present here is contained in two recent papers. The first was
authored by a [VIGRE/REU] team consisting of K. Dykema, D. Freeman, K. Ko-
rnelson, D. Larson, M. Ordower, and E. Weber, with the title Ellipsoidal Tight
Frames, and is to appear in Illinois J. Math. This article started as an under-
graduate research project at Texas A&M in the summer of 2002, in which Dan
Freeman was the student and the other five were faculty mentors. Freeman is now
a graduate student at Texas A&M. The project began as a solution of a finite
dimensional frame research problem, but developed into a rather technically deep
theory concerning a class of frames on an infinite dimensional Hilbert space. The
second paper, entitled Rank-one decomposition of operators and construction of
frames, is a joint article by K. Kornelson and D. Larson, and is to appear in the
volume of Contemporary Mathematics containing the proceedings of the January
2003 AMS special session and FRG workshop on Wavelets, Frames and Operator
Theory, which took place in Baltimore and College Park.

We will use the term spherical frame for a frame sequence which is uniform in
the sense that all its vectors have the same norm. Spherical frames which are tight
have been the focus of several articles by different researchers. Since frame theory
is essentially geometric in nature, from a purely mathematical point of view it is
natural to ask: Which other surfaces in a finite or infinite dimensional Hilbert
space contain tight frames? In the first article we considered ellipsoidal surfaces.

By an ellipsoidal surface we mean the image of the unit sphere S1 in the un-
derlying Hilbert space H under a bounded invertible operator A in B(H), the
set of all bounded linear operators on H . Let EA denote the ellipsoidal surface
EA := AS1. A frame contained in EA is called an ellipsoidal frame, and if it is
tight it is called an ellipsoidal tight frame (ETF) for that surface. We say that a
frame bound K is attainable for EA if there is an ETF for EA with frame bound
K.

Given an ellipsoidal surface E := EA, we can assume E = ET where T is a
positive invertible operator. Indeed, given an invertible operator A, let A∗ = U |A∗|
be the polar decomposition, where |A∗| = (AA∗)1/2. Then A = |A∗|U∗. By taking
T = |A∗|, we see tht TS1 = AS1. Moreover, it is easily seen that the positive
operator T for which E = ET is unique.

The starting point for the work in the first paper was the following Proposition.
For his REU project Freeman found an elementary calculus proof of this for the
real case. Others have also independently found this result, including V. Paulsen,
and P. Casazza and M. Leon.

Proposition 1. Let EA be an ellipsoidal surface on a finite dimensional real
or complex Hilbert space H of dimension n. Then for any integer k ≥ n, EA

contains a tight frame of length k, and every ETF on EA of length k has frame
bound K = k

[
trace(T−2)

]−1.
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We use the following standard definition: For an operator B ∈ H , the essential
norm of B is:

‖B‖ess := inf{‖B −K‖ : K is a compact operator inB(H)}

Our main frame theorem from the first paper is:

Theorem 2. Let EA be an ellipsoidal surface in an infinite dimensional real or
complex Hilbert space. Then for any constant K > ‖T−2‖−1

ess, ET contains a tight
frame with frame bound K.

So, for fixed A, in finite dimensions the set of attainable ETF frame bounds is
finite, whereas in infinite dimensions it is a continuum.

Problem. If the essential norm of A is replaced with the norm of A in the
above theorem, or if the inequality is replaced with equality, then except for some
special cases, and trivial cases, no theorems of any degree of generality are known
concerning the set of attainable frame bounds for ETF’s on EA. It would be
interesting to have a general analysis of the case where A− I is compact. In this
case, one would want to know necessary and sufficient conditions for existence of a
tight frame on EA with frame bound 1. In the special case A = I then, of course,
any orthonormal basis will do, and these are the only tight frames on EA in this
case. What happens in general when ‖A‖ess = 1 and A is a small perturbation of
I?

We use elementary tensor notation for a rank-one operator on H . Given u, v, x ∈
H , the operator u ⊗ v is defined by (u ⊗ v)x = 〈x, v〉u for x ∈ H . The operator
u⊗ u is a projection if and only if ‖u‖ = 1.

Let {xj}j be a frame for H . The standard frame operator is defined by: Sw =∑
j〈w, xj〉xj =

∑
j (xj ⊗ xj)w . Thus S =

∑
j xj⊗xj , where this series of positive

rank-1 operators converges in the strong operator topology (i.e. the topology of
pointwise convergence). In the special case where each xj is a unit vector, S is the
sum of the rank-1 projections Pj = xj ⊗ xj .

For A a positive operator, we say that A has a projection decomposition if A can
be expressed as the sum of a finite or infinite sequence of (not necessarily mutu-
ally orthogonal) self-adjoint projections, with convergence in the strong operator
topology.

If xj is a frame of unit vectors, then S =
∑

j xj⊗xj is a projection decomposition
of the frame operator. This argument is trivially reversible, so a positive invertible
operator S is the frame operator for a frame of unit vectors if and only if it admits
a projection decomposition S =

∑
j PJ . If the projections in the decomposition

are not of rank one, each projection can be further decomposed (orthogonally) into
rank-1 projections, as needed, expressing S =

∑
n xn ⊗ xn, and then the sequence

{xn} is a frame of unit vectors with frame operator S.
In order to prove Theorem 2, we first proved Theorem 3 (below), using purely

operator-theoretic techniques.
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Theorem 3. Let A be a positive operator in B(H) for H a real or complex Hilbert
space with infinite dimension, and suppose ‖A‖ess > 1. Then A has a projection
decomposition.

Suppose, then, that {xn} is a frame of unit vectors with frame operator S.
If we let yj = S− 1

2 xj , then {yj}j is a Parseval frame (i.e. tight with frame
bound 1). So {yj}j is an ellipsoidal tight frame for the ellipsoidal surface E

S− 1
2

=

S− 1
2 S1. This argument is reversible: Given a positive invertible operator T , let

S = T−2. Scale T if necessary so that ‖S‖ess > 1. Let S =
∑

j xj ⊗ xj be a
projection decomposition of S. Then {Txj} is an ETF for the ellipsoidal surface
TS1. Consideration of frame bounds and scale factors then yields Theorem 2.

Most of our second paper concerned weighted projection decompositions of pos-
itive operators, and resultant theorems concerning frames. If T is a positive op-
erator, and if {cn} is a sequence of positive scalars, then a weighted projection
decomposition of T with weights {cn} is a decomposition T =

∑
j Pj where the

Pj are projections, and the series converges strongly. We have since adopted the
term targeted to refer to such a decomposition, and generalizations thereof. By
a targeted decomposition of T we mean any strongly convergent decomposition
T =

∑
n Tn where the Tn is a sequence of simpler positive operators with special

prescribed properties. So a weighted decomposition is a targeted decomposition
for which the scalar weights are the prescribed properties. And, of course, a pro-
jection decomposition is a special case of targeted decomposition.

After a sequence of Lemmas, building up from finite dimensions and employing
spectral theory for operators, we arrived at the following theorem. We will not
discuss the details here because of limited space. It is the weighted analogue of
theorem 3.

Theorem 4. Let B be a positive operator in B(H) for H with ‖B‖ess > 1. Let
{ci}∞i=1 be any sequence of numbers with 0 < ci ≤ 1 such that

∑
i ci = ∞. Then

there exists a sequence of rank-one projections {Pi}∞i=1 such that B =
∑∞

i=1 ciPi.

We refer the interested reader to the Open Problems section of this report for
more on targeted decompositions. In the first problem, we raised the question
of which positive operators admit finite projection decompositions. The second
problem related to a completely different type of targeted decomposition than
discussed in this abstract, or considered in the two papers we presented. It was
motivated by talks and discussions in this Workshop, and just may be relevant
to the theory of modulation spaces and Gelfand triples. We plan to pursue this
further.
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Groups, Wavelets, and Function Spaces
Gestur Ólafsson

In the talk we discussed several connections between the following topics:

(1) Representation theory of Lie groups;
(2) Linear action of Lie groups on Rd;
(3) Wavelets and wavelet sets;
(4) Besov spaces associated to symmetric cones.

Let H ⊆ GL(d, R) be a closed subgroup, and hence a Lie group. Let G be the
group of affine linear maps (x, h)(t) := h(t) + x, h ∈ H , x, y ∈ Rd. Then G is the
semi-direct product of R

d and H , G = R
d ×s H . Define a unitary representation

of G on L2(Rd) by

π(x, h)f(t) = | det(h)|−1/2f((x, h)−1(t)) = | det(h)|−1/2f(h−1(t− x)) .

It is quite often useful to have an equivalent realization of π in frequency space.
Define for F ∈ L2(R̂d)

π̂(x, h)F (ω) = | deth|1/2e−2πx·ωF (hT (ω)) .

Then the Fourier transform F : L2(Rd) → L2(R̂d), F(f)(ω) =
∫

f(t)e−2πt·ω dt is
a unitary intertwining operator. Here, and elsewhere, we write R̂d to underline,
that we are looking at Rd as the frequency domain.

For ψ ∈ L2(Rd) define Wψ : L2(Rd)→ C(G), by

Wψ(f)(g) := (f, π(g)ψ) = | deth|−1/2

∫
f(t)ψ(h−1(t− x)) dt g = (x, h) ∈ G .

Note, that Wψ depends on our choice of wavelet function ψ. In particular, if
ψ ∈ S(Rd), then Wψ extends to a linear map on S′(Rd), the space of tempered
distributions. It is an important question in analysis to study spaces of functions
or distribution using the wavelet transform. In particular, for a given weight
function w on G, one can, if the representation π is integrable, define a Ba-
nach space of distribution by {f ∈ S′(Rd) | Wψ(f) ∈ Lp(G, wdµG), with norm
‖f‖ = ‖f‖Lp(G,wdµG). Here dµG denotes a left invariant measure on G. Using the
structure of G as a semi-direct product, one can even define mixed Lp,q-norm. This
is related to the Feichtinger-Gröchenig co-orbit theory for group representations,
which for the Heisenberg group has become quite important through the theory
of Modulation spaces, [11, 12, 19].

The simples case is p = 2 and w = 1. A simple calculation shows, that

‖Wψ(f)‖2L2(G) =
∫

bRd

|F(f)(ω)|2
(∫

H

|F(ψ)(hT ω)|2 dµH(h)
)

dω .

It follows that Wψ(f) ∈ L2(G) if and only if
∫

H |F(ψ)(hT (ω))|2 dµH(h) < ∞ for
almost all ω ∈ R̂d. Furthermore, Wψ : L2(Rd) → Im(Wψ) ⊂ L2(G) is an unitary
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isomorphism onto its image if and only if∫
H

|F(ψ)(hT (ω))|2 dµH(h) = 1

for almost all ω ∈ R̂d. In this case we have f = W ∗
ψ(Wψ(f)), or

f =
∫

G

Wψ(f)(g)π(g)ψ dµG(g)

as an weak integral. We refer to [3, 8, 9, 10, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 26]
for more detailed discussion.

Let ∆ ⊂ H and Λ ⊂ Rd be countable subsets. Let Γ := Λ×∆ ⊂ G. Define a
sequence of functions ψγ , γ ∈ Γ, by

ψλ,δ(t) := π((λ, δ)−1)ψ(t) = | det δ|1/2ψ(δ(t) + λ) .

Then ψ is a (subspace) wavelet if the sequence {ψγ}γ∈Γ is a orthonormal basis for
its closed linear span. A measurable set Ω ⊂ R̂d, 0 < |Ω| < ∞ is a (subspace)
wavelet set if ψ = F−1(χΩ) is a (subspace) wavelet. For discussion on wavelet sets
see [1, 4, 5, 6, 7, 23, 24, 25]. A special class of groups H was studied in [10, 22, 23].
Here it was assumed, that H has finitely many open orbits O1, . . . ,Or ⊂ R̂d of
full measure, i.e., (H, R̂d) is a pre-homogeneous vector space. We set

L2
j = L2

Oj
(Rd) := {f ∈ L2(Rd) | Supp(F(f)) ⊆ Oj} .

As an example, take H = R+SO(d). There is only one open orbit O1 = R̂d \ {0}.
In particular, L2

1 = L2(Rd). Let F ⊂ SO(d) be a finite subgroup and λ > 1.
Let ∆ = {λnR | n ∈ Z, R ∈ F}, and let Λ ⊂ Rd a lattice. Then there exists a
Γ × ∆-wavelet set for L2(Rd). This follows from Theorem 1 [6] as was pointed
out to me by my student M. Dobrescu. We get a more complicated example
by taking H = GL(n, R)o and Rd = Sym(n, R), d = n(n + 1)/2, the space of
symmetric n × n-matrices. The group H operates on Rd by h ·X = gXgT . The
open orbits are Op,q = H · Ip,q. Here Op,q stands for the open set of regular

matrices of signature (p, q = n − p), and Ip,q =
(

Ip 0
0 −Iq

)
. The set On,0 is

an open symmetric cone. It is well known, that the group S of upper triangular
matrices acts transitively on C. Let A be the group of diagonal matrices with
positive diagonal elements, and let N be the group of upper triangular matrices
(xij), with xii = 1, i = 1, . . . , n. Then S = AN = NA. In [22, 23] a special
choice for ∆ was made. This set ∆ is closely related to the structure of H . In our
example this construction can be explained by taking ∆N = {(xij ∈ N | xij ∈ Z},
and ∆A = {d(λk1

1 , . . . , λkn
n ) | (k1, . . . , kn) ∈ Zn}, where λj > 1. Then we set

∆ = ∆A∆N . It follows by [23], Theorem 4.5, that, if Λ is a lattice in R
d, then

there exists a L2(Rd) wavelet set for Λ × ∆. But it is an open problem, if there
exists a L2

C(Rd) wavelet set for Λ×∆. One can even complicate this by adding a
finite group of rotations that centralize A and normalize N .

It was also shown in [22, 23] that, for our special choice of ∆, there is always a
set Ω ⊂ Oj such that ψ = F−1(χΩ) generates a tight frame for L2

j . It is clear, that
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we can replace χΩ by a compactly supported function φ ≥ 0, φ|Ω = 1, and get a
frame generator that is rapidly decreasing. But it is an open problem if we can in
fact get a rapidly decreasing function that generates a tight frame. A private note
by D. Speegle indicates, that this might in fact be possible.

One of the reason I discuss the last example is, that this is just an example
of H being the automorphism group of a symmetric cone C ⊂ Rd, i.e., H =
GL(C) := {h ∈ GL(d, R) | h(C) = C}. The general philosophy is, that wavelets
are associated to Besov spaces. In fact, one sees easily, that the Besov spaces in
[2] can also be defined by using the continuous wavelet transform. It is therefore a
natural question, which we pose here as a third open problem, to study the Besov
spaces, introduced in [2], using the theory of co-orbit spaces and the discrete
wavelet transform using the results from [22, 23] applied to the group GL(C).
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Adaptive Wavelet Methods for the Numerical Solutions of Opera-
tor Equations
Karsten Urban

We review recent results on the construction, analysis and realization of adaptive
wavelet methods for the numerical solution of operator equations. The theoretic
results are mainly based on on work by Cohen, Dahmen and DeVore, [4, 5, 6, 7].

Elliptic Operators. We consider (just for the sake of simplicity) the boundary
value problem on a bounded, open domain Ω ⊂ Rn determining u : Ω → R such
that

(1) −∆u(x) = f(x), x ∈ Ω, u|∂Ω = 0,

for a given function f : Ω → R. The variational formulation reads: find u ∈ H1
0 (Ω)

such that

(2) a(u, v) := (∇u,∇ v)0 = (f, v)0 for all v ∈ H1
0 (Ω)

for a given function f ∈ H−1(Ω), where (·, ·)0 denotes the standard L2-inner
product on Ω. Introducing the differential operator

(3) A : H1
0 (Ω)→ H−1(Ω), 〈Au, v〉 := a(u, v), u, v ∈ H1

0 (Ω),

we can rewrite (2) as an operator equation

(4) Au = f

in the Sobolev space H1
0 (Ω). Note that (4) is an infinite-dimensional operator

equation in a function space. We always assume in the sequel, that A is boundedly
invertible, i.e.

(5) ‖Au‖−1 ∼ ‖u‖1, u ∈ H1
0 (Ω),
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where we use the notation A ∼ B in order to abbreviate the existence of constants
0 < c ≤ C < ∞ such that cA ≤ B ≤ CA. At this point also general elliptic
operators on Hilbert spaces are included.

Wavelet Characterization of Sobolev Spaces. The first step is to transform
(4) into a (well-conditioned) problem in sequence spaces. This is done with the
aid of a bi-orthogonal wavelet bases. Assume

(6) Ψ := {ψλ : λ ∈ J }

is a Riesz basis for L2(Ω). Here J is an infinite set of indices and we always think
of an index λ ∈ J as a pair (j, k), where |λ| := j ∈ N always denotes the scale or
level and k (which possibly is a vector) contains information on the localization of
ψλ (e.g. the center of its support). We assume that Ψ admits a characterization
of a whole scale of Sobolev spaces in the sense, that the following estimates hold:

(7)

∥∥∥∥∥∑
λ∈J

dλ ψλ

∥∥∥∥∥
s

∼
(∑

λ∈J
|dλ|2s|λ|

)1/2

,

for s ∈ (−γ̃, γ) and γ, γ̃ > 1 depend on the properties of Ψ such as polynomial
exactness and order of vanishing moments. Using the short hand notations

(8) dT Ψ :=
∑
λ∈J

dλ ψλ, d = (dλ)λ∈J , D = diag (2|λ|)λ∈J

we can rephrase (7) in the following way

(9) ‖dT Ψ‖s ∼ ‖Dsd‖
2(J ).

Note that nowadays there are criteria known in order to ensure (9) and also con-
structions of wavelets also on complex domains are on the market, [2, 3, 10, 11].

Then, the Riesz Representation Theorem guarantees the existence of a bi-
orthogonal wavelet basis Ψ̃ = {ψ̃ : λ ∈ J } such that

(10) ‖dT Ψ̃‖−s ∼ ‖D−sd‖
2(J ).

An equivalent well-conditioned problem in �2. This implies for any u = uT Ψ

‖u‖
2(J )
(9)∼ ‖(D−1 u)T Ψ‖1

(5)∼ ‖A((D−1 u)T Ψ)‖−1

= ‖(A((D−1 u)T Ψ), Ψ)0 Ψ̃‖−1
(10)∼ ‖D−1(A((D−1 u)T Ψ), Ψ)0‖
2(J )

= ‖D−1 (AΨ, Ψ)0 D−1 u‖
2(J ),

which shows that ‖u‖
2(J ) ∼ ‖Au‖
2(J ) for A := D−1 (AΨ, Ψ)0 D−1. In other
words, A : �2(J )→ �2(J ) is a boundedly invertible operator on the sequence space
�2(J ). Defining f := (f, Ψ)0, we are led to the equivalent discrete problem

(11) Au = f .
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An infinte-dimensional convergent adaptive algorithm. Ignoring for a minute
that an infinite �2-sequence can not be represented in a computer, we aim at con-
structing an iterative solution method for the discrete problem (11). This is done
by a Richardson-type iteration: Given an initial guess u(0) ∈ �2(J ) and some
α ∈ R+, we define

(12) u(i+1) := u(i) + α(f −Au(i)) = (I − αA)u(i) + αf .

The convergence of this algorithm is easily seen:

‖u− u(i+1)‖
2(J ) = ‖u + α (f −Au)︸ ︷︷ ︸
=0

−u(i) − α(f −Au(i))‖
2(J )

= ‖(I − αA)(u − u(i))‖
2(J )

≤ ‖I − αA‖B(
2(J ))‖u− u(i)‖
2(J ),

i.e., this iteration converges if ρ := ‖I−αA‖B(
2(J )) < 1. This condition, in turns,
can be guaranteed e.g. if A is s.p.d. which holds e.g. for wavelet representations
of elliptic partial differential operators.

Approximate Operator Applications. Using the locality and the vanishing
moment properties of wavelets, on can show that the wavelet representation of a
large class of operators is almost sparse, i.e., one has
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(13) |aλ,λ′ | ≤ C 2−
∣∣|λ|−|λ′|

∣∣σ(1 + d(λ, λ′))−β ,

where d(λ, λ′) := 2min(|λ|,|λ′|)dist(suppψλ, supp ψλ′)
for some parameters σ and β. Roughly speaking
this means that one has a decay in the level differ-
ence as well as in the spatial distance of wavelets.
A typical structure is the well-known finger struc-
ture, see figure right.

For such kind of operators, an approximate ap-
plication APPLY was constructed. Replacing any multiplication with A by the
routine, yields a convergent adaptive method that moreover was proven to be
asymptotically optimal in the sense that the rate of convergence stays propor-
tional to the decay of the best N -term approximation at optimal cost.

Numerical results are shown for the Laplace [1] and the Stokes problem, [8, 12].
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Orthogonal Frames for Encryption
Eric Weber

(joint work with Ryan Harkins and Andrew Westmeyer)

There are several encryption algorithms in which randomness plays a role in the
encryption process. The first example is the one time pad, which is an uncondi-
tionally secure cipher and is optimal in terms of key length. The process of the
one time pad is the following: take a message m, expressed in some binary format,
choose at random a binary sequence of the same length, and bitwise add the mes-
sage to the random sequence. The recipient, knowing the random sequence, then
adds the sequence to the cipher text again to recover the message. We remark here
that this is actually the basis for quantum cryptography. The other example is the
McEliece cipher. The encryption here is based on error correcting codes: choose
a code which corrects N errors, encode the message, and introduce N randomly
chosen errors. The cipher text then is the encoded message with the errors. The
decryption then is to decode the ciphertext which corrects the errors. It is possible
to actually alter this slightly to make it a public key encryption system.

Both ciphers have drawbacks: the one time pad is a private key system, and the
key must change every time a message is encrypted. The McEliece cipher requires
a prohibitively large key size compared to the size of the message.

We propose here a third encryption algorithm which utilizes randomness in the
encryption process based on Hilbert space frames.

Let H be a separable Hilbert space over the field F with scalar product 〈·, ·〉,
where F denotes either R or C. A frame for H is a sequence X := {xn}n∈Z such
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that there exist constants 0 < A ≤ B <∞ such that for all v ∈ H ,

(1) A‖v‖2 ≤
∑
n∈Z

|〈v, xn〉|2 ≤ B‖v‖2.

If A = B = 1, the frame is said to be Parseval, and then for all v ∈ H ,

v =
∑
n∈Z

〈v, xn〉xn.

For elementary frame theory, see [Han et al. 2000, Casazza 2000].
Let H be a finite dimensional Hilbert space. A finite frame is a frame X :=

{xi}M
i=1 for H , where M is necessarily no smaller than the dimension of H . The

analysis operator for X is given by

ΘX : H → F
M : v �→ (〈v, x1〉, 〈v, x2〉, . . . , 〈v, xM 〉).

Definition 1. Let H and K be finite dimensional Hilbert spaces. Two frames
X := {xn}M

n=1 ⊂ H and Y := {yn}M
n=1 ⊂ K are orthogonal if for all v ∈ H ,∑M

n=1〈v, xn〉yn = 0. Equivalently, X and Y are orthogonal if Θ∗
Y
ΘX : H → K is

the 0 operator, where Θ∗
Y

denotes the Hilbert space adjoint.

Our encryption scheme, which is similar to a subband coding scheme, is an effort
to approximate the One-Time Pad. The (private) key for this encryption scheme
is two orthogonal Parseval frames {xn}M

n=1 ⊂ H and {yn}M
n=1 ⊂ K. Let ΘX and

ΘY respectively denote their analysis operators. Suppose m ∈ H is a message; let
g ∈ K be a non-zero vector chosen at random. The ciphertext c ∈ FM is given as
follows:

c := ΘXm + ΘYg.

To recover the message, we apply Θ∗
X
:

Θ∗
X
c = Θ∗

X
ΘXm + Θ∗

X
ΘYg

=
M∑

n=1

〈m, xn〉xn +
M∑

n=1

〈m, yn〉xn

= m + 0 = m.

Our experiments show that this encryption algorithm is robust against a brute
force attack. However, the encryption algorithm is vulnerable to a chosen-plaintext
attack.

A chosen-plaintext attack is an attack mounted by an adversary which chooses a
plaintext and is then given the corresponding ciphertext. For convenience, assume
that H = K = RN and M = 2N . The attack on our scheme is as follows:
Step 1. Determine the range ΘY(RN ). Choose any plaintext m of size N . Encode

the plaintext twice, with output, say, e0 and e1. Compute e1 − e0 =
ΘXm + ΘYg1 − (ΘXm + ΘYg0) = ΘY(g1 − g0). Notice that this yields a
vector f1 = ΘY(g1 − g0) in the range of ΘY. Encode the plaintext a third
time, with output e2, and compute f2 = e2−e0. Compute f3, . . . , fm until
the collection {f1, . . . , fm} contains a linearly independent subset of size
N . This then determines the subspace Z := ΘY(RN ) ⊂ RM .
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Step 2. Determine the range T := ΘX(RN ) ⊂ R
M . Choose any (non-zero) plain-

text m1 of size N ; encode the plaintext, with output e1; then project
e1 onto the orthogonal complement of Z. This yields a vector x1 in T .
Choose another plaintext m2 and repeat, yielding vector x2 ∈ T . Repeat
until the collection {x1, . . . , xq} contains a linearly independent subset of
size N . This set determines T .

Step 3. Determine the matrix ΘX. Suppose in Step 2, {m1, . . . , mN} is such that
{x1, . . . , xN} is linearly independent. We then have

ΘXmk = xk for k = 1, . . .N .

Given this system of equations, now solve for ΘX.
Step 4. Unencode cipher texts. Given any ciphertext c, the adversary computes

the following:

Θ∗
Xc = Θ∗

X(ΘXm + ΘYg)

= Θ∗
X
ΘXm

= m

since X was a Parseval frame.

References

[Agaian 1985] Agaian, S.S.: Hadamard Matrices and Their Applications. New York: Springer-
Verlag, 1985.

[Aldroubi et al. 2002] Aldroubi, A., D. Larson, W.S. Tang, and E. Weber, Geometric Aspects of
Frame Representations of Abelian Groups, preprint (2002) (available on ArXiv.org;
math.FA/0308250).

[Benedetto et al. 2003] Benedetto, J. and Fickus, M.: Finite Normalized Tight Frames, Adv.
Comput. Math. 18, (2003) no. 2-4, 357–385.

[Casazza 2000] Casazza, P.: The Art of Frame Theory, Taiwanese Math. J. 4 (2000) no. 2,
129–201.
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Open Problems

How close can an L1-Function be to a Convolution Idempotent?
Hans G. Feichtinger

On one hand, it is well known that (L1(Rd), ∗) is a convolution algebra which does
not contain unit, in the sense that it does not exists any function e ∈ L1(Rd) such
that g ∗ e = g, for all g ∈ L1(Rd). On the other hand, it is always possible to
construct a sequence (en)n∈N of functions in L1(Rd) such that ‖g ∗ en − g‖1 → 0,
for n → +∞.

The open problem suggested by Feichtinger is the following (It has been first
stated at an Oberwolfach conference in 1980):

What is the infimum for expression of the form ‖g ∗ g − g‖1, where g is a
symmetric function g ∈ L1(R) with ‖g‖1 = 1. Is there a function which minimizes
‖g ∗ g − g‖? (of course it cannot be uniquely determined, since the problem
is invariant under L1-normalized dilations, but maybe this is the only form of
ambiguity).

Nowadays the problem appears again as very interesting because it not obvious
how to attack it numerically, because it cannot be formulated in a non-trivial way
over discrete groups.

Let us show that this problem well posed and, in particular, that

(1) inf
g∈L1(R),‖g‖1=1

‖g ∗ g − g‖1 ≥
1
4
.

Because of the assumptions on g, its Fourier transform Fg has the following prop-
erties: Fg is real valued, continuous, vanishing at infinity, and Fg(0) = 1. The
norm ‖g ∗ g − g‖1 can be estimated from below by

‖g ∗ g − g‖1 ≥ ‖(Fg)2 −Fg‖∞.

In particular, one has ‖(Fg)2−Fg‖∞ ≥
∥∥|Fg|2 − |Fg|

∥∥
∞. Since Fg is continuous,

vanishing at infinity, and Fg(0) = 1, there exists ω0 ∈ Rd such that |Fg(ω0)| = 1
2 .

Therefore

sup
ω∈Rd

∣∣|Fg(ω)|2 − |Fg(ω)|
∣∣ ≥ 1

4
.

This immediately implies (1). Numerical experiments indicate that (naturally) the
Gaussian (up to dilation) is a “strong candidate” with a value around 0.31 < 1/3,
so one may expect that the “true value of the infimum” is in the interval [1/4, 1/3].
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Approximation of Frames by Normalized Tight Ones
Michael Frank

Let {xi}i be a frame of a Hilbert subspace K ⊆ H of a given (separable) Hilbert
space H with upper and lower frame bounds B and A. The resulting frame
transform is the map θ : K → l2 , θ(x) = {〈x, gi〉}i, and its adjoint operator is
θ∗ : l2 → K , θ∗(ei) = gi, i ∈ N, for the standard orthonormal basis {ei}i of l2.
Let S = (θ∗θ)−1 be the frame operator defined on K. It is positive and invertible.
There exists an orthogonal projection P : l2 → θθ∗(l2) ⊆ l2 onto the range of the
frame transform.

Problem:
Are there distance measures on the set of frames of all Hilbert subspaces L of H
with respect to which a multiple of the normalized tight frame {S1/2(xi)}i is the
closest normalized tight frame to the given frame {xi}i of the Hilbert subspace
K ⊆ H , or at least one of the closest normalized tight frames?
If there are other closest normalized tight frames with respect to the selected
distance measures, do they span the same Hilbert subspaces of H? If not, how
are the positions of the subspaces with respect to K ⊆ H?
To obtain at least partial results authors usually have applied some additional
restrictions to the set of frames to be considered: (i) resort to similar frames,
(ii) resort to the case K = L = H , (iii) resort to special classes of frames like
Gabor (Weyl-Heisenberg) or wavelet frames, and others. So one goal might be
to lessen the restrictions in the suppositions.

We would like to list some existing results from [1], [3] and [4] to give a flavor of
the existing successful approaches and to outline the wide open field of research to
be filled. From recent correspondences with R. Balan we know about new findings
of him and Z. Landau to be published in the near future ([2]).

First recall the major results by R. Balan ([1]): The frame {xi}i of the Hilbert
space H is said to be quadratically close to the frame {yi}i of H if there exists a
non-negative number C such that the inequality∥∥∥∑

i
ci(xi − yi)

∥∥∥ ≤ C ·
∥∥∥∑

i
ciyi

∥∥∥
is satisfied. The infimum of all such constants C is denoted by c(y, x). In general,
if C ≥ c(y, x) then C(1 − C)−1 ≥ c(x, y), however this distance measure is not
reflexive. Two frames {xi}i and {yi}i of a Hilbert space H are said to be near if
d(x, y) = log(max(c(x, y), c(y, x)) + 1) < ∞. They are near if and only if they are
similar, [1, Th. 2.4]. The distance measure d(x, y) is an equivalence relation and
fulfills the triangle inequality.
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Theorem 1([1]) For a given frame {xi}i of H the distance measures admit their
infima at

min c(y, x) = min c(x, y) =

√
B −

√
A√

B +
√

A
, min d(x, y) =

1
4
(log(B)− log(A)) .

These values are achieved by the tight frames{√
A +

√
B

2
S1/2(xi)

}
i

,

{
2
√

AB√
A +

√
B

S1/2(xi)

}
i

, { 4
√

ABS1/2(xi)}i ,

in the same order as the three measures are listed above. The solution may not be
unique, in general, however any tight frame {yi}i of H that achieves the minimum
of one of the three distance measures c(y, x), c(x, y) and d(x, y) is unitarily equiv-
alent to the corresponding solutions listed above. The difference of the connecting
unitary operator and the product of minimal distance times either S1/2 or S−1/2

fulfills a measure-specific operator norm equality.

A second class of examples has been treated by T. R. Tiballi, V. I. Paulsen and
the author in 1998 ([3]). The foundations were laid by T. R. Tiballi in his Master
Thesis in 1991 ([6]). Therein he was dealing with the symmetric orthogonalization
of orthonormal bases of Hilbert spaces in a way that did not make use of the
linear independence of the elements. So his techniques have been extendable to
the situation of frames giving rise to the symmetric approximation of frames by
normalized tight ones.

Theorem 2([3]) The operator (P −|θ∗|) is Hilbert-Schmidt if and only if the sum∑∞
j=1‖µj − xj‖2 is finite for at least one normalized tight frame {µi}i of a Hilbert

subspace L of H that is similar to {xi}i. In this situation the estimate∑∞
j=1
‖µj − xj‖2 ≥

∑∞
j=1
‖S1/2(xj)− xj‖2 = ‖(P − |θ∗|)‖2c2

is valid for every normalized tight frame {µi}i of any Hilbert subspace L of H that
is similar to {xi}i. (The left sum can be infinite for some choices of subspaces L
and normalized tight frames {µi}i for them.)

Equality appears if and only if µi = S1/2(xi) for any i ∈ N. Consequently,
the symmetric approximation of a frame {xi}i in a Hilbert space K ⊆ H is the
normalized tight frame {S1/2(xi)}i spanning the same Hilbert subspace L ≡ K of
H and being similar to {xi}i via the invertible operator S−1/2.

Remark: (see [5]) If {xi}i is a Riesz basis, then {S1/2(xi)}i is the symmetric
orthogonalization of this basis. This is why the denotation ‘symmetric approxima-
tion’ has been selected.

A third approach has been developed by Deguang Han investigating approx-
imation of Gabor (Weyl-Heisenberg) and wavelet frames. His starting point are
countable unitary systems U on separable Hilbert spaces that contain the identity
operator. In particular, U is supposed to be group-like, i.e. group(U) ⊆ TU =
{λU : λ ∈ T, U ∈ U}. A vector φ ∈ H is a complete frame vector (resp., a normal-
ized tight frame vector) for U if the set Uφ := {U(φ) : U ∈ U} is a frame (resp., a
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normalized tight frame) of H . Two frame vectors φ, ψ ∈ H are said to be similar
if the two frames Uφ and Uψ are similar frames in H . Let T (U) denote the set of
all normalized tight frame vectors of H with respect to the action of U .
As a matter of fact the distance measure used in [3] gives

∑
U∈U ‖U(ξ)−U(η)‖2 =

∞ if U is an infinite set and ξ �= η. Also, Uξ and Uη are not similar, in general,
cf. [1]. So define a vector ψ ∈ T (U) to be a best normalized tight frame (NTF)
approximation for a given complete frame vector φ ∈ H of U if

‖ψ − φ‖ := dist(φ, T (U)) := inf{‖η − φ‖ : η ∈ T (U)} .

Theorem 3([4]) Let U be a group-like unitary system acting on a Hilbert space
H . Let φ ∈ H be a complete frame vector for U . Then the vector S1/2(φ) is the
unique best NTF approximation for φ, where S = (θ∗θ)−1 is the frame operator
for φ.

Theorem 4([4]) Let Λ ⊂ Rd × Rd be a full-rank lattice and g be a Gabor frame
generator associated with Λ. Then the vector S1/2(g) is the unique best NTF
approximation for g, where S is the frame operator for g. (S1/2(g) is a Gabor
frame generator, again.)

Considering the wavelet situation where the generating unitary systems some-
times are not group-like some obstacles are encountered. For example, D. Han
found that for an orthonormal wavelet UD,T (g) the vector φ = 1/4 · g possesses
better NTF approximations than S1/2(φ). In ongoing discussions of D. Han with
I. Daubechies, J. Wexler and M. Bownik examples of wavelet frames have been
found for which there does not exist any wavelet-type dual frame. It is unknown
whether {S1/2(xi)}i has always wavelet structure for wavelet frames {xi}i, or not.

Theorem 5([4]) Suppose, φ is the generator of a semi-orthogonal wavelet frame,
i.e. φm,k⊥φn,l for φm,k := |det(M)|m/2φ(Mmx−k) and for any k, l ∈ Z

d, all m, n ∈
Z with m �= n. Denote by UD,T the unitary system generating the initial wavelet
frame. Then there exists a unique normalized tight wavelet frame generated by ψ
such that the equality

‖φ− ψ‖ = min{‖h− φ‖ : h ∈ T (UD.T ), h ∼ φ}
holds. Moreover, ψ = S1/2(φ).
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A Reproducing Kernel without (?) Discretization
Hartmut Führ

For any measurable subset B ⊂ R, let HB denote the space of functions in L2(R)
whose Fourier transforms are supported in B. It is a translation-invariant closed
subspace of L2(R).

Now pick an open, dense subset A ⊂ R of finite measure, and let H = HA.
Then the fact that the characteristic function of A is in L2 implies for all f that
f = f ∗ g, where g is the inverse Fourier transform of said characteristic function.
Hence convolution with g acts as a reproducing kernel on H. (Put differently: The
function g is a coherent state.)
Question: Does there exist a subset Γ ⊂ R and the function η ∈ H such that
the Γ-shifts of η are a frame? (A tight frame even?). The reason for choosing this
particular set A is the following simple observation:
Proposition.There exists g ∈ HB such that the αZ-shifts of g are total in HB iff
| kα + B ∩B| = 0 for all nonzero k ∈ Z, where | · | denotes Lebesgue measure.

Hence, by choice of A, we have for all Γ = αZ, that the Γ-shifts of an arbitrary
function are not total in H. This fact suggests that there cannot exist a frame
consisting of shifts of a single function, but I have not been able to prove it.

Understanding the problem could help to clarify the role of the integrability
conditions which appear in the sampling theorems of Feichtinger and Gröchenig
(e.g., [2] and related papers). The problem can also be phrased as follows: Does
there exist a frame of exponentials for L2(A)? This formulation is reminiscent of
spectral sets and the Fuglede conjecture [3]. Finally, the fact that regularly spaced
sampling sets do not work, no matter how small the step-size, suggests using
perturbation techniques (see e.g. [1]). Hence an understanding of this problem
would also shed some light on the scope of these techniques.
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Density for Gabor Schauder Bases
Christopher Heil

Let H be a Hilbert space. A sequence {fi}i∈N of vectors in H is a Schauder basis
for H if for each f ∈ H there exist unique scalars ci(f) such that f =

∑∞
i=1 ci(f)fi.
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In this case there exists a dual basis {f̃i}i∈N such that f =
∑∞

i=1〈f, f̃i〉 fi. How-
ever, in general this series may converge only conditionally, i.e., it might not
converge if a different ordering of the series is used.

A sequence {fi}i∈N is a frame for H if there exist constants A, B > 0 such
that A‖f‖2 ≤

∑∞
i=1 |〈f, fi〉|2 ≤ B‖f‖2 for every f ∈ H . In this case there exists a

dual frame {f̃i}i∈N such that f =
∑∞

i=1〈f, f̃i〉 fi. Moreover, this series converges
unconditionally, i.e., every reordering converges. However, the coefficients 〈f, f̃i〉
in the series need not be unique, i.e., there may exist some other coefficients ci

such that f =
∑∞

i=1 cifi.
A frame is a Schauder basis if and only if it is a Riesz basis, i.e., the image

of an orthonormal basis under a continuous bijection of H onto itself. For more
information on frames, Schauder bases, and Riesz bases, see [Hei97] or [Chr03].

Let Taf(x) = f(x− a) denote the operation of translation. In [Zal78], [Zal80],
Zalik gave some necessary and some sufficient conditions on g ∈ L2(R) and count-
able subsets Γ ⊂ R such that {Tag}a∈Γ is complete in L2(R). Olson and Zalik
proved in [OZ92] that no such system of pure translations can be a Riesz basis
for L2(R), and conjectured that no such system can be a Schauder basis. This
conjecture is still open.

In [CDH99], it was observed that no such system of pure translations can form
a frame for L2(R). This is a corollary of the following general result due to
Ramanathan and Steger [RS95].

Theorem 1. Let g ∈ L2(R) and let Λ ⊂ R2 be given. Then the Gabor system
G(g, Λ) = {e2πibxg(x− a)}(a,b)∈Λ has the following properties.

(a) If G(g, Λ) is a frame for L2(R), then 1 ≤ D−(Λ) ≤ D+(Λ) <∞.

(b) If G(g, Λ) is a Riesz basis for L2(R), then D−(Λ) = D+(Λ) = 1.

(c) If D−(Λ) < 1 then G(g, Λ) is not a frame for L2(R).

In this result, D±(Λ) denote the Beurling densities of Λ, which provide in
some sense upper and lower limits to the average number of points of Λ inside unit
squares. More precisely, to compute Beurling density we count the average number
of points inside squares of larger and larger radii and take the limit, yielding the
definitions

D−(Λ) = lim inf
r→∞ inf

z∈R2

|Λ ∩Qr(z)|
r2

,

D+(Λ) = lim sup
r→∞

sup
z∈R2

|Λ ∩Qr(z)|
r2

,

for the lower and upper Beurling densities of Λ. Here Qr(z) is the square in
R2 centered at z with side lengths r and |E| denotes the cardinality of a set E.
In particular, the Beurling density of a rectangular lattice is D−(αZ × βZ) =
D+(αZ × βZ) = 1

αβ .
Some corrections and extensions to Ramanathan and Steger’s result are given

in [CDH99], and a suite of new results on redundancy of frames partly inspired by
their proof are given in [BCHL03a], [BCHL03b], [BCHL04].
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Since {Tag}a∈Γ = G(g, Γ×{0}) and D−(Γ×{0}) = 0, it follows from Theorem 1
that such a system can never be a frame for L2(R).

Little is known about Gabor systems that are Schauder bases but not Riesz
bases for L2(R). One example of such a system is G(g,Z2) where

g(x) = |x|α χ[− 1
2 , 12 ](x), 0 < α <

1
2
.

It was conjectured in [DH00] that Gabor Schauder bases follow the same Nyquist-
type rules as Gabor Riesz bases, i.e., if G(g, Λ) is a Gabor Schauder basis then
D−(Λ) = D+(Λ) = 1. Some partial results were obtained in [DH00], but the con-
jecture remains open. If this conjecture is proved, then the Olson/Zalik conjecture
follows as a corollary.

Another open question is whether there is an analogue of the Balian–Low Theo-
rem for Gabor Schauder bases. Qualitatively, the Balian–Low Theorem states that
any Gabor Riesz basis will be generated by a function which is either not smooth,
or has very poor decay at infinity. For a survey of the Balian–Low Theorem, see
[BHW95].

Finally, for recent wavelet versions of density theorems, see [HK03]. There are
interesting differences between the density-type theorems for Gabor and wavelet
frames, most notably that there is no Nyquist-like cutoff in the possible densities
for wavelets. An open general problem is to derive more powerful necessary or
sufficient conditions for the existence of Gabor or wavelet frames.
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Two Problems on Frames and Decomposition of Operators
David R. Larson

In the Abstracts of Talks section we showed a relation between frame theory and
projection (and other) decompositions of positive operators on a Hilbert space H .
If S is a positive invertible operator in B(H), for H a real or complex separable
Hilbert space with infinite dimension, and if ‖S‖ess > 1, then S can be written
S =

∑
n Pn, where {Pn} is a sequence of self-adjoint (i.e.orthogonal) projections.

This is equivalent to the property that S is the frame operator for a frame (for all
of H) consisting of unit vectors. More generally, it was shown that if T is a positive
operator (not necessarily invertible) which has essential norm strictly greater than
1, then T admits such a projection decomposition. If T has closed range, then
writing T =

∑
n xn⊗xn,where the xn are unit vectors, yields that {xn} is a frame

of unit vectors for the range of T . If T does not have close range, then {xn} is a
sequence of unit vectors which does not constitute a frame for its closed span (i.e.
the closed range of T ), but can be filled out in many ways with unit vectors to give a
tight frame for its closed span. (Just choose a positive operator R of norm > 1 such
that T + R is a scalar multiple of P , where P is the orthogonal projection onto
the closure of range(T ).) Since projection decompositions of positive operators
seem to be useful when they exist, this suggests some problems in single operator
theory.

PROBLEM A: When does a positive operator T ∈ B(H) have a finite projection
decomposition? That is, when can it be written as a finite sum of orthogonal
projections?

Suppose, in fact, we assume that T has an infinite projection decomposition.
Is it a common occurrence for T to also admit a finite projection decomposition?
Or does this rarely happen?

In the context of the above problem, it is clear that if T is an invertible operator
which has a finite projection decomposition, then it is the frame operator for a
frame which is the union of finitely many orthonormal sets of vectors.

Also in the context of Problem A, we mention that it is easy to show (it is a
lemma in the second paper) that if a positive operator of norm exactly 1 has a
projection decomposition, then in fact it must be a projection. So it has a finite
projection decomposition consisting of one projection. On the other hand, if a
positive operator has essential norm strictly greater than 1, then we know it has
an infinite projection decomposition (by a theorem in the extended abstract), but
does it also have a finite projection decomposition?
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We now discuss a problem concerning more general targeted decompositions of
positive operators. Targeted means that we are asking for a decomposition as a
(strongly convergent) series of simpler positive operators (such as projections, or
rank-one operators satisfying specified norm or other properties). In paper 2 that
was discussed in the abstract, which was joint work with K. Kornelson, we found
techniques to deal with problems of specified norm targeted decompositions. In
this Workshop, in response to a short talk on targeted decompositions presented by
D. Larson in a problem session, H. Feichtinger and K. Grochenig pointed out that
similar techniques just may lead to progress on a certain problem in modulation
space theory. Subsequently, Larson and C. Heil discussed this matter, and there
are plans to follow up on this lead. The following problem seems to be pointing
in the right direction. At the least, it seems to be a representative problem on the
concept of targeted decompositions, which is mathematically interesting (at least
to this investigator) as a problem in Hilbert space operator theory, and which
was motivated by Workshop discussions. We present it in this spirit. It concerns
targeted decompositions of trace-class operators, hence is a problem in a different
direction from the results in both papers discussed in the Abstract.

PROBLEM B: Let H be an infinite dimensional separable Hilbert space. As usual,
denote the Hilbert space norm on H by ‖ · ‖. If x and y are vectors in H , then
x ⊗ y will denote the operator of rank one defined by (x ⊗ y)z = (z, y)x. The
operator norm of x⊗ y is then just the product of ‖x‖ and ‖y‖.

Fix an orthonormal basis {en}n for H . For each vector v in H , define

‖|v‖| =
∑

n

|(v, en)|

This may be +∞.
Let L be the set of all vectors v in H for which ‖|v‖| is finite. Then L is a dense

linear subspace of H , and is a Banach space in the triple norm. It is of course
isomorphic to �1

Let T be any positive trace-class operator in B(H). The usual eigenvector
decomposition for T expresses T as a strongly convergent series of operators hn⊗
hn, where {hn} is an orthogonal sequence of eigenvectors of T . That is,

T =
∑

n

hn ⊗ hn

In this representation the eigenvalue corresponding to the eigenvector hn is the
square of the norm: ‖hn‖2. The trace of T is then∑

n

‖hn‖2

and since T is positive this is also the trace-class norm of T .
Let us say that T is of typeA with respect to the orthonormal basis {en} if, for

the eigenvectors {hn} as above, we have that
∑

n ‖|hn‖|2 is finite. Note that this
is just the (somewhat unusual) formula displayed above for the trace of T with
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the triple norm used in place of the usual Hilbert space norm of the vectors {hn}.
(So,in particular, such operators T must be of trace class.)

And let us say that T is of typeB with respect to the orthonormal basis {en} if
there is some sequence of vectors {vn} in H with

∑
n ‖|vn‖|2 finite such that

T =
∑

n

vn ⊗ vn

where the convergence of this series is in the strong operator topology. (Of course,
typeA wrt a basis implies typeB wrt that basis. It is the converse direction that
we want to consider.)

The problem we wish to isolate is the following: Let {en} be an orthonormal
basis for H . Find a characterization of all positive trace class operators T that are
of typeB with respect to {en}. In particular, is the class of typeB operators with
respect to a fixed orthonormal basis for H much larger than the class of typeA
operators (with respect to that basis)?

Quantitative Behaviour of Wavelet Bases
Karsten Urban

We demonstrate a typical wavelet discretization of an elliptic problem and give
some examples of condition numbers indicating the corresponding research prob-
lems.

Wavelet Representation of Differential Operators. For simplicity, let us
consider the periodic 1D problem finding a function u : [0, 1]→ R such that

(1) −u′′(x) + u(x) = f(x), x ∈ (0, 1), u(0) = u(1).

Let ψ ∈ H1(R) be a sufficiently smooth wavelet, we consider the periodic
wavelet basis

(2) ψj,k(x) := 2j/2
∑

∈Z

ψ(2j(x + �)− k)|[0,1]

and the corresponding wavelet spaces Wj := span (Ψj) for Ψj := {ψj,k : k =
0, . . . , 2j − 1}, for j ≥ 0 and S0 := {c : c ∈ R} = span (Φ0), Φ0 = {χ(0,1)}, so that

H1
per(R) = S0 ⊕

⊕
j∈N

Wj ,

and Ψ := Φ0 ∪
⋃

j∈N
Ψj is a Riesz basis for L2(0, 1). Let us describe the structure

of the wavelet representation a(Ψ, Ψ) of the differential operator in (1), where here
we have a(u, v) := (u′, v′)0 + (u, v)0. In order to give an impression of the entries
let us consider index pairs (j, k) and (�, m) such that the corresponding shifted
translates are completely located inside the interval (0, 1), i.e.,

ψj,k(x) = 2j/2 ψ(2jx− k), ψ
,m(x) = 2
/2 ψ(2
x−m), x ∈ [0, 1].
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Then, we obtain by a simple change of variables y = 2jx− k

(ψj,k, ψ
,m)0 = 2(j+
)/2

∫
R

ψ(2jx− k)ψ(2
x−m) dx

= 2(
−j)/2

∫
R

ψ(y)ψ(2
(2−j(y + k)−m) dy

= 2(
−j)/2(ψ, ψl−j,m−2l−jk)0,

i.e., the inner product only depends on the level difference and the relative location
in space. In particular, there is only a fixed number of non-zero values per level
difference �− j.

For the second-order term in a(·, ·) we use the fact that for every (sufficiently
smooth) wavelet ψ there exists a second wavelet ψ∗ such that ψ′(x) = 4 ψ∗(x), [1].
Then, a similar calculation as above gives

(ψ′
j,k, ψ′


,m)0 = 2j+
+4 2(
−j)/2(ψ∗, ψ∗
l−j,m−2l−jk)0.

We observe the same behaviour as above, i.e., the values depend only on the level
difference and there is only a fixed number of non-zero entries per level. This shows
the finger structure of the matrix which is ordered level-wise. This block-structure
is also shown in the figure.

Preconditioning. Recalling the norm equivalence∥∥∥∥∥∥
∑
j,k

dj,k ψj,k

∥∥∥∥∥∥
2

s

∼
∑
j,k

22js|dj,k|2, s ∈ (−γ̃, γ),

where γ, γ̃ > 1 depend on the wavelet ψ and its dual ψ̃, we obtain the following
preconditioning for u = dT Ψ =

∑
j,k dj,kψj,k

a(u, u) = ‖u′‖20 + ‖u‖20 = ‖u‖21 ∼
∑
j,k

22j |dj,k|2,

i.e., we obtain the preconditioner C1 = diag(2|λ|). As an alternative, the norm
equivalence also leads to the preconditioner C2 = diag(

√
2|λ|+1). Both precondi-

tioners are asymptotically optimale, i.e.,

cond(C−1
i a(Ψ, Ψ)C−1

i ) < ∞, i = 1, 2.

It is not clear a priori which one is better in a practical application.
From a practical point of view, one can also try to use the diagonal of a(Ψ, Ψ)

as a preconditioner which is easily accessible and already contains information of
the matrix. In Table 1, we have listed condition numbers of slices of the matrices
corresponding to the level j.
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j cond(a(Ψ, Ψ)) C1 ‖A‖ diag C2

2 87.47 17.74 15.07 4.07 14.58
3 352.81 21.40 18.73 5.94 20.15
4 1.43e+3 25.19 20.43 6.67 24.52
5 5.75e+3 27.52 21.05 7.47 28.53
6 2.30e+4 29.12 21.26 8.45 30.50
7 9.20e+4 29.68 21.41 9.47 31.34
8 3.67e+5 29.93 21.46 9.62 32.06
9 1.47e+6 30.13 21.47 10.06 32.35

10 5.88e+6 30.20 21.48 10.76 32.57
11 2.35e+7 30.27 21.48 9.82 32.68

Table 1. Condition numbers.

Figure 1. Block structure of A.

Even though these numbers give a quite impressive rate of reduction, one should
keep several facts in mind:

• The periodic case is the most simple one and of academic character only.
When introducing Dirichlet boundary conditions even on an interval, the
numbers increase significantly.

• When considering problems in 2D or 3D, even on the unit square or unit
cube using tensor products, one has to square or cubic the condition num-
bers.

• When dealing with complex domains on needs several unit cubes and also
certain combinations.

Adaptive Richardson Iteration. When using the adaptive wavelet method
within the Richardson iteration directly, the condition number of A influences the
error reduction factor ρ directly. In fact, it has been observed that ρ ≈ 1 in many
situations. Several attempts have been made in order to improve the condition
numbers as listed in Table 1. However, none of them was really successful, which
might also be explained by the low numbers for the diagonal preconditioners.

An alternative to the ‘standard’ adaptive Richardson iteration would be to com-
bine the Richardson method using the adaptive approximate operator application
APPLY from [2] as an outer iteration with an inner loop solving the Galerkin
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problem on a fixed set of unknowns. It has in fact been observed that such an
iteration is quantitatively better in several situations:

• [v, Λ] = APPLY (u(i), εi);
• solve AΛuΛ = fΛ and call the numerical approximation u(i+1).

So far there is no theoretical backup for the behaviour of this algorithm. It could
be possible to explain the quantitative improvement with the aid of the finite
section method known in frame theory.
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Two Problems on the Generation of Wavelet and Random Frames
Eric Weber

Problem 1. If g ∈ L2(R) is the Gaussian, and Λ := {(az, bz) : z ∈ Z2} ⊂ R2 is
any set such that

1 < D−(Λ) ≤ D+(Λ) < ∞,

then the Gabor system

G(g, Λ) = {e−2πiazxg(x− bz) : z ∈ Z
2}

is a frame for L2(R), where D−(Λ), D+(Λ) are the lower and upper Beurling
densities, respectively, of Λ.

Is there a corresponding statement regarding wavelet frames? More specifically,
is there a function ψ ∈ L2(R) such that for any set Γ := {(az, bz) : z ∈ Z2} ⊂ R2

with
1 < D−(Γ) ≤ D+(Γ) <∞,

then the wavelet system

W (ψ, Γ) = {|az|1/2g(azx− bz) : z ∈ Z
2}

is a frame for L2(R), where D−(Γ), D+(Γ) are the lower and upper affine densities,
respectively, of Γ (see [Heil et al. 2003]).

Problem 2. Let H be a finite dimensional Hilbert space.

i) What is a reasonable definition of ”random frame”?
ii) How does one construct a ”random frame”?

We make the following remarks:
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a) The idea of a random orthonormal basis has a reasonably good definition.
Fix any orthonormal basis of H ; each orthonormal basis of H then cor-
responds to a unitary operator from the fixed basis to the new one. The
group of unitary operators on H is a compact group, hence possesses a
finite Haar measure, which can be normalized to give a probability mea-
sure. This probability measure would correspond to a uniform density,
since the Haar measure is invariant under multiplication.

b) There are several ways of constructing random orthonormal bases for Rd.
Randomly choose d(d + 1)/2 numbers and place in the upper triangle of a
matrix B; fill in the remaining entries such that BT = −B. The spectrum
then is purely imaginary, whence eB has spectrum on the unit circle and
hence is unitary. (The matrix eB can only be approximated). A second
method is due to Stewart [Stewart 1980].

c) A frame with N elements for a Hilbert space H of dimension d can be
obtained by choosing any basis of a Hilbert space K of dimension N and
projecting the basis onto any subspace of dimension d. Thus, it is possible
to construct a ”random” frame from a random (orthonormal) basis.
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fuehr@gsf.de

Institut für Biomathematik & Biometrie
GSF Forschungszentrum Neuherberg
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Introduction by the Organisers

The field of computational electromagnetism is dedicated to the design and
analysis of numerical methods for the approximate solution of electromagnetic
field problems. Since the exploitation of electromagnetic phenomena is one of the
foundations of modern technology, computational electromagnetics is of tremen-
dous industrial relevance: in a sense, it is peer to computational solid and fluid
mechanics and huge research efforts are spent on developing and enhancing simu-
lation methods and software for electromagnetic field computations.

For a long time, computational electromagnetism remained a realm of engi-
neering research with applied mathematics shunning the area. This was in stark
contrast to elasticity and fluid mechanics, where mathematicians have been in-
volved in the development of numerical methods from the very beginning. Maybe,
the blame has to be laid on the incorrect belief of mathematicians who thought
that the laws governing the behavior of electromagnetic fields basically boil down
to well understood second-order elliptic problems.

Fortunately, the past fifteen years have seen a real surge of mathematical re-
search activities in the area of computational electromagnetism. This resulted in
insights that have begun to have a big impact on the numerical methods used in
engineering and industrial environments. A prominent example is the explana-
tion of so-called spurious solutions that can arise when using continuous “nodal”
finite elements for the discretization of certain electromagnetic boundary value
or eigenvalue problems, respectively. Another example is the appreciation of so-
called edge finite elements and the construction of multilevel iterative solvers for
the low-frequency setting.
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Meanwhile, computational electromagnetism can claim to be a major area of
numerical mathematics and scientific computing in its own right. This prompted
us to ask the Mathematisches Forschungsinstitut Oberwolfach to host a one week
workshop on computational electromagnetism, the first of its kind. Reflecting the
growing importance of the subject, this workshop has been one of a series of events
dedicated to mathematical issues in the computation of electromagnetic fields. We
would like to mention, the NSF-CBMS Regional Conference in the Mathematical
Sciences about “Numerical Methods in Forward and Inverse Electromagnetic Scat-
tering”, held in Golden, CO, June 3-7, 2002 (from which the book [2] arose), and
the “LMS Durham Symposium on Computational methods for Wave Propagation
in Direct Scattering”, Durham, England, July 15-25, 2002 (see [1]).

This Oberwolfach workshop brought together some 50 experts in computational
electromagnetism. The majority of the participants were applied mathematicians,
but a sizable number of people with a background in engineering also attended,
as appropriate for a field with close ties to engineering and the applied sciences.
Nevertheless, the workshop had a clear mathematical focus, emphasizing rigorous
theory, principles and ideas. Throughout, the presentations matched these expec-
tations. A total of 29 presentations were given, of which ten were survey lectures
offering broader treatment of a particular subject.

As is typical of an event that targets a specific area of application, it arose that
a broad range of mathematical issues and techniques was addressed. Although it
will certainly not do justice to many presentations, we will try categorize the talks
as follows:

• Mathematical modelling. This subject did not play a central role, be-
cause most presentations took the model equations for granted. Modelling
for practical engineering calculations was described by O. Bı́ró in his survey
talk about Practical Aspects of FEM in Electromagnetics, p. 559, and by
M. Clemens when speaking on Formulations and Efficient Numerical So-
lution Techniques for Transient 3D Magneto-and Electro-Quasistatic Field
Problems, p. 572. Homogenization was addressed in the presentation by
A. Bendali about Two Scale Asymptotic Expansion for the Scattering of a
TM-Electromagnetic Wave by a Rough Surface and Applications, p. 556.

• Spatial discretizations. This turned out to be one of the core subjects
of the workshop. The survey lectures of D. Boffi about Theoretical Aspects
of Edge Finite Elements, p. 564 and I. Perugia on Discontinuous Galerkin
Methods for Maxwell’s Equations, p. 608, addressed the topic. Particular
issues were discussed by S. Christiansen in his talk about the Div-Curl
Lemma for Edge Elements, p. 571, and by J. Pasciak about The Approxi-
mation of the Maxwell Eigenvalue Problem using a Least-Squares Method,
p. 606. M. Kaltenbacher gave an account of observations concerning finite
element schemes in his presentation on Nodal and Edge Finite Element
Discretization of Maxwell’s Equations, p. 590.
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Several presentations were devoted to higher order spatial discretiza-
tion: the survey lecture of M. Ainsworth gave an account of the Dis-
persive Properties of High Order Nédélec/Edge Elements for Maxwell’s
Equations, p. 553, L. Demkowicz spoke about H1, H(curl) and H(div)-
Conforming Projection-Based Interpolation in Three Dimensions, p. 582,
and P. Ledger about Computation of Maxwell Eigenvalues with Exponen-
tial Rates of Convergence.

• Timestepping. There was only one contribution dealing with temporal
discretization, namely the talk by T. Driscoll on High-Order Time Stepping
Methods for Electromagnetics, p. 585.

• Regularity of solutions. Here one of the pioneers in the field, M. Dauge,
gave a survey talk about Singularities of Electromagnetic Fields in the
Eddy Current Limit, p. 574.

• Integral equation methods. Boundary element methods in the fre-
quency domain were treated by S. Kurz in his talk on A New View on
Collocation, p. 599. Conversely, time-domain integral equation methods
were examined in the survey lecture by E. Michielssen on Fast Time Do-
main Integral Equation Solvers, p. 603, and P. Davies in her contribution
on Convergence of Collocation Methods for Time Domain Boundary Inte-
gral Equations, p. 579. S. Börm talked about H2-Matrices with Adaptive
Cluster Bases Applied to an Eddy Current Problem, p. 562, and presented
a fast summation method for discrete frequency-domain integral equations.

• Electromagnetic Scattering. This topic was treated by R. Kress in his
survey lecture on Inverse Obstacle Scattering for Time-Harmonic Elec-
tromagnetic Waves, p. 596. Also the talk by A. Bendali on Two Scale
Asymptotic Expansion for the Scattering of a TM-Electromagnetic Wave
by a Rough Surface and Applications, p. 556, addressed a particular scat-
tering problem.

• Absorbing boundary conditions. A special incarnation of these was
examined in the survey talk by F. Teixeira on Perfectly Matched Layers,
p. 621. Details of a PML approach were studied by Z. Chen in his talk
about An Adaptive Perfectly Matched Layer Technique for Time-harmonic
Scattering Problems, p. 568. Other techniques were outlined by M. Grote
(Nonreflecting Boundary Conditions for Computational Electromagnetics,
p. 588) and F. Schmidt (Pole Condition: A New Approach to Solve Scat-
tering Problems, p. 615).

• Topological issues. These were discussed in the talks of R. Kotiuga (The
Hurewicz Map Distinguishes Intuitive vs. Computable Topological Aspects
of Computational Electromagnetics, p. 593) and F. Rapetti (Smith Normal
Form as an Adequate Tool to Detect Mesh Defects as well as to Build Basis
Fields for Domains with Loops and Holes, p. 612).

• Fast solvers. Several speakers discussed fast algorithms for the solution of
linear systems of equations arising from discretized field equations: it was
the subject of J. Schöberl’s survey lecture on Preconditioning for Maxwell
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Equations, p. 617, and O. Sterz’ talk on Adaptive Multigrid-Methods for
the Solution of Time-Harmonic Eddy-Current Problems, p. 618. The use
of multigrid methods was discussed in the contributions by M. Clemens
on Formulations and Efficient Numerical Solution Techniques for Tran-
sient 3D Magneto-and Electro-Quasistatic Field Problems, p.‘572, and by
M. Kaltenbacher on Nodal and Edge Finite Element Discretization of
Maxwell’s Equations, p. 590. An enhancement for algebraic multigrid
was proposed by P. Arbenz (Treatment of Nullspace in Maxwell Prob-
lem, p. 553). J. Zou dealt with domain decomposition methods in his
contribution on Some New Inexact Uzawa Methods and Non-overlapping
DD Preconditioners for Solving Maxwell’s Equations in Non-homogeneous
Media, p. 624.

• Adaptive techniques. Only one presentation, that of Z. Chen on An
Adaptive Perfectly Matched Layer Technique for Time-harmonic Scatter-
ing Problems, p. 568, dealt with a special adaptive scheme.

• Optimization. This important subject reaches beyond the core of com-
putational electromagnetism. An aspect was discussed in the talk by D.
Lukáš on Computational Shape and Topology Optimization with Applica-
tions to 3–Dimensional Magnetostatics p. 601.

We would like to add our personal impression that two families of methods have
been received with particular interest during the workshop:

• Time-domain integral equation methods,
• High-order spatial discretization schemes.

We are sure that the workshop will have made a substantial contribution to the
progress of research in these and all other areas of computational electromag-
netism.

R. Hiptmair
R.H.W. Hoppe
U. Langer

References

[1] M. Ainsworth, P. Davis, D. Duncan, P. Martin, and B. Rynne, eds., Topics in Compu-
tational Wave Propagation. Direct and inverse Problems, vol. 31 of Lecture Notes in Com-
putational Science and Engineering, Springer, Berlin, 2003.

[2] P. Monk, Finite Element Methods for Maxwell’s Equations, Clarendon Press, Oxford, UK,
2003.



Statistics in Finance 549

Workshop on Computational Electromagnetism

Table of Contents

Mark Ainsworth
Dispersive Properties of High Order Nédélec/Edge Elements for Maxwell’s
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Abstracts

Dispersive Properties of High Order Nédélec/Edge Elements for
Maxwell’s Equations.

Mark Ainsworth

The dispersive behaviour of high order Nédélec element approximation of the
time harmonic Maxwell equations at a prescribed temporal frequency ω on tensor
product meshes of size h is analysed. A simple argument is presented showing
that the discrete dispersion relation may be expressed in terms of the discrete
dispersion relation for the approximation of the scalar Helmholtz equation in one
dimension. An explicit form for the one dimensional dispersion relation is given,
valid for arbitrary order of approximation. Explicit expressions for the leading
term in the error in the regimes where (a) ωh is small, showing that the dispersion
relation is accurate to order 2p for a p-th order method; and (b) in the high wave
number limit where 1 � ωh, showing that in this case the error reduces at a super-
exponential rate once the order of approximation exceeds a certain threshold which
is given explicitly. Details have been published in the following work [1–3]
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Treatment of Nullspace in Maxwell Problems
Peter Arbenz

1. Introduction

The weak form of the magnetostatic equation reads: Find u ∈ H0(curl , Ω)
such that

(1)
(a) (curl u, curl Ψ) = (r,Ψ), ∀Ψ ∈ H0(curl , Ω),
(b) (u,grad q) = 0, ∀q ∈ H1

0 (Ω),

where Ω ∈ IR3 is a bounded domain with connected boundary ∂Ω. We require
that (r,grad q) = 0 for all q ∈ H1

0 (Ω) such that equation (1) is consistent.
The straightforward discretization of (1) by the finite element method yields

the matrix equation

(2)
(a) Ax = Mr, CT r = 0
(b) CT x = 0
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where aij = (curl Ψi, curl Ψj), mij = (Ψi,Ψj), ci� = (Ψi,grad ϕ�). Here, the
Ψi, i = 1, . . . , n, form a basis of the space Nh of lowest order Nédélec edge elements
and the ϕ�, � = 1, . . . , m, form a basis of the lowest order Lagrange elements Lh,
see [4].

A has a m-dimensional nullspace N (A) that satisfies [4, §III.5.3]

(3) N (A) = {vh ∈ Nh | curl vh = 0} = grad Lh.

Thus, the gradient of each ϕ� can be written as a linear combination of the edge
basis functions Ψj ,

grad ϕ� =
n∑

j=1

yj�Ψj .

Let Y ∈ IRn×m be the matrix with elements yj�. Then, AY = 0 and C = MY .
The columns of Y form a sparse null space basis of A, see e.g. [2]. Notice that Y
can be constructed from geometric properties of the finite element mesh.

In [1] we have investigated the numerical solutions of consistent semi-definite
equations of the form (2). The key idea is to employ the sparse null space basis
to extract a positive definite submatrix of A of order n−m, the rank of A.

Reitzinger and Schöberl [5] introduced an algebraic multigrid method to solve (2)
regularized by a term that is positive on N (A). Here we present a way how to
extend the ideas of [1] to all levels of the Reitzinger-Schöberl AMG algorithm. In
this way we get an AMG algorithm that works entirely on the largest subspace
of Nh on which ‖curl (·)‖ is a norm. Its dimension n−m is considerably smaller
than n.

2. Elimination of the nullspace

Let’s assume that the last m rows of Y are linearly independent. Then [1]

(4) W :=
[
In−m Y1

O Y2

]
, Y =

[
Y1

Y2

]
, Y2 ∈ IRm×m,

is nonsingular. We split A, C, x, and r according to Y . Then (2) becomes
(5)

WT

[
A11 A12

A21 A22

]
WW−1x =

[
A11 O
O O

]
W−1x = WT Mr ⇐⇒

{
A11x1 = r1,

x2 = 0.

A11 is symmetric positive definite. The general solution of (2) has the form

x =
[
x1

0

]
+ Y a.

To satisfy the constraint CTx = 0 we determine a by solving

(6) Ha = −CT
1 x1.

Here, H is the symmetric positive definite matrix with elements
hij = (grad ϕi,grad ϕj).
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3. Application to the Reitzinger-Schöberl AMG algorithm

Reitzinger and Schöberl [5] introduced an Algebraic Multigrid (AMG) method
for solving (1)-(2) that properly treats the solenoidal and curl-free portions of
the vector fields. The authors start from an AMG method for solving the Pois-
son (or a similar elliptic) problem in Lh. Coarse grids are constructed from fine
grids by aggregating nodes into ’virtual nodes’. Two aggregates are defined con-
nected (through ’virtual edges’) if they contain nodes that are connected in the
fine grid [6]. The system matrices on the various levels are denoted by Hk, where
H0 = H corresponds to the finest level. Because of the Galerkin principle, among
two consecutive levels the relation

Hk+1 = QT
k HkQk

holds. Qk prolongates (interpolates) from level k+1 to the finer level k. Reitzinger
and Schöberl then construct a sequence of levels for the curl-curl matrix. The
matrices on the various levels are denoted by Ak with A0 = A and

Ak+1 = PT
k AkPk

where the Pk now prolongates from coarse to fine edge space. Qk and Pk are
related via the compatibility condition

(7) PkYk+1 = YkQk

such that coarse grid gradients are prolongated to fine grid gradients. Here, Yk is
a sparse nullspace basis of Ak.

To eliminate the nullspace on all levels of the Reitzinger-Schöberl AMG we
arrange the matrices Ak such that the nullspace bases can be written in the form

Yk =
[
Yk,1

Yk,2

]
,

where Yk,2 is a nonsingular submatrices of Yk, cf. (4). With (5), we then get[
Ak+1,11 O

O O

]
= WT

k+1

[
Ak+1,11 Ak+1,12

Ak+1,21 Ak+1,22

]
Wk+1

= WT
k+1Ak+1Wk+1 = WT

k+1P
T
k AkPkWk+1

= WT
k+1P

T
k

[
Ak,11 Ak,12

Ak,21 Ak,22

]
PkWk+1

= WT
k+1P

T
k W−T

k

[
Ak,11 O

O O

]
W−1

k PkWk+1

and thus

W−1
k PkWk+1 =

[
Pk,11 − Yk,1Y

−1
k,2 Pk,21 O

Y −1
k,2 Pk,21 Qk

]
.

So, the prolongator for the positive-definite portions of the systems is

P̄k := Pk,11 − Yk,1Y
−1
k,2 Pk,21, Ak+1,11 = P̄T

k Ak,11P̄k
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These ideas can be incorporated in the Reitzinger-Schöberl AMG algorithm (or
in a smoothed aggregation AMG algorithm like in [3]) as follows

(1) Build matrices the Ak and Hk. This implies that all the prolongators Pk

and Qk are available.
(2) Construct the nullspace bases Yk on all levels.
(3) Reduce Ak to Ak,11

(4) Adapt the prolongators and smoothers.
A more memory-aware procedure works level by level starting with the finest.
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Two Scale Asymptotic Expansion for the Scattering of a
TM-Electromagnetic Wave by a Rough Surface and Applications

A. Bendali
(joint work with P. Borderies, J.-R. Poirier)

In this study, mainly of methodological interest, we show how the two-scale
asymptotic expansion method [7] can be used as a powerful tool in the study of the
scattering of an electromagnetic wave by a highly oscillating perfectly conducting
surface both from the theoretical and the practical standpoint. More specifically,
we consider the following simple 2D model related to the scattering of an E-
polarized incident time-harmonic electromagnetic wave uinc

(1)




∆uδ + k2uδ = 0 in Ωδ,
uδ = 0 on Γδ, x → e−iβxuδ(x, y) is periodic of period L,
Radiation Condition (RC) on uδ − uinc .

The surface is considered as a periodic grating whose elementary cell is

Ωδ :=
{
(x, y) ∈ R

2 : 0 < x < L, y > γδ(x)
}

in which Γδ :=
{
(x, y) ∈ R2 : 0 < x < L �→ y = γδ(x)

}
represents a sampling of

the surface which is reproduced by periodicity. Data k and β > 0 are the wave
number and the period respectively. The small parameter δ > 0 characterizes
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the rapid oscillations of the surface and their small amplitude in the following
way γδ(x) = s(x, x/δ) where (x, σ) �→ s(x, σ) is a given function, assumed to be
smooth for simplicity, doubly periodic of period L in x and d in σ. The radiation
condition is expressed by means of the Floquet expansion of uδ (e.g., [5]). The
existence and uniqueness of a solution to (1) are ensured by the stability estimates
needed also to establish error bounds on the asymptotic expansion. Even much
more involved, the general case can be treated along the same lines [4].

We briefly describe how to obtain a two-scale asymptotic expansion for uδ, to
derive an homogenized boundary condition on a flat surface from this expansion
and finally to establish bounds on the error resulting from replacing the rough
boundary condition by the homogenized one. The full details can be found in [3].
Actually, the results are known and can be obtained by the method of correc-
tors [1, 2] or by the matching asymptotic expansions [6]. However, the correctors
technique, a step by step process, does not give a clear overall idea of the full
asymptotic expansion. In the matching asymptotic expansions method, slow and
rapid variables are mixed in the boundary layer resulting in intricate analytical
calculations to separate them.

For the two-scale asymptotic expansion that is considered here, its determina-
tion is first done by means of a formal process. Proven error bounds give it a
complete justification a posteriori.

The unknown uδ is decomposed in the following form

uδ(x, y) = U δ(x, y) + Πδ(x, σ, τ)|σ=x/δ,τ=y/δ.

The variable x will play the role of a parameter in the part Πδ(x, σ, τ) containing
the fast variables. It is assumed next that both U δ and Πδ have the following
asymptotic expansions

U δ(x, y) = u0(x, y) + δu1(x, y) + · · · + δnun(x, y) + · · · ,

Πδ(x, σ, τ) = Π0(x, σ, τ) + δΠ1(x, σ, τ) + · · · + δnΠn(x, σ, τ) + · · · .

Inserting this expansion in the Helmholtz equation and equating to zero the coef-
ficients of powers of δ gives the following system(

∆σ,τΠn + 2∂x∂σΠn−1 +
(
∂2

x + k2
)
Πn−2

)
(x, σ, τ) +

(
∆un + k2un

)
(x, y) = 0,

n = 0, 1, . . .

with 0 for any term involving a negative index. Now, assuming that every deriva-
tive of Πn satisfies

lim
τ→+∞

∂α
x,σ,τΠn(x, σ, τ) = 0

makes possible a separation of the functions depending on the slow and the rapid
variables(
∆σ,τΠn + 2∂x∂σΠn−1 +

(
∂2

x + k2
)
Πn−2

)
(x, σ, τ) = 0,

(
∆un + k2un

)
(x, y) = 0.

Since Πδ is living in a boundary layer of the surface, the radiation condition is
on the slow variables functions only

RC on u0 − uinc, RC on un for n ≥ 1.
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However, the decisive advantage of the two scale asymptotic expansion is its
suitability to deal with the boundary condition∑

n≥0

δn (un(x, δs(x, σ)) + Πn(x, σ, s(x, σ))) = 0.

A simple Taylor expansion for un(x, δs(x, σ)) yields

Πn(x, σ, s(x, σ)) + un(x, 0) +
n∑

k=1

s(x, σ)k

k!
∂k

yun−k(x, 0) = 0.

In this way, all the equations needed to determine the asymptotic expansion
have been obtained at once. The following theorem is the main tool to do this
determination.

Theorem 1. Let F be a given periodic function of period d in σ in C∞(D) veri-
fying

∆σ,τ
m−1F = 0 in D and |F (σ, τ)| ≤ ce−γτ ,

and G ∈ C∞(R), periodic of period d. Then, the boundary-value problem

∆Π = F in D, Π(σ, s(σ)) = G(σ), 0 < σ < d.

admits one and only one solution satisfying |Π(σ, τ) − Π∞| ≤ ce−γτ .

Proof. The proof is based on a variational formulation in a weighted Sobolev space
and elliptic interior estimates and Fourier series expansion. �

The different terms of the asymptotic expansion are then determined recursively
by solving boundary-value problems in the slow and the rapid variables. For the
zero order terms, we have Π0 = 0 and u0 is the solution to the problem with a flat
boundary


∆u0 + k2u0 = 0 for y > 0
u0 = 0 for y = 0, x → e−iβxu0(x, y) is periodic of period L,
Radiation Condition (RC) on u0 − uinc .

Note that, contrary to the corrector method, the flat plane problem has been
obtained only by calculations without passing to any limit. Solving the auxiliary
problem

∆σ,τH = 0, H(x, σ, s(x, σ)) = s(x, σ).

yields h(x) = limτ→∞ H(x, σ, τ). The term u1 is then the solution of the following
boundary-value problem{

∆u1 + k2u1 = 0 for y > 0,
u1(x, 0) + h(x)∂yu0(x, 0) = 0, RC on u1.

Proceeding in the same way, one can determine the asymptotic expansion at any
order. The rigorous justification of the method is then obtained through the error
bound given in the following theorem
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Theorem 2. For any given y0 > 0, there exists a constant independent of δ such
that ∥∥(uδ − (u0 + δu1)|y0<y

∥∥ ≤ cδ3/2.

Proof. Let be given a cut-off function χ ∈ D(R) such that χ ≡ 1 near 0 and
0 ≤ χ ≤ 1. The proof is obtained by means of an evaluation of the residuals of
uδ − (u0 + δ(u1 + χ(y)Π1) + δ2χ(y)Π2) relatively to the equations of problem (1)
and a suitable stability estimate for its solutions. �

The effective boundary condition at order 1 can then be written in terms of
h(x)

(2) u1,δ(x, 0) + δh(x)∂yu1,δ(x, 0) = 0.

and is used in place of the Dirichlet boundary condition in problem (1). The main
result concerning the approximation by an effective boundary condition is stated
in the following theorem.

Theorem 3. As in the above theorem, the following bound holds∥∥(uδ − u1,δ)|y0<y

∥∥ ≤ cδ3/2.

Proof. The main step is to obtain an asymptotic expansion for the problem related
to the effective boundary condition. One can readily verify that the first two terms
of the expansion are exactly u0 and u1. The bound is then obtained through a
stability estimate for the approximate problem. �
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et à l’homogénéisation , Masson, Paris, 1993.

[7] A. B. Vasil’eva, V. F. Butuzov and L. V. Kalachev, The Boundary Function Method for
Singular Perturbation Problems, SIAM Studies in Applied Mathematics, SIAM, Philadelphia,

1995.
Practical Aspects of FEM in Electromagnetics

Oszkár B́ıró

The aim of this talk is to highlight two aspects of computational electromag-
netism which concern practical low frequency applications. One of them is the
question of taking account of the excitation through coils and the other is mod-
elling magnetic nonlinearity.
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In low frequency problems, the displacement current density can be neglected
resulting in the so-called quasi-static approximation. If the electromagnetic field
is generated by coils with known current density distribution, an eddy current
problem is obtained. If, on the other hand, the current density of the coils is
unknown, a skin effect problem is spoken of.

The boundary value problems are invariably formulated in terms of potentials.
Scalar potentials are approximated on nodal elements and vector potentials on
edge elements [6].

Magnetostatic problems in terms of a scalar potential. Magnetostatic fields are
generated in nonconducting domains by coils with known current density. The
magnetic field intensity can be described as the sum of the gradient of a scalar
potential and of a vector function whose curl is the given current density (impressed
vector potential). The scalar potential satisfies a Poisson equation with Dirichlet
and Neumann boundary conditions. A great advantage of this approach is that
the coils need not be modelled by the finite element mesh. It is shown, however,
that if the smooth function representing the impressed vector potential is inserted
into the finite element equations, wrong results are obtained. This is due to the
fact that the impressed vector potential and the gradient of the scalar potential
are in different function spaces. The remedy is representing the impressed vector
potential in terms edge basis functions [2].

Magnetostatic problems in terms of a vector potential. An alternative to using the
scalar potential is to describe the magnetic flux density as the curl of a magnetic
vector potential. The current density of the coils appears then directly on the
right hand side of the edge element equation system which is singular. Due to
numerical integration errors the right hand side is not consistent and hence the
equations cannot be solved by Krylov type iterative methods. Again, the remedy is
to represent the current density by means of an impressed current vector potential
and thus making the right hand side consistent. [4]

Using a reduced vector potential. A disadvantage of the vector potential approach
is that the geometry of the coils has to be modelled by the finite element mesh.
This can be avoided by writing the flux density as the sum of the curl of a known
vector potential due to the coils in free space and of a reduced vector potential.
[5].

Eddy current problems in terms of a current vector and a magnetic scalar potential
or of a magnetic vector and an electric scalar potential. In case of eddy current
problems, the excitation is represented by coils with given current density. Con-
sequently, if their current is known, their treatment is similar to the approach
followed in magnetostatic problems. In particular, if the eddy current field is rep-
resented by a current vector and a magnetic scalar potential, the coils are taken
into account by means of an impressed current vector potential described by edge
elements [6]. Similarly, if a magnetic vector and an electric scalar potential are
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used, the alternatives to represent the excitation are by means of an impressed cur-
rent vector potential or a reduced vector potential [6]. If, on the other hand, the
voltage of the coils is given, the current can be treated as an additional unknown
and a circuit equation added to the system [8, 11].

Skin effect problems in terms of a current vector and a magnetic scalar potential.
In case of skin effect problems, the excitation is either the current or the voltage
of conductors acting as coils with their current density distribution unknown.
Current excitation can be incorporated into the finite element formulation by
means of prescribing appropriate boundary conditions if a current vector potential
and a magnetic scalar potential act as system variables. Conversely, it is the
voltage driven case that can be treated through boundary conditions within the
frame of the formulation using a magnetic vector and an electric scalar potential
[7]. The voltage excitation can be taken into account in the formulation in terms of
the current vector potential and the magnetic scalar potential by means of treating
the current as unknown and writing circuit equations [8–10].

Treatment of nonlinearity. Due to the nonlinear relationship between the mag-
netic flux density and field intensity, the finite element method leads to nonlinear
algebraic equations in case of magnetostatic problems and to nonlinear ordinary
differential equations for time dependent problems. Their solution can be carried
out by means of standard techniques [3]. Frequently, it is more advantageous
to write the eddy current equations in the frequency domain instead of the time
domain. This leads to the harmonic balance method, see e.g. [1].
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formulations using a current vector and a magnetic scalar potential , to be published in
IEEE Trans. Magnetics, 40 (2004).



562 Oberwolfach Report 11/2004

[9] A. Bossavit, Most general ”non-local” boundary conditions for the Maxwell equations in a
bounded region, COMPEL, 19 (2000), pp. 239–245.

[10] P. Dular, C. Geuzaine and W. Legros, A natural method for coupling magnetodynamic
H-formulations and circuit equations , IEEE Trans. Magnetics, 35 (1999), pp. 1626–1629.

[11] P. J. Leonard and D. Rodger, Modeling voltage forced coils using the reduced scalar
potential method, IEEE Trans. Magnetics, 28 (1992), pp. 1615–1618.

H2-Matrices with Adaptive Cluster Bases Applied to an Eddy Current
Problem

Steffen Börm

H2-matrices [1, 5, 6, 16] can be used to find data-sparse representations of the
densely populated matrices occurring, e.g., in boundary element methods.

The basic idea of hierarchical matrix techniques [3, 4, 10, 13–15] is to split the
index set I into a hierarchy of subsets, the cluster tree TI , and to split the matrix
into a hierarchy TI×I of subblocks τ × σ corresponding to τ, σ ∈ TI that contains
only small blocks and blocks that admit a separable approximation. The latter
blocks are called admissible.

In a hierarchical matrix, an admissible block τ × σ is approximated by a fac-
torized rank-k-matrix AB� (A ∈ Rτ×k, B ∈ Rσ×k). The factorized form can
be constructed by standard panel-clustering techniques [17], multipole expansion
[11, 19] or interpolation [2].

In an H2-matrix, an admissible block τ × σ is approximated by a special low-
rank matrix of the form V τSτ,σW σ� (V τ ∈ Rτ×k, W σ ∈ Rσ×k, Sτ,σ ∈ Rk×k). By
requiring the row cluster bases V τ and the column cluster bases W σ to be orga-
nized in a nested hierarchy (this is straightforward for polynomial approximation
schemes [6, 9] and can also be achieved for multipole expansions [12]), we can reach
algorithms with linear complexity in the number of degrees of freedom n.

While constructing an H2-matrix approximation of an integral operator by La-
grangian interpolation leads to a relatively general, simple and fast method, this
approach also requires a large amount of storage, since polynomial bases are not
adapted to the special characteristics of a given operator or a given geometry.
This problem can be solved by combining the separable approximation scheme
with an algebraic recompression algorithm that detects and eliminates redundant
expansion functions by solving local symmetric eigenvalue problems [5, 7], which
reduces the storage requirements significantly at the price of a moderate increase
in computing time.

Since the recompression algorithm can be used without keeping the entire orig-
inal H2-matrix approximation in memory, it is possible to treat boundary element
problems with more than 100.000 degrees of freedom on standard PCs in less than
ten minutes.

The combination of polynomial interpolation and algebraic recompression can
not only be applied to standard Laplace problems, but also to more complicated
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vector-valued eddy-current models for Maxwell’s equation [8, 18]. An example is
the vector-valued double layer potential

b(E, φ) =
∫

Γ

∫
Γ

〈curlΓ φ(y),E(x)〉〈gradx Φ(x, y),n(x)〉 dy dx

−
∫

Γ

∫
Γ

〈curlΓ φ(y),n(x)〉〈gradx Φ(x, y),E(x)〉 dy dx

for the fundamental solution Φ(x, y) := 1/(4π‖x−y‖). Even if Φ could be approx-
imated by a single tensor product, the resulting matrix approximation would still
have rank 3, since the variables x and y are coupled by a three-dimensional inner
product. In practical approximation schemes, this implies that the rank required
for the approximation of the vector-valued operator will be at least three times as
high as in the case of scalar-valued operators.

Still, numerical experiments performed by applying the recompression algo-
rithm to the vector-valued operator leads to storage requirements that are close
to those of the scalar-valued operator. This result suggests that recompression is
crucial for the efficient treatment of vector-valued problems, since the conventional
fast approximation schemes like polynomial and multipole expansions seem to be
incapable of taking advantage of their special structure.
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Theoretical Aspects of Edge Finite Elements
Daniele Boffi

Let us consider the time harmonic Maxwell system

(TH)




curl(µ−1 curlu) − ω2εu = f in Ω

div(εu) = 0 in Ω
u× n = 0 on Ω

where ω is the fixed frequency, div f = 0, and Ω is a polyhedral (or polygonal)
domain with outward normal n.

It is well known that problem (TH) is well posed if and only if ω2 is not an
interior Maxwell eigenvalue. A variational formulation of the problem under con-
sideration is obtained, for instance, by imposing the divergence free condition in
a weak sense in the spirit of Kikuchi [21] as follows.

(TH-V)

Find (u, p) ∈ H0(curl; Ω) × H1
0 (Ω) = V × Q such that{

(µ−1 curlu, curlv) − ω2(εu,v) + (εv, grad p) = (f ,v) ∀v ∈ V

(εu, grad q) = 0 ∀q ∈ Q

A stability estimate of the solution of (TH-V) can be found, for instance, in [17].
(
‖u‖2

curl + ‖p‖2
1

)1/2 ≤ sup
i=1,2,...

(
1 + ω2,

1 + λi

|λi − ω2|

)
‖f‖0

where λi (i = 1, 2, . . . ) are the interior Maxwell eigenvalues. Given Vh ⊂ V and
Qh ⊂ Q we consider the discretization of problem (TH-V).
(TH-Vh)

Find (uh, ph) ∈ Vh × Qh such that{
(µ−1 curluh, curlv) − ω2(εuh,v) + (εv, grad ph) = (f ,v) ∀v ∈ Vh

(εuh, grad q) = 0 ∀q ∈ Qh
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Assuming the compatibility condition

(COMP) gradQh ⊂ Vh

which guarantees a discrete inf-sup condition for problem (TH-Vh), we have the
error estimate

‖u− uh‖2
curl + ‖p − ph‖2

1 ≤ γ2 inf
(vh,qh)∈Vh×Qh

(
‖u− vh‖2

curl + ‖p − qh‖2
1

)
with

γ ≤ 1 + max
i=1,2,...

(
1 + ω2,

1 + λi,h

|λi,h − ω2|

)

where λi,h are the discrete Maxwell eigenvalues. We explicitly notice that div f = 0
implies p = ph = 0.

Several numerical experiments and theoretical results (see [8, 10], for instance)
show that standard nodal elements do not approximate Maxwell eigenvalues in
a correct way, even on special two dimensional meshes where the compatibility
condition (COMP) is satisfied [8, 28]. On the other hand, edge finite elements
have been proven to satisfy the discrete compactness property which guarantees
the good approximation of the eigensolutions [6, 7, 14, 22–24] (see [20, 26] for a
review on this topic).

In this talk we review some of the most important theoretical properties of edge
finite elements, including discrete compactness, commuting diagram (de Rham
complex), interpolation estimates. The commuting diagram property (see, for
instance, [7, 12, 13, 18, 19], [16, 29] for possible extensions and [3] for a review) on
a simply connected domain reads

0 → Q
grad−−−→ V

curl−−→ U
div−−→ S/R → 0

↓ ΠQ
h ↓ ΠV

h ↓ ΠU
h ↓ ΠS

h

0 → Qh
grad−−−→ Vh

curl−−→ Uh
div−−→ Sh/R → 0,

where Q ⊂ H1
0 (Ω), V ⊂ H0(curl), U ⊂ H0(div), and S ⊂ L2(Ω) are suitable

smooth function spaces, so that the corresponding interpolation operators can be
defined and Qh, Vh, Uh, and Sh are their discrete counterparts.

Standard interpolation estimates are (see, for instance, [1, 2, 15, 20, 25, 27])

inf
vh∈Vh

‖u− vh‖0 ≤ Chs(|u|s + ‖ curlu‖s) 1/2 < s ≤ k + 1

inf
vh∈Vh

‖ curlu − curlvh‖0 ≤ Chs| curlu|s 0 < s ≤ k + 1

When curlu is discrete, the improved estimate

inf
vh∈Vh

‖u− vh‖0 ≤ Chs|u|s 1/2 < s ≤ k + 1
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has been used in [6], see also [20]. Recent results [9] show the improved estimate

‖u− ΠV
h u‖L2 ≤ Chs (|u|Hs + ‖ curlu‖Lp) 1/2 < s ≤ 1, p > 2

‖u− ΠV
h u‖L2 ≤ Chs|u|Hs 1 < s ≤ k + 1

‖ curlu − curlΠV
h u‖L2 ≤ Chs| curlu|Hs 0 < s ≤ k + 1

These estimates, which do not require on curlu more regularity than the one
needed for the definition of the interpolant itself (see [2]), have been used in [9]
for the analysis of the approximation of photonic crystals.

The last remark concerns the approximation properties achieved by edge finite
elements on quadrilateral meshes. Recent results show that particular care has to
be taken into account when dealing with general regular quadrilateral finite ele-
ments [4]. This issue is particularly significant for quadrilateral edge elements; the
lowest order element does not achieve the convergence at all in the H(curl) norm,
the higher order elements are substantially suboptimal [5]. Some modifications of
standard edge element, which provide a solution to this phenomenon, have been
recently proposed [5, 11].
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An Adaptive Perfectly Matched Layer Technique
for Time-harmonic Scattering Problems

Zhiming Chen
(joint work with Xueze Liu)

We propose and study an adaptive perfectly matched layer (PML) technique for
solving the Helmholtz-type scattering problems with perfectly conducting bound-
ary:

∆u + k2u = 0 in R2\D̄,(1a)
∂u

∂n
= −g on ΓD,(1b)

√
r

(
∂u

∂r
− iku

)
→ 0 as r = |x| → ∞.(1c)

Here D ⊂ R2 is a bounded domain with Lipschitz boundary ΓD, g ∈ H−1/2(ΓD)
is determined by the incoming wave, and n is the unit outer normal to ΓD. We
assume the wave number k ∈ R is a constant. We remark that the results in
this paper can be easily extended to solve the scattering problems with other
boundary conditions such as Dirichlet or the impedance condition on ΓD, or the
acoustic wave propagation problems in inhomogeneous media which correspond to
a variable wave number k2(x).

Since the work of Berenger [3] which proposed a PML layer for use with the
time dependent Maxwell equations, various constructions of PML absorbing layers
have been proposed and studied in the literature (cf. e.g. Turkel and Yefet [17]
for a review). Under the assumption that the exterior solution is composed of
outgoing waves only, the basic idea of the PML technique is to surround the
computational domain by a finite thickness layer of the specially designed model
medium that would either slow down or attenuate all the waves that propagate
from inside the computational domain. The PML equation for the time-harmonic
scattering problem (1a) is derived in Collino and Monk [8] by a complex extension
of the solution u in the exterior domain. It is proved in Lassas and Somersalo [11],
Hohage, Schmidt and Zschiedrich [10] that the resultant PML solution converges
exponentially to the solution of the original scattering problem as the PML layer
thickness tends to infinite. We remark that in practical applications involving
PML method, one cannot afford to use a very thick PML layer because it requires
excessive grid points and hence more computer time and more storage. On the
other hand, a thin PML layer requires a rapid variation of the artificial material
property which deteriorates the accuracy if two corse mesh is used in the PML
layer.

A posteriori error estimates are computable quantities in terms of the discrete
solution and data that measure the actual discrete errors without the knowledge
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of exact solutions. They are essential in designing algorithms for mesh modifica-
tion which equi-distribute the computational effort and optimize the computation.
Ever since the pioneering work of Babuška and Rheinboldt [2], the adaptive finite
element methods based on a posteriori error estimates have become a central theme
in scientific and engineering computations. The ability of error control and the
asymptotically optimal approximation property (see e.g. Morin, Nochetto and
Siebert [14], Chen and Dai [5]) make the adaptive finite element method attrac-
tive for complicated physical and industrial processes (cf. e.g. Chen and Dai [4],
Chen, Nochetto and Schmidt [6]). For the efforts to solve scattering problems
using adaptive methods based on a posterior error estimate, we refer to the recent
work Monk [12], Monk and Süli [13].

It is proposed in Chen and Wu [7] for scattering problems by periodic structures,
the grating problem, that one can use the a posteriori error estimate to determine
the PML parameters. Moreover, the derived a posteriori error estimate in [7] has
the nice feature of exponential decay in terms of the distance to the distance to
the boundary of the fixed domain where the PML layer is placed. This property
leads to coarse mesh size away from the fixed domain and thus makes the total
computational cost insensitive to the thickness of the PML absorbing layer.

In this paper we extend the idea of using a posteriori error estimates to deter-
mine the PML parameters and propose an adaptive PML technique for solving the
scattering problem (1a)-(1c). The first difficulty of the analysis is that in contrast
to the grating problems in which there are only finite number of outgoing modes
[7], now there are infinite number of outgoing modes expressed in terms of Hankel
functions. We overcome this difficulty by using following uniform estimate for the
Hankel functions H1

ν , ν ∈ C,:

|H (1)
ν (z)| ≤ e

−Im (z)
“
1− Θ2

|z|2
”1/2

|H (1)
ν (Θ)|,(2)

for any z ∈ C++, Θ ∈ R such that 0 < Θ ≤ |z|, where C++ = {z ∈ C : Im (z) ≥
0, Re (z) ≥ 0}. This sharp estimate, which seems first appeared in this paper,
allows us to prove the exponentially decaying property of the PML solution without
resorting to the integral equation technique in [11] or the representation formula in
[10]. We remark that in [11], [10], it is required the fictitious absorbing coefficient
must be linear after certain distance away from the bounary where the PML layer
is placed.

The second difficulty is that the PML equation in the PML layer is not nec-
essarily uniquely solvable for any wave number k2. Let ΩPML = Bρ\B̄R, where
0 < R < ρ and Ba denotes the circle of radius a for any a > 0. Let α = 1 + iσ
be the fictitious medium property. In practical applications, σ is usually taken as
power functions:

σ = σ(r) = σ0

(
r − R

ρ − R

)m

for some integer m ≥ 1,(3)

where σ0 > 0 is some constant. We prove that for any given R and ρ, the PML
equation in the PML layer is uniquely solvable and its solution satisfies sharp
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stability estimates if σ0 is chosen sufficiently large. This allows us to complete the
proof of the following key estimate between the Dirichlet-to-Neumann mapping for
the original scattering problem T : H1/2(ΓR) → H−1/2(ΓR) and the PML problem
T̂ , where ΓR = ∂BR,

‖T − T̂ ‖L(H1/2(ΓR),H−1/2(ΓR)) ≤ C(1 + k2R2)|α0|2e
−kIm (ρ̃)

“
1− R2

|ρ̃|2
”1/2

,

where α0 = 1 + iσ0, and ρ̃ =
∫ ρ

0
α(t)dt is the complex radius corresponding to ρ.
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Div-Curl Lemma for Edge Elements
Snorre H. Christiansen

Given two sequences (uh) and (u′
h) of vector fields converging weakly in L2 on

some open domain in R
3 the div-curl lemma of Murat [5] and Tartar [7] gives

sufficient conditions under which their scalar product converges in the weak-star
sense of distributions to the right scalar field. Namely if the sequences (div uh)
and (curl u′

h) are relatively compact in H−1 then this convergence property holds.
This lemma is useful in questions arizing in homogenization and certain non-linear
PDEs and is an ingredient in the method of compensated compactness.

For the variational formulation of problems in electromagnetics on Nédélec’s [6]
edge element spaces Xh one can naturally obtain control over the L2 norm of the
involved fields. One can also expect to have sufficient control of the curl in H−1

(e.g. in the form of boundedness in L2), due to energy considerations. However
control of the divergence of a field uh ∈ Xh is obtained in the form of estimates on∫

uh · gradph when ph runs trough the maximal space Yh of continuous piecewise
polynomials which vanish on the boundary and such that the gradient operator
maps Yh into Xh. Since the space Yh is smaller than H1

0, the question arizes
whether an L2 bounded sequence of so-called discrete divergence free vector fields
uh ∈ Xh has compact divergence in H−1. This property is stronger than the
discrete compactness property of Kikuchi which has come to play a central role in
the numerical analysis of edge elements.

While we leave this question unanswered we prove in this talk the following
div-curl lemma for edge elements on quasi-uniform meshes on bounded domains
with smooth boundary1:

Lemma 1. Suppose (uh) and (u′
h) are sequences of vector fields uh, u′

h ∈ Xh con-
verging weakly in L2 to u and u′. Suppose furthermore that with the decomposition
uh = vh + grad ph with vh in the L2 orthogonal of gradYh in Xh, and ph ∈ Yh,
(ph) is relatively compact in H1

0, and that (curl u′
h) is relatively compact in H−1.

Then (uh · u′
h) converges to u · u′ in the weak-star sense of distributions.

One of the main ingredients of the proof is a norm equivalence on a subspace
of Xh which is uniform with respect to h and which strengthens the standard
discrete compactness property (using a technique appearing in Lemma 4.1 in [4]).
Another ingredient is a super-approximation property of the spaces Yh. For the
details of the proof I refer to the revised version of the preprint [2], which also
contains bibliographical references in particular to the work by Boffi and Hiptmair
on discrete compactness.

This work is related to a joint effort [3] to understand the variational formulation
of constraints in the discretization of some non-linear PDEs, parts of which were
presented in [1].

1The possibility of weaking these hypothesis was briefly discussed and is the object of current
efforts.
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[6] J.-C. Nédélec, Mixed finite elements in R

3; Numer. Math., Vol. 35, p. 315-341, 1980.
[7] L. Tartar, Compensated compactness and applications to partial differential equations; in

“Nonlinear analysis and mechanics: Heriot-Watt Symposium”, Vol. IV, p. 136-212, Res. Notes
in Math., Vol. 39, Pitman, Boston, Mass.-London, 1979.

Formulations and Efficient Numerical Solution Techniques for
Transient 3D Magneto-and Electro-Quasistatic Field Problems

Markus Clemens
(joint work with Galina Benderskaya, Herbert De Gersem, Stefan

Feigh, Markus Wilke, Jing Yuan and Thomas Weiland)

The simulation of 3D quasistatic electric high-voltage fields and magnetic eddy
currents field problems typically involves nonlinear material properties such as
field dependent electric conductivities of insulator materials or saturation effects
within ferromagnetic materials which may be even of hysteretic nature. In these
cases and, more generally, for any non-periodical field excitation, time domain
formulations of these problems are preferred. Using spatial discretization schemes
such as the Whitney Finite Element method [3], the Cell Method [18]or the Finite
Integration Technique [9, 19], for electro-quasistatic problems this will result in
large systems of stiff ordinary differential equations of the form

(1) GTMεG
d

dt
Φ(t) + GT Mκ

(
Φ(t)

)
GΦ(t) = 0.

where GT and G are the discrete divergence and gradient matrices with the vector
of electric grid voltages as �e = −GΦ and Mε and Mκ = Mκ(Φ) are material
matrices combining the permittivities and field dependent electrical conductivities
with the metric information of the grid [7]. Magneto-quasistatic fields can be
described with systems of differential-algebraic equations of index 1

(2) Mκ
d

dt
�a(t) + CTMν

(
�a(t)

)
C�a(t) =

��

j s(t),

where �a is the vector of path integrated magnetic vector potentials, C is the inci-
dence matrix discretizing the curl operator to yield the vector of magnetic fluxes
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��

b = C�a , Mν = Mν(�a) is the matrix of flux dependent reluctivities and the
��

j s

is the vector of current excitations [8, 12]. Today, efficient numerical techniques
for the solution of the large systems of equations (1) and (2) involve time step
adaptive higher order embedded time integration schemes such as singly diago-
nal implicit Runge-Kutta methods (SDIRK) or linear-implicit Rosenbrock-Wanner
(ROW) methods [13, 15]. In these schemes the repeated solution of the algebraic
systems of equations involves a combination of advanced numerical methods. Such
methods are geometric or algebraic multigrid preconditioners specifically designed
to interact with the above mentioned geometric discretization methods [4–6, 17],
multiple-righthand side Lanczos-projection techniques and a subspace projection
extrapolation scheme for the generation of optimal start vectors of the iterative so-
lution methods [11, 14]. Specialized projection methods are used for the inclusion
of floating potential areas and other complicated boundary conditions [16] and non-
standard time step-prediction schemes are developed for magnetodynamic field-
circuit coupled formulations involving switching circuit elements [2]. Extensions
of the magneto-quasistatic formulations also include models for motion-induced
eddy currents as they occur e.g. in eddy current brakes using either Lagrangian or
Eulerian coordinate descriptions [1, 10] and nonlinear iteration schemes adapted to
hysteretic ferromagnetic material behavior described by Preisach or Jiles-Atherton
hysteresis models [20–22].

References

[1] M. Bartsch, M. Clemens, T. Weiland, and M. Wilke, Simulation of linear eddy cur-
rent brakes using FI2TD methods, in Electromagnetic Fields in Electrical Engineering,
A. Krawczyk and S. Wiak, eds., vol. 22, IOS Press, series Studies in Applied Electromag-
netics and Mechanics, 2002, pp. 357–362.

[2] G. Benderskaya, H. De Gersem, M. Clemens, and T. Weiland, Interpolating Technique
for Effective Determination of Switching Time Instants for Field-Circuit Coupled Prob-
lems with Switching Elements. To appear in Proc. XVIII Symposium on Electromagnetic
Phenomena in Nonlinear Circuits (EPNC 2004), Poznan, Poland, June 2004.

[3] A. Bossavit, L. Kettunen, and T. Tarhassaari, Some realizations of a discrete Hodge
operator: A reinterpretation of the finite element technique, IEEE Trans. Magn., 35 (1999),
pp. 1494–1497.

[4] M. Clemens, S. Feigh, and T. Weiland, Geometric multigrid algorithms using the Con-
formal Finite Integration Technique. Conf. Rec. Compumag 2003, Saratoga Springs, USA,
Vol. IV. To appear in IEEE Trans. Magn., June 2004.

[5] , Divergence removing multigrid smoothers for curl-curl equations of the discrete
electromagnetism. Proc. PIERS 2004 (Progress in Electromagnetics Research), Pisa, March
2004.

[6] M. Clemens, S. Feigh, M. Wilke, and T. Weiland, Non-nested geometric multigrid

method using consistency error correction for discrete magnetic curl-curl formulations.
Proc. of the EMF 2003, Aachen, Germany, 06.-09. Oct. 2003. To appear in COMPEL,
2004.

[7] M. Clemens, H. De Gersem, W. Koch, T. Weiland, and M. Wilke, Transient simulation
of nonlinear electro-quasistatic problems using the Finite Integration Technique, in Proc.
IGTE 2002 Symposium, Graz, Austria, 2002, pp. 510–517.

[8] M. Clemens and T. Weiland, Transient eddy current calculation with the FI-method,
IEEE Trans. Magn., 35 (1999), pp. 1163–1166.



574 Oberwolfach Report 11/2004

[9] , Discrete electromagnetism with the Finite Integration Technique, in Geometric
Methods for Computational Electromagnetics, F. L. Teixeira, ed., no. 32 in PIER, EMW
Publishing, Cambridge, Massachusetts, USA, 2001, pp. 65–87.

[10] M. Clemens, T. Weiland, and M. Wilke, Transient eddy current formulation including
moving conductors using the Finite Integration method, IEEE Trans. Magn., 36 (2000),
pp. 804–808.

[11] M. Clemens, M. Wilke, R. Schuhmann, and T. Weiland, Subspace projection extrapola-
tion scheme for transient field simulations. Conf. Rec. Compumag 2003, Saratoga Springs,
USA, Vol. I. To appear in IEEE Trans. Magn., June 2004.

[12] M. Clemens, M. Wilke, and T. Weiland, Advanced FI2TD algorithms for transient 3d
eddy current problems, Compel, 20 (2001), pp. 365–379.

[13] , 3D transient eddy current simulations using FI2TD with variable time step size
selection schemes, IEEE Trans. Magn., 38 (2002), pp. 605–608.

[14] , Extrapolation strategies in transient magnetic field simulations, IEEE Trans. Magn.,
39 (2003), pp. 1171–1174.

[15] , Linear–implicit time integration schemes for error-controlled transient nonlinear
magnetic field simulations, IEEE Trans. Magn., 39 (2003), pp. 1175–1178.

[16] H. De Gersem, M. Wilke, M. Clemens, and T. Weiland, Efficient modelling techniques
for complicated boundary conditions applied to structured grids. Proc. EMF 2003, Aachen,
Germany, 06.-09. Oct. 2003. Accepted for publication in COMPEL, 2004.
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[20] J. Yuan, M. Clemens, and T. Weiland, Simulation of hysteresis effects with the classical

Preisach model in FI2TD methods. Proc. ISEM 2003, Versailles, France. Full paper to appear
in special issue of the Int. J. Appl. Electromagn. Mech., IOS Press., 2004.

[21] , The Jiles-Atherton model combined with the Newton-Raphson method for the simu-
lation of transient hysteretic magnetic field problems. To appear in Proc. XVIII Symposium
on Electromagnetic Phenomena in Nonlinear Circuits (EPNC 2004), Poznan, Poland, June
2004.

[22] , Solution of transient hysteretic magnetic field problems with hybrid Newton-
Polarization methods. To appear in Proc. 11th Biennial IEEE Conference on Electromag-

netic Field Computation (CEFC 2004), Seoul, Korea, June 2004.

Singularities of Electromagnetic Fields in the Eddy Current Limit
Monique Dauge

(joint work with Martin Costabel and Serge Nicaise)

This talk discusses the notion of eddy current limit for a conductor surrounded
by an exterior dielectric medium and presents results from [15–17] about the sin-
gularities of solutions when the conductor has corners and edges.

1. The eddy current limit

Let ΩC be the conductor body. We assume that ΩC is a three-dimensional
polyhedron. To simplify the exposition we also assume that the boundary B of
ΩC has a single connected component. Let Ω be a ball, large enough to surround
ΩC . We consider the exterior domain ΩE = Ω \ ΩC . We denote by εC , µC and
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σC the electric permittivity, the magnetic permeability and the conductivity of
ΩC , respectively, and by εE , µE and σE their values inside ΩE . We assume that
σE = 0. We consider the harmonic Maxwell equation at the given frequency ω:

(1)




(i) curl E = −iω µH in Ω,
(ii) curl H = (σ + iω ε)E + j0 in Ω,
(iii) E × n = 0 and H · n = 0 on ∂Ω.

Here j0 is a divergence free field (the source current density) with support inside
ΩC and σ denotes the piecewise constant equal to σC inside ΩC and 0 inside ΩE .
Similar conventions hold for ε and µ. Taking the divergence of equation (1) (ii),
we obtain:

(2) div(iωε + σ)E = 0 in Ω.

The time-harmonic eddy current problem [2, 8, 11, 20] consists in neglecting ωε in
(1) in the case when σ >> ωε and reads:

(3)




(i) curl E = −iωµH in Ω,
(ii) curl H = σE + j0 in Ω,
(iii) E × n = 0 and H · n = 0 on ∂Ω.

Let us write EC = E|ΩC and EE = E|ΩE . Taking the divergence of (3) (ii), we
only obtain div EC = 0 in ΩC and EC · n = 0 on B, which has to be completed by
the gauge conditions:

(4) div EE = 0 in ΩE and
∫

B

EE · n dS = 0.

Let us assume for simplicity that εC � εE and let us introduce our small parameter
δ as

δ =
εC

σC
.

Let us consider σ, µ and ω > 0 as fixed and denote by (Eδ,Hδ) the solution of (1)
and by (E0,H0) the solution of (3). We have proved in [16]

(5)
∥∥Eδ − E0

∥∥
L2(Ω)

+
∥∥Hδ − H0

∥∥
L2(Ω)

≤ Cδ.

This notion of limit corresponds to that presented in [11, Ch.4], whereas it some-
what differs from the point of view adopted in [2] where a zero frequency limit is
considered for both problems (1) and (3). However (5) does not answer completely
the question of knowing whether the eddy current approximation is valid when we
are given a set of parameters σ, µ, ε and ω. Let us set ε̂ = ε/δ. The interior
equations for the electric field Eδ take the form:

(6)

{
(i) curl µ−1 curl Eδ + iωσEδ − δω2ε̂Eδ = −iωj0 in ΩC ,

(ii) curl µ−1 curl Eδ − δω2ε̂Eδ = 0 in ΩE .

We can see that (i) tends to its eddy current counterpart as soon as δω is small,
whereas for equation (ii) approaching the eddy current limit requires that ω2εµ
also is small at the scale of ΩE . Another asymptotic effect may occur when
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ωµσ >> 1: The skin effect produces a strong concentration of the electromagnetic
field inside the conductor in a very narrow layer around its surface [9].

2. Singularities

The equations (6) combined with the zero divergence constraint inside ΩC ∪ΩE

and transmission conditions on B, produce an elliptic boundary value problem on
Ω. Like any elliptic boundary value problem in a domain with corners and edges
[18, 19, 22, 24], the electric or magnetic Maxwell problems have singular solutions
(the “singularities”) [13, 15]. In the present situation of a polyhedral conductor
surrounded by a dielectric medium, the issue is the investigation [16, 17] of the
singularities of the eddy current problem (3) together with the way in which the
singularities of the transmission problem (1) transform as δ → 0 in the eddy
current limit. Let us define α = (αC , αE) by

iωα = iωδε̂ + σ.

The “electric” singularities of problems (1) and (3) are those of the operator

(7)

{
(i) curl µ−1

C curl E −∇div E in ΩC ,

(ii) curl µ−1
E curl E −∇div E in ΩE ,

with the essential transmission conditions:

(8) [E × n] = 0 and [αE · n] = 0 on B,

which we complement by the Neumann type transmission conditions

(9) [µ−1 curl E × n] = 0 and [div αE] = 0 on B.

Problem (7)-(9) is the principal part of one of the regularized operators associated
with problem (1).

According to the classification of [13, 15], problem (7)-(9) has mainly two types
of singularities, Type 1 and Type 2, at each corner and each edge of ΩC . To each
corner or edge we associate two cones ΓC and ΓE together with their interface
I. For a corner point c, ΓC and ΓE coincide with ΩC and ΩE , respectively, in a
neighborhood of c. For an edge we have similar definitions where ΓC and ΓE are
plane sectors such that the diehedra ΓC × R and ΓE × R coincide with ΩC and
ΩE in a neighborhood of the edge. The singularities are homogeneous functions
on ΓC ∪ ΓE .

The singularities of Type 1 are the gradients ∇Φ in ΓC ∪ ΓE of a potential
function Φ = (ΦC , ΦE) which is itself a singularity of the scalar transmission
problem, cf [25, 26]:

(10) ∆ΦC = 0 in ΓC , ∆ΦE = 0 in ΓE , [Φ] = 0 and [α∂nΦ] = 0 on I,

the last transmission condition becoming ∂nΦC = 0 on I in the eddy current
limit δ = 0: In the latter case, either ΦC = 0 and ΦE is a Dirichlet singularity
of the Laplace problem on ΓE , or ΦC is a Neumann singularity of the Laplace
problem on ΓC and ΦE has the same Dirichlet traces as ΦC (and the same degree
of homogeneity).
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The singularities of Type 2 are electric fields associated with magnetic fields
of the form ∇Ψ where the scalar potential Ψ = (ΨC , ΨE) is a singularity of the
transmission problem

(11) ∆ΨC = 0 in ΓC , ∆ΨE = 0 in ΓE , [Ψ] = 0 and [µ∂nΨ] = 0 on I.

If the permeability µ has no jump, solutions of (11) still exist, but they are poly-
nomials and do not decrease the regularity of Maxwell solutions.

3. Regularity

Let βα and βµ be the limiting regularity Sobolev exponents for the transmis-
sion Laplace operators div α∇, cf singularities (10), and div µ∇ respectively, cf
singularities (11). Then if the data j0 is regular enough, the solution E of (1)
satisfies

EC ∈ Hs(ΩC) and EE ∈ Hs(ΩE), ∀s < min{βα − 1, βµ}.
Moreover we have a decomposition of [4, 5]’s type: E can be split into ∇Φ + Ereg

with
Ereg

C ∈ Hs(ΩC) and Ereg
E ∈ Hs(ΩE), ∀s < min{βα , βµ}.

Concerning the eddy current problem (3), we introduce the limiting regularity
Sobolev exponents βDir

E and βNeu
C for the Dirichlet problem on ΩE and the Neumann

problem on ΩC , respectively. Let us assume for simplicity that µ has no jump
(which amounts to setting βµ = ∞). Then the solution E of (3) satisfies

EC ∈ Hs(ΩC), ∀s < βNeu
C − 1, and EE ∈ Hs(ΩE), ∀s < min{βNeu

C , βDir
E } − 1.

Moreover, we may split E into ∇Φ + Ereg with

Ereg
C ∈ Hs(ΩC), ∀s < βNeu

C and Ereg
E ∈ Hs(ΩE), ∀s < min{βNeu

C , βDir
E }.

Thus, if the conductor ΩC is convex, it may happen that, in the eddy current
limit, the solution inside the conductor is more regular than outside. This effect
does not occur for δ �= 0. In fact, the conductor part ΦC of certain singularities
of (1) is vanishing as δ → 0.

4. Short conclusion about the numerical approximation

The resolution of the eddy current problem is made by eliminating either the
electric field (H-formulation or magnetic approach [1, 8, 11]) or the magnetic field
(E-formulation or electric approach [2, 3, 8, 11, 20]) or combining both [12]. The
magnetic approach can be preferred because the magnetic field in ΩE is irrota-
tional. Thus a coupled FEM-BEM method can be used to compute H [10, 23].
Concerning the use of edge elements, see [6, 7].

We would like to end by the “usual” warning: In the presence of reentrant
corners (i.e. any situation where ΩC is a polyhedron in E-formulation, and the
case when ΩC is a non-convex polyhedron in H-formulation) certain methods lead
to wrong results. This is the case for the plain regularization by a divergence term,
used with nodal elements, or, even, certain edge elements which do not satisfy the
discrete compactness property, see the review papers [14, 21].
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Convergence of Collocation Methods for Time Domain Boundary
Integral Equations
Penny J Davies

(joint work with Dugald B Duncan)

The problem of interest is to calculate the current induced on a perfectly con-
ducting surface Γ when it is subjected to a transient electromagnetic field. Time–
stepping solution schemes for this problem are often numerically unstable (see e.g.
[2, 7, 9]), and our aim is to develop stable collocation approximations. Here we
concentrate on the more straightforward case of acoustic scattering, where the
same stability issues arise. This problem is to find the solution u of

(1)
∫

Γ

u(x′, t−|x′−x|)
|x′−x| dΓ = a(x, t)

given a(x, t) on Γ×(0, T ), and assuming causality, namely that u ≡ 0 and a ≡ 0 for
all t ≤ 0. Equation (1) is the single layer potential equation for acoustic scattering
from the surface Γ, and we shall concentrate on the case in which Γ is a flat plate.
Note that a can be calculated anywhere in space from (1) once u|Γ is known.

It follows from results of Ha-Duong [6, Thm. 3] and Lubich [8, §2.3] that for
temporally smooth data a(·, t) ∈ H1/2(Γ) which vanish near t = 0, equation (1)
has a unique smooth solution u(·, t) ∈ H−1/2(Γ).

Many authors have considered full Galerkin approximations (in time and space)
for (1) and related boundary integral equations (see [7] for a description of the
relevant theory and a survey of the literature). This approach is based on a sound
theoretical framework, and stability is proved via an energy identity. However,
the method is hard to implement (it involves evaluating integrals over complicated
subregions of Γ × Γ × (0, T )), and collocation schemes are more frequently used
in practice (the article [1] contains an overview of different solution methods for
problems such as (1)).
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In a collocation approximation we suppose that (1) holds at NS points xβ ∈ Γ
and at time tn = n∆t for n = 1, 2, . . .

(2) a(xβ , tn) =
∫

Γ

u(x′, tn−|x′−xβ |)
|x′−xβ|

dΓ .

The unknown u is then approximated (in time and space), and the integral is
approximated or evaluated to give

(3) an =
n−1∑
m=0

Qm Un−m

in terms of (very sparse) matrices Qm ∈ RNS×NS , where Um =
{
Um

β

}
β

and

Um
β ≈ u(xβ , tm). Rearranging gives the time–stepping algorithm

Q0 Un = an −
n−1∑
m=1

Qm Un−m .

The sparsity of Q0 means that solving this equation for the unknown Un is straight-
forward. However, numerical instability is often a problem for schemes of this type,
with the computed solution typically exhibiting oscillating instabilities that grow
exponentially in the time–step [2, 3, 9]. Insight can be obtained by comparing the
continuous Fourier transform of (1) at spatial frequency ω with the discrete Fourier
transform of (3) at the same frequency, when Γ is assumed to be a flat infinite
surface (i.e. Γ = R2), and the points xβ form a uniform square mesh. It can be
shown [2, 3] that numerical stability in this case can be characterised by Fourier co-
efficients pn(ω): if |pn(ω)| remains bounded with n for all ω ∈ Sh ≡ [−π/h, π/h]2,
where h is the (spatial) grid size, then the scheme is stable. Unfortunately there
appears to be no obvious way to verify this condition analytically, and we resort
to testing it numerically for many individual frequencies ω ∈ Sh to determine the
stability of a collocation scheme for (1).

We have derived three new collocation schemes for (1), based on a piecewise
linear approximation for u in space, and a piecewise linear or piecewise constant
approximation for u in time. The resulting integrals are either evaluated exactly
[5], or transformed to polar coordinates (R, θ) via the local change of variables
R = |x′−xβ | in (2), and then approximated using the trapezoidal rule in R and
(nearly) exact integration in θ [4]. Numerical evaluation of the Fourier coefficients
pn(ω) for these three schemes indicate that they are all stable for any value of the
mesh ratio ∆t/h [4, 5].

If a is assumed to be sufficiently smooth, then it can be shown that such stable
schemes for (1) are second order convergent when Γ is an infinite flat plate. That
is, there exists a constant C such that ‖un − Un‖h ≤ C h2 as h → 0 for tn ≤ T ,
where ‖ · ‖h denotes the discrete L2−norm. The proof involves using estimates on
(spatial) Fourier transforms [10], and (temporal) Z−transform techniques due to
Lubich [8].
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H1, H(curl) and H(div)-Conforming
Projection-Based Interpolation in Three Dimensions

L. Demkowicz
(joint work with A. Buffa)

The talk is concerned with optimal p- and hp-estimates for the Projection Based
Interpolation operators [2, 3, 5].

Given a master tetrahedral element T , and a sequence of polynomial spaces re-
producing the standard grad-curl-div exact sequence at the discrete level, we con-
sider a family of projection-based interpolation operators [2, 3, 5], Π, Πcurl, Πdiv, P
that make the de Rham diagram commute. The projection-based interpolation
operators are defined through a sequence of projections done on edge, face, and
element levels. A compact definition of the interpolation operators follows.

H1-conforming::


u1(a) = u(a)

‖u − Πu‖ε,e → min

‖∇f (u − Πu)‖− 1
2+ε,f → min

‖∇(u − Πu)‖0,K → min

H(curl)-conforming::


∫
e

Et − ΠcurlEt = 0

‖
∫

(Et − ΠcurlEt)‖0,ε → min


‖curlf (Et − ΠcurlEt)‖− 1
2+ε,f → min

(Et − ΠcurlEt, ∇fφ)− 1
2 +ε,f = 0, ∀φ ∈ P

pf +1
−1{

‖∇ × (E − ΠcurlE)‖0,T → min

(E − ΠcurlE, ∇φ)0,T = 0, ∀φ ∈ P p+1
pf+1,pe+1

H(div)-conforming::


‖F n − ΠdivF n‖− 1
2+ε,f → min


‖∇ ◦ (F − ΠdivF )‖0,T → min

(F − ΠdivF , ∇ × φ)0,T = 0, ∀φ ∈ P p+1
pf +1

The task is to develop optimal error estimates with respect to polynomial degree
p. As the operators are polynomial preserving, this in turn, leads to optimal hp-
estimates as well. A major difficulty in deriving such estimates in 3D is the “loss
of traces” at vertices. The trace space of H1+ε(T) for a face f is H

1
2+ε(f), and

Hε(e) for an edge e, but we have no trace at a vertex v. In other words, H1+ε(T )
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is not continously embedded in the space of continuous functions. This lack of
regularity prevents the use of the reasoning used in 2D [3].

The key idea in deriving the estimates, is to compare the interpolation errors
with two families of commuting projections, defined on element T and face f levels,
see the commuting diagrams below.

IR→ H
3
2+ε(T ) ∇−→ Hε(curl, T ) ∩ H

1
2+ε(T ) ∇×−→ Hε(div, T ) ∇◦−→ L2

�id P 1

�Π P curl

�Πcurl P div

�Πdiv

�P

IR→P p+1
pe+1,pf +1

∇−→ Pp
pe,pf

∇×−→ Pp−1
pf−1,pe

∇◦−→ P p−2

IR −→ H
1
2+ε(f) ∇−→ H− 1

2+ε(curl, f) ∇×−→ H− 1
2+ε(f) −→ 0�id P

1
2+ε

�Π
�Πcurl

�P

IR −→ P
pf+1
pe+1

∇−→ Ppf
pe

∇×−→ P pf−2 −→ 0

Besides the commuting projection operators, instrumental in deriving the esti-
mates are

• the existence of polynomial preserving, extension operators defined for a
tetrahedral face [1],

H
1
2+ε(f) ∇−→ H− 1

2+ε(curl, f)

Egrad

��Trgrad Ecurl

��Trcurl

Hε(∂f)
∂
∂s−→ H−1+ε(∂f)

P p
pe

(f) ∇−→ P p−1
pe−1(f)

Egrad

��Trgrad Ecurl

��Trcurl

P pe(∂f)
∂
∂s−→ P pe−1(∂f)

and on the element lecel (conjectured),
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H1(T ) ∇−→ H(curl, T ) ∇×−→ H(div, T )

Egrad

��Trgrad Ecurl

��Trcurl Ediv

��Trdiv

H
1
2 (∂T )

∇∂T−→ H− 1
2 (curl, ∂T )

∇∂T×−→ H− 1
2 (∂T )

P p
pf ,pe

(T ) ∇−→ P p−1
pf−1,pe−1(T ) ∇×−→ P p−2

pf−2(T )

Egrad

��Trgrad Ecurl

��Trcurl Ediv

��Trdiv

P
pf
pe (∂T )

∇∂T−→ P
pf−1
pe−1(∂T )

∇∂T×−→ P pf−2(∂T )

and,
• the existence of polynomial preserving, right inverses G, K, D of grad, curl,

and div operators,

H
1
2+ε(f) ∇−→ H− 1

2+ε(curl, f) ∇×−→ H− 1
2+ε(f)

P
pf+1
pe+1

G←− Ppf
pe

K←− P pf−1

that are instrumental in proving discrete versions of Friedrichs inequalities.
Under the conjecture on the existence of polynomial preserving, extension op-

erators, we can prove the following interpolation error estimates.

‖u − Πu‖1,T ≤ Cp−(r−ε)‖u‖1+r,T

‖E − ΠcurlE‖0,curl,T ≤ Cp−(r−ε)‖E‖r,curl,T

‖F − ΠdivF ‖0,div,T ≤ Cp−(r−ε)‖F‖r,div,T

The interpolation theory is not crucial for the convergence analysis but it forms
the backbone on fully automatic hp-adaptive startegies that deliver exponential
convergence for both elliptic and Maxwell problems [4].

References

[1] M. Ainsworth, and L. Demkowicz, Explicit Polynomial Preserving Trace Liftings on a
Triangle, ICES Report 03-47.

[2] L. Demkowicz, P. Monk, L. Vardapetyan, and W. Rachowicz, De Rham Diagram for
hp Finite Element Spaces, Mathematics and Computers with Applications 39(7-8) (2000),
pp29-38.
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High-Order Time Stepping Methods for Electromagnetics
Tobin A. Driscoll

High-order and spectral methods for spatial discretization have significant ad-
vantages in accuracy and efficiency over first- and second-order schemes [6, 9]. Such
discretizations are most naturally paired with high-order methods in time, which
yield similar benefits.

There are two aspects of discretizing Maxwell’s equations in particular that
lead to consideration of special time-stepping methods: staggering and linear stiff-
ness. Staggering in spacetime was suggested by Yee for his famous second-order
scheme [12]; it improves equal-cost accuracy by a factor of four and stable time step
size by a factor of two over the related collocated method. The benefits of stagger-
ing are significantly increased at higher orders of accuracy [5, 8]. Linear stiffness
arises from perfectly matched absorbing layers [1] that decay signals rapidly. Such
decay can severely constrain the allowable time step size of a standard method.
However, since the stiff aspect of the problem is linear, there are several strategies
for restoring large time step sizes in high-order methods.

1. Staggering

The nature of Maxwell’s equations allows E and H field components to be in-
terlaced in time, as Yee showed in [12]. (The staggering can be done in space as
well; the choices of whether to stagger in space and time may be made indepen-
dently.) Other pure propagation problems, such as elastic waves, follow the same
pattern [8].

We represent the semidiscrete evolution of a system eligible for time staggering
as

(1) ut = f(t, v), vt = g(t, u).

For instance, the second-order leapfrog in time used by Yee can be expressed as

vn+1/2
− vn−1/2

= ∆t g(tn, un), un+1 − un = ∆t f(tn+1/2
, vn+1/2

).

This method has an error constant that is 1/4 of that for the same method on an
integer-level-only grid, and a stability ordinate (extent of the stability region along
the imaginary axis that represents propagation) twice as large. We can increase
the order of accuracy of leapfrog by using either more past steps or more interior
stages, as was shown in [8].

Multistep methods are created in two variants, corresponding to whether one
uses past values of the solution or of its derivative. (As with nonstaggered classi-
cal methods, trying to use both simultaneously leads to unstable methods.) We
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Table 1. Comparison of staggered to classical nonstaggered methods.

Error constants

order AB RK ABS BDS RKS

2 0.417 0.667 0.042 0.042 0.042
3 0.375 1.125 0.042 0.042 0.646
4 0.349 2.133 0.039 0.037 0.133
7 0.304 – 0.031 unstable ?
8 0.295 – 0.029 unstable ?

Stability ordinates

order AB RK ABS BDS RKS

2 0 0 2.00 2.00 2.00
3 0.72 0.58 1.71 1.67 1.04
4 0.43 0.71 1.33 1.00 1.43
7 0.06 – 0.37 unstable ?
8 0.03 – 0.21 unstable ?

call these variants staggered backward differentiation (BDS) and staggered Adams–
Bashforth (ABS), respectively, by analogy with the classical methods.2 For exam-
ple, the fourth-order ABS formula is

vn+1/2
− vn−1/2

=
∆t

24
(
26un − 5un−1 + 4un−2 − un−3

)
The coefficients and stability regions of ABS and BDS methods are cataloged
in [8]. Only BDS methods of orders 2–4 and ABS methods of orders 2 and
3,4,7,8,11,12,. . . , have nontrivial stability ordinates. Past second order, all these
methods are dissipative.

Staggered multistage methods are constructed on a more ad-hoc basis. The
best fourth-order method known is [8]

d1 = ∆t f(tn+1/2
, vn+1/2

)

d2 = ∆t g(tn, un)

d3 = ∆t f(tn+1/2
− ∆t, vn+1/2

− d2)

d4 = ∆t g(tn + ∆t, un + d1)

d5 = ∆t f(tn+1/2
+ ∆t, vn+1/2

+ d4)

un+1 = un + 11
12d1 + 1

24d3 + 1
24d5,

with a symmetric formula for advancing v. This method requires four full function
evaluations per full step, and it has a stability ordinate (normalized by the number
of stages) of 1.43, compared to 1/

√
2 for classical fourth-order Runge–Kutta.

Staggered methods are compared to their classical counterparts in Table 1. The
table clearly demonstrates that the accuracy benefits of staggering increase with

2Note, however, that they are all explicit, unlike classical BD formulas.
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the order of accuracy, and the stability ordinates controlling stable time step sizes
are better by a factor of two or more.

2. Linear stiffness

Suppose a state u(t) evolves according to

(2) ut = f(u) − Su,

where S is a linear operator and ρ(S) � ρ(f ′), where ρ is spectral radius. Such
systems arise quite frequently: the nonlinear Schrödinger, Korteweg–de Vries,
Kuramoto–Sivashinsky, Gray–Scott, and Navier–Stokes equations are a few ex-
amples. In these cases the large spectrum of S is due to the presence of high-order
spatial derivatives. In the Maxwellian case S represents the (perhaps nonphysical)
conductive losses due to a perfectly matched layer [1].

The large spectrum of S creates an unacceptably strict stability condition on
the time step size of explicit methods, but in most cases fully implicit methods are
infeasible. A number of strategies have been devised to circumvent this difficulty
at high orders of accuracy. They all work best when S is diagonal, as is the case
in Maxwell’s equations and in nonlinear PDEs under Fourier discretization.

One of the simplest ideas is the integrating factor, which transforms (2) to

(3) d
dt(e

Stu) = eStf(u).

The evolution of eStu encounters no stiffness. However, the presence of the rapidly-
varying exponential creates an accuracy penalty for a classical method. A better
approach is to discretize (3) using a specialized method that explicitly incorporates
the exponential. Such methods go by the name of exact linear part or exponen-
tial time differencing, are available in both multistep and multistage forms, and
perform well in practice [2, 3, 10].

Another approach is to generalize the well known second-order Strang splitting,
in which (2) over [0, ∆t] is replaced by

ut = 2f(u) on [0, 1
4∆t]; ut = 2Su on [14∆t, 3

4∆t];
ut = 2f(u) on [34∆t, ∆t].

Fractional time step sequences can be found to give split-step methods of any even
order [11, 13]. For fourth and sixth order, 7 and 15 substeps per step are needed,
respectively, and in each case some steps must be negative, which makes these
methods problematic for diffusion. However, they can be designed to conserve
energy and symplecticness.

A third approach is to use linearly implicit methods, which marry explicit meth-
ods for the nonlinear term f and an implicit method for the stiff, linear—and
hopefully diagonal—S. These have been shown to be quite effective when used in
a heterogeneous discretization [4, 7], in which nonstiff components (e.g., free space
propagation in Maxwell) are propagated by classical methods.

The best methods in each approach have mild or no stability restrictions and
are orders of magnitude more efficient than their second-order counterparts. The
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composite method of [4], in particular, is easy to implement and appears to be at
least as effective as any other of this type for a variety of test problems.
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Nonreflecting Boundary Conditions for Computational
Electromagnetics
Marcus J. Grote

(joint work with Wolfgang Bangerth, Joseph B. Keller and Christoph
Kirsch)

For the numerical solution of wave scattering problems in unbounded media, a
well-known approach is to enclose all obstacles, inhomogeneities and nonlinearities
with an artificial boundary B. A boundary condition is then imposed on B, which
leads to a numerically solvable boundary-value problem in a finite computational
domain Ω. The boundary condition should be chosen such that the solution of
the problem in Ω coincides with the restriction to Ω of the solution in the original
unbounded region. Otherwise spurious reflections will appear at B, which will
travel back into the interior computational region and spoil the numerical solution
throughout Ω.

If the scatterer consists of several obstacles, which are well separated from each
other, the use of a single artificial boundary to enclose the entire scattering region,
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becomes too expensive. Instead it is preferable to enclose every sub-scatterer by
a separate artificial boundary Bj . Then we seek an exact boundary condition
on B =

⋃
Bj , where each Bj surrounds a single computational sub-domain Ωj .

This boundary condition must not only let outgoing waves leave Ωj without spu-
rious reflection from Bj , but also propagate the outgoing wave from Ωj to all
other sub-domains Ω�, which it may reenter subsequently. To derive such an ex-
act boundary condition, an analytic expression for the solution everywhere in the
exterior region is needed. Neither absorbing boundary conditions [1, 2], nor per-
fectly matched layers [3] provide us with such a representation. Instead, we shall
use exact Dirichlet-to-Neumann (DtN) conditions in the time-harmonic case, or
nonreflecting boundary conditions (NBC) in the time dependent case, which are
both based on a Fourier series representation of the solution in the exterior region.

In the time-harmonic case, Dirichlet-to-Neumann (DtN) maps yield exact non-
reflecting conditions and thus avoid spurious reflections from B. They are explic-
itly known for various equations or geometries [4–8]. Once combined with a finite
difference or finite element discretization inside Ω, they lead to a highly accurate
and efficient numerical scheme. Here we extend the DtN approach to multiple scat-
tering problems, where every scatterer is enclosed by a separate artificial boundary
Bj [9]. Thus Ω consists of multiple disjoint components, Ωj . We derive an exact
DtN boundary condition on B, the disjoint union of all Bj , by combining multiple
contributions from purely outgoing wave fields. We present theoretical results that
show existence and uniqueness of the solution to the boundary value problem in
Ω, as well as numerical results that demonstrate the accuracy and efficiency of our
method.

In the time-dependent case, exact nonreflecting boundary conditions have been
derived for the wave equation [10, 11] and Maxwell’s equations [12]. These bound-
ary conditions are local in time and involve only first derivatives of the solution.
Therefore, they are easy to use with standard finite difference or finite element
methods. As the accurate simulation of waves at high frequencies or the detailed
representation of small scale geometric features requires the use of adaptive mesh
strategies, explicit time integrators become prohibitively expensive because of the
stringent CFL condition. Instead, implicit methods, such as Crank-Nicolson, are
typically used, yet they require the solution of a large linear system of equations
at every time step. Due to the nonreflecting boundary condition, this linear sys-
tem is no longer symmetric, unlike the situation in bounded domains. However,
it is possible to reformulate the discretized equations by decoupling the additional
unknowns needed on the artificial boundary from the interior unknowns [13]. As
a consequence the symmetry and positive definiteness of the linear system are re-
stored, while the additional computational effort due to the nonreflecting boundary
condition becomes negligible.

For time-dependent multiple scattering problems the use of a single artificial
boundary surrounding all scatterers involved also becomes prohibitively expensive
in memory requirement. Instead, it is judicious to enclose each scatterer within a
single separate computational domain. Clearly waves that leave a certain domain,
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Ω1, will impinge upon a different domain, Ω2, at later times; hence they are no
longer purely outgoing waves. To transfer the time-retarded information from
Ω1 to Ω2 an analytical representation of the solution in the unbounded medium
becomes necessary. Again, such an analytical representation [14] is inherent to the
exact nonreflecting boundary conditions described above.
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Nodal and Edge Finite Element Discretization of Maxwell’s Equations
Manfred Kaltenbacher, University of Erlangen, Germany

manfred@lse.eei.uni-erlangen.de
(joint work with Barbara Kaltenbacher and Stefan Reitzinger)

The numerical computation of electromagnetic fields is performed for more then
20 years. For the domain discretization nodal as well as edge finite elements have
been used successfully. Nevertheless, in the last years inaccurate results at mate-
rial parameter interfaces in the magnetostatic as well as in the eddy current case,



Statistics in Finance 591

and, spurious modes in Maxwell’s eigenvalue problems have been reported. In this
paper we will concentrate on the problems related with material parameter inter-
faces, where the magnetic reluctivity changes its value abruptly. We will describe
a simple to implement method following the ideas reported in [3], which produces
correct results. For the high frequency case we refer to [3].

The electromagnetic field is fully described by Maxwell’s equations [9]. Re-
stricting the problem class to the quasi-static (eddy current) case, we arrive at the
following partial differential equation for the magnetic vector potential A

(1) γ
∂A
∂t

+ ∇× ν∇× A = Ji

with boundary condition n × A = 0 and n the unit outward normal vector. In
(1) Ji denotes the impressed current density, ν the magnetic reluctivity and γ
the electric conductivity. Furtheron, the following interface conditions have to be
fulfilled

[A × n] = 0 ; [ν n×∇× A] = 0 ;
[
γ

∂A
∂t

]
= 0(2)

with [Z] = Zright − Zleft. For further discussions let Ω be a bounded single con-
nected convex domain with boundary ∂Ω = Γ. Therewith, the variational formu-
lation for (1) in the function space

HΣ
0 (curl) = {u ∈ (L2(Ω))3 |∇ × u ∈ (L2(Ω))3, u× n|Γ = 0, [n× u]|Σ = 0}(3)

reads as follows: Find A ∈ HΣ
0 (curl) such that∫

Ω

γA′ · ∂A
∂t

dΩ +
∫
Ω

∇× A′ · ν ∇× A dΩ

=
∫
Ω

A′ · Ji dΩ(4)

for any A′ ∈ HΣ
0 (curl) is fulfilled.

It is well known, that an edge FE-discretization of (4) is H0(curl)-conform [6].
Nevertheless, the solution of the algebraic system requires special care in order
to obtain an optimal multigrid solver (see e.g. [2], [5]). We suggest to add a
fictive electric conductivity γ′ to regions with zero electric conductivity to obtain
a variational form, which is elliptic [8]. Of course, this fictive conductivity γ′ has
to be chosen small as compared to the reluctivity of the material. The proof of
convergence even in the case of γ′ → 0 is given in [7].

For the application of nodal finite elements, we have to perform additional steps.
According to [4] as well as [1] we decompose the magnetic vector potential A by

(5) A = w + ∇φ , ∇ · w = 0 ,

with (w, φ) ∈
(
(H1

T(Ω))3, H1
0 (Ω)

)
and Ω being a convex domain. The same decom-

position is done for the test function A′ = v + ∇ψ. Since we have to guarantee
∇ · w = 0, we do so by adding the penalty term

∫
Ω ν (∇ · v∇ ·w) dΩ to the
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variational formulation. Therewith, the variational formulation can be stated as
follows: Find (w, φ) ∈ ((H1

T(Ω))3, H1
0 (Ω)) such that∫

Ω

ν∇× v · ∇ × w dΩ +
∫
Ω

ν ∇ · v∇ ·w dΩ

+
∫
Ω

γ(v + ∇ψ) · ∂

∂t
(w + ∇φ) dΩ =

∫
Ω

Ji · v dΩ .(6)

for any (v, ψ) ∈ ((H1
T(Ω)3, H1

0 (Ω)). Now, since for most practical eddy current
problems the domain Ω is convex, the discretization of the above variational for-
mulation with nodal finite elements will result in correct results. However, the
question arises, if a domain Ω including subdomains of different material param-
eters (magnetic reluctivity or/and electric conductivity), is really convex? Let us
consider the case of a ferromagnetic cube embedded in air (see Fig. 1). Assuming

Figure 1. Ferromagnetic cube in air

the case ν1 → ∞ (of course the limit of ν1 is equal to 1/µ0 with µ0 being the
permeability in vacuum), we arrive at a non-convex domain. Now according to
[3], it is known, that for non-convex domains the discretization with nodal finite
elements produces wrong solutions due to the non-density of smooth fields. In [3]
the authors could proof, that by introducing a special weighting function inside the
divergence integral, nodal finite elements can yet be used for the approximation.
Therewith, the second term in the variational formulation (6) has to be changed
to ∫

Ω

ν ∇ · v∇ ·w dΩ →
∫
Ω

ν s ∇ · v∇ · w dΩ(7)

with

(8) s =
∏
a∈Q

rα
a .

In (8) Q denotes the set of all reentrant corners, ra the distance to each reentrant
corner, and α an exponent. We have implemented this idea in a simple way by
setting the weighting function s to zero for finite elements near each interface of
two subdomains with different material parameters.
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The correctness of the weighted variational formulation have been demonstrated
by numerical test cases (iron cube, thin iron plate) as well as industrial applications
(electric power transformer, electromagnetic motor, magnetic resonance imaging
scanner).
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The Hurewicz Map Distinguishes Intuitive vs. Computable
Topological Aspects of Computational Electromagnetics

Robert Kotiuga

1. Abstract of talk

Answers to intuitive topological problems, such as checking if a space is con-
tractible, are easily characterized in terms of homotopy groups. However, in four or
more dimensions, such a characterization is provably computationally intractable.
On the other hand, cohomology theory may not be intuitive, but it does provide a
formal connection between Maxwell’s equations and the lumped parameters occur-
ring in Kirchhoff’s laws. Furthermore, by exploiting sparse matrix algorithms and
the Smith normal form, cohomological information is efficiently extracted from the
data structures used in finite element analysis. A natural question then arises: Do
engineers need to go beyond the linear algebra and sparse matrix techniques as-
sociated with homology calculations? It turns out that there are inverse problems
involving near force-free magnetic fields where the conjectured characterization of
the space of solutions, involves computationally intractable topological invariants
such as the Thurston norm [4]. For this reason, it is imperative to investigate
algebraic structures found in the data structures of finite element analysis, and
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which yield topological insights not deducible from cohomological considerations
alone.

The Hurewicz map takes representatives of generators of homotopy groups to
their homology classes and is a well-defined map from homotopy groups to ho-
mology groups. In this sense, it provides a natural framework for comparing the
intuitive but intractable aspects of homotopy theory with the computable but
less intuitive aspects of homology theory. In particular, thorugh the use of the
Hurewicz map, several important identifications can be made:

(1) The lower central series of the fundamental group is related to certain
Massey products in the cohomology ring.

(2) The differential graded Lie algebras of rational homotopy theory are re-
lated to the minimal models of the cohomology ring.

(3) By Hopf’s theorem, the cokernel of the second homology group under the
Hurewicz map is characterized in terms of a presentation of the fundamen-
tal group.

The workshop talk concretely developed the relevance of these aspects of the
Hurewicz map in the context of computational electromagnetics.

2. Putting my talk in the context of my previous work

Though originally developed as a natural outgrowth of multivariable calculus,
algebraic topology and differential forms have become an essential tool used to
formulate many basic laws of physics. Through my research this area of math-
ematics has found a natural application to many areas of electrical engineering
and computational electromagnetics. A strong theme in my research is the iden-
tification of geometric and topological aspects, which shed light on dimensional
dependence in the complexity of engineering problems and their algorithmic so-
lution. This should be evident from the other publications I have selected to list
below [7]-[15]. Much of my earlier work dealing with finite element analysis of
electromagnetic fields and magnetic scalar potentials is summarized in the MSRI
monograph coauthored with my Ph. D. student, Paul Gross [2].

If one were to seek a more mainstream characterization of my research interests,
I could probably describe them in terms of the research interests listed on my
resume:

• Electromagnetics;
• Numerical methods for 3-d vector fields;
• Whitney forms, the finite element method and the analysis of algorithms,
• Cuts for magnetic scalar potentials, formulation of eddy-current problems,
• Variational and symplectic techniques,
• Micromagnetics; nanoscale magnetics,
• Geometric inverse problems,
• Helicity functionals and near force-free magnetic fields; contact geometry,

My most recent research deals with how electromagnetic force constraints give
rise to topological structures necessarily characterized by nonabelian algebraic
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structures [1], [4]. This reseach is interesting both in terms of applications, and
in defining the data structures which are useful for the finite element analysis of
electromagnetic fields. The abstract of my workshop presentation above, is an
attempt to get a handle on the latter aspects.
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Inverse Obstacle Scattering for Time-Harmonic Electromagnetic
Waves

Rainer Kress

This presentation provides a survey on some recent developments in the theory
and numerical solution of time-harmonic inverse scattering problems. Roughly
speaking, one can distinguish two groups of inverse problems in this field, namely
the inverse medium problem and the inverse obstacle problem. For time reasons,
only inverse obstacle scattering will be covered. However, most of the ideas that
are presented for inverse obstacle scattering have counter parts in inverse medium
scattering. After formulating the inverse problem, the issue of uniqueness, that
is, identifyability will be addressed. The uniqueness question is of its own math-
ematical interest and also interrelates with some of the more recently developed
reconstruction algorithms. By considering one or two of its representatives the
basic ideas of three groups of methods will be outlined, namely decomposition
methods, iterative methods and sampling and probe methods. For illustration a
couple of numerical examples will be included.

Consider the scattering of a time-harmonic electromagnetic plane wave Ei, Hi

from an impenetrable scatterer described by a bounded domain D in �3 either
with a perfect conductor or an impedance boundary condition. The inverse ob-
stacle scattering problem consists of finding the shape and location of D from the
knowledge of the electric far field pattern E∞ of the scattered wave Es, Hs for one
or several incident plane waves. The corresponding uniqueness result due to Kirsch
and Kress [17] (see also [6]) confirms that the domain D and the boundary condi-
tion are uniquely determined by the far field pattern for infinitely many incident
plane waves. The main idea of the proof is to exploit the fact that for scattering
of electric dipole fields the scattered wave develops singularities when the source
and observation points approach the boundary. Uniqueness for one incident plane
wave remains a challenging open problem. Partial results were recently obtained
for scattering from balls [20] and polyhedral scatterers [1].

Decomposition methods, in principle, separate the inverse problem into an ill-
posed linear problem to reconstruct the scattered wave Es, Hs from its far field
pattern E∞ and a nonlinear problem for the subsequent determination of the
boundary ∂D of the scatterer from the boundary condition. These methods do not
require the solution of the forward problem and some of them perform well without
a priori information on the geometry of the obstacle. A typical representative of
this approach is the potential method of Kirsch and Kress (see [9, 16]).

Iteration methods interpret the inverse obstacle scattering problem as a non-
linear ill-posed operator equation A(∂D) = E∞ and apply iterative schemes such
as regularized Newton type, Landweber or conjugate gradient methods for its so-
lution. Here, A denotes the operator that, for a fixed incident field, maps the
boundary ∂D of the scatterer onto the far field pattern of the scattered wave. The
theoretical foundation for this approach requires to establish the differentiabil-
ity of the operator A with respect to the boundary and to explicitly characterize
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the derivative. For the perfect conductor boundary condition this was done by
Potthast [22] via integral equation methods and by Kress [19] via a factorization
formula. The latter method was recently extended to the impedance boundary
condition by Haddar and Kress [10].

For details on the numerical implementation, among others, see [6, 8, 11, 14, 18].
The numerical examples provide amble evidence that iterative methods, in par-
ticular Newton iterations, yield very good reconstructions. However, they require
the solution of the corresponding forward problem in each iteration step and a pri-
ori information on the geometry of the obstacle. Furthermore, although progress
has been made through the work of Hohage [12] and Potthast [24], the conver-
gence issue is not yet satisfactorily settled. A hybrid of Newton type iterations
and decomposition methods was suggested in [21] and successfully tested for two-
dimensional examples.

The main idea of the more recently developed so-called sampling and probe
methods is to develop a criterium in terms of the behaviour of some ill-posed lin-
ear integral equation that decides on whether a point z lies inside or outside the
scatterer D. Then the criterium is evaluated numerically for a grid of points to
visualize the unknown scatterer. As opposed to the two previous types of methods
that, in principle, only need the far field pattern for one incident direction, the
sampling and probe methods need the far field pattern for all incident and observa-
tion directions and polarizations. However, as their main advantage they perform
extremely well without any a priori information on the geometry. The linear sam-
pling method as developed in acoustic scattering by Colton and Kirsch [5] has as
its central piece the far field operator F : L2

t (Ω) → L2
t (Ω) on the space of tangen-

tial L2 fields on the unit sphere Ω. This operator is defined as an integral operator
with the kernel given by the far field pattern E∞(x̂, d) for all observation directions
x̂ ∈ Ω and all incident directions d. With the explicitly available far field pattern
Ei

∞,dip(· , z)p of the field of an electric dipole with polarization p located at the
point z the linear sampling method is based on the ill-posed linear integral equation
Fg(· , z) = Ei

∞,dip(· , z)p. Although, this integral equation, in general, is not solv-
able, it can be approximately solved in the sense that for every p ∈ �3, ε > 0, and
z ∈ D there exists g(· , z) ∈ L2

t (Ω) such that ‖Fg(· , z) − Ei
∞,dip(· , z)p‖L2(Ω) ≤ ε

and ‖g(· , z)‖L2(Ω) → ∞ as z → ∂D. In the numerical implementation the far field
integral equation is solved by Tikhonov regularization via Morozov’s discrepancy
principle and then ∂D is visualized through the points z where ‖g(· , z)‖L2(Ω) be-
comes large. For details on the theoretical foundation and numerical examples
see [3, 4, 19].

A remaining gap in the theoretical foundation of the linear sampling method,
namely, the question why the implementation via Tikhonov and Morozov actually
picks the approximation g that is predicted by the above theoretical result was
closed in acoustics through a recent contribution by Arens [2]. However, the gap
remains open in electromagnetics, since Aren’s analysis does not yet cover this
case.
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The factorization method may be considered as a variation of the linear sam-
pling method in the sense that it replaces F in the far field equation by (F ∗F )1/4,
that is, it is based on the equation (F ∗F )1/4g(· , z) = Ei

∞,dip(· , z)p. This equation
is more satisfying since it is to be expected that it is solvable if and only if z ∈ D.
The corresponding result in acoustics is valid as shown in a pioneering paper by
Kirsch [15]. However it is open for electromagnetics. The numerical implemen-
tation of the factorization is similar to that of the linear sampling method. The
procedure is known as factorization method, since it relies on a factorization of
the far field operator.

The linear sampling method and the factorization method may be viewed as
dual to the uniqueness proof of Kirsch and Kress, since, in principle, their founda-
tion is based on letting source points of electric dipole fields approach the boundary
from inside of D whereas in the uniqueness proof the sourec points approch the
boundary from outside of D. The latter idea is mimiced in the point source and
singular source methods of Potthast [7, 23] and the probe method of Ikehata [13].
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A New View on Collocation
S. Kurz

(joint work with O. Rain, V. Rischmüller, S. Rjasanow)

In recent years, a remarkable amount of papers has been published that treat
continuous and discrete electromagnetics in terms of differential forms (DFs). For
a good account on this topic, see, e.g., [2] and [7]. However, most of these papers
focus on (generalised) finite difference and finite element methods. There are only
rare papers that deal with the boundary element method [1, 3, 6, 11].

The aim of this talk is to show how the integral equations of electromagnetics
can be expressed in the language of DFs. The integral kernels become double forms
[5]. These are DFs in one space with coefficients that are DFs in another space,
or DF-valued DFs [12]. We restrict ourselves to the static case. Similar schemes
can be derived for time dependent problems. The formulation in terms of DFs
enables a uniform treatment of electrostatics (Kirchhoff representation formula)
and magnetostatics (Stratton-Chu representation formula).

Since DFs possess discrete counterparts, known as Whitney forms, such schemes
lend themselves naturally to discretisation. As an example, a boundary integral
equation for the double curl operator is considered. This equation has been inves-
tigated in a variational setting in [8]. A detailed discussion of the Sobolev spaces
being involved can be found in

[4, 10].
In the present contribution we wish to highlight an alternative approach. The

proposed discretisation scheme generalises the well-known collocation technique
by using de Rham maps on dual grid systems [6, 11]. Depending on the integral
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operator to be discretised, the 1-form valued residual is forced to be zero either
over the 1-chains of the primal or the dual grid. The viability of the method will
be demonstrated by means of a numerical example, where a sphere is immersed in
the field of a circular current loop.

For an extended version of this contribution see [9].
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Computation of Maxwell Eigenvalues with Exponential Rates of
Convergence
Paul Ledger

Our interest in this work lies in the accurate calculation of Maxwell eigenvalues
for closed cavities. The results are important for many applications such as the
design of microwave devices and charged particle accelerators. The solution of
such problems remains far from trivial due to the fact that realistic cavities often
contain multi–materials, have small scale feature and contain many sharp corners,
which all give rise to highly singular eigenfunctions.
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Using a nodal finite element basis for each component of the electric field is
known to be inappropriate, as the resulting solution is polluted by spurious modes.
Instead, we choose to solve these problems using the �H(curl) conforming finite
elements that were first introduced by Nédélec [1]. Using such elements is known
to overcome the problems of spurious modes and allow the easy incorporation of
material interfaces and boundary conditions.

We follow a finite element approach which allows for arbitrary increases in poly-
nomial order p. In particular we use the recent hierarchic basis of Ainsworth and
Coyle [2, 3] with both p and h (mesh) refinements. Indeed, when the h and p
refinements are correctly combined, we are able to observe the theoretically pre-
dicted exponential rates of convergence for the Maxwell eigenvalues. Numerical
examples show that the exponential rates of convergence can be obtained in prac-
tice for a series of benchmark problems discretised with tetrahedral meshes in
three–dimensions [4, 5].

Recent extensions include the application of hp finite elements to axisymmetric
problems with rotational symmetry [6]. For such cases it is possible to reduce
a three-dimensional problem to a sequence of two–dimensional problems. Again,
exponential rates of convergence have been observed for the computed eigenvalues
of closed cavities.
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Computational Shape and Topology Optimization with Applications
to 3–Dimensional Magnetostatics

D. Lukáš
(joint work with U. Langer, E. Lindner, R. Stainko, J. Pǐstora)

In the talk we mainly discussed computational aspects of shape and topology
optimization governed with 3–dimensional linear and nonlinear magnetostatics,
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respectively. This is covered in the speaker’s thesis [2] and in [3]. The acknowledg-
ment is due to the Special Research Initiative SFB F013 “Numerical and symbolic
scientific computing”, subproject “Multilevel solvers for large scale discretized op-
timization problems” at the University of Linz, Austria. The speaker especially
thanks to Dr. Joachim Schöberl for his kind software support during the week in
Oberwolfach.

The presentation started with a motivation from physics. We described elec-
tromagnets that are used for measurements of magnetooptic effects on thin layers.
We aim at designing their optimal topology and shape so that in the area where
the measurements take place the magnetic field is as constant as possible and
above a prescribed magnitude. Throughout the presentation we instantiate the
ideas for this application.

Next, we recalled an abstract optimal shape design problem, its finite element
approximation and we discussed the existence and convergence issues following
the theory in [1], which is based on the compactness and continuity arguments.
We optimize the interface between the air and ferromagnetics, rather than the
boundary of the computational domain as usual in mechanics. We pointed out a
drawback that on fine discretizations the non–design grid nodes cannot follow large
perturbations of the design shape. The mapping from the shape to the grid nodes is
carried over an artificial linear elasticity problem with the prescribed displacements
along the design shape interface. Then, we presented the algebraic approach to the
shape sensitivity analysis and its efficient software implementation, see [5]. The
user is only supposed to dessignate the shape and to code the objective in terms of
the state solution. The underlying finite element code provides the sensitivity of
element contributions to the bilinear form with respect to the grid displacements.
The optimization package is now to be included into the NgSolve, see [7].

Further, we presented numerical results for both 2– and 3–dimensional shape
optimization problems. After the 2d optimized design the electromagnets were
manufactured and the measurements of the magnetic field showed the 4.5–times
improvements in terms of the objective functional, compared to the initial design.

We presented a multilevel optimization approach. Here, hierarchies of dis-
cretizations of both the state and design space are considered. We begin with
the optimization on a coarse discretization for only two design parameters. The
multilevel algorithm then proceeds such that the optimized shape is used on a finer
level as the initial guess. Moreover, we prolonged the 2d coarse optimized shape
to the third dimension and used that as the initial guess in the multilevel 3d opti-
mization. In the 2d case for 7 design and 12.000 state unknowns we achieved the
speedup 4.5. In the 3d case for 12 design and 30.000 state unknowns the speedup
was more than 10–times.

Finally, we formulated a corresponding topology optimization problem governed
by nonlinear magnetostatics. In the 2d case we solved for 3.920 design variables
with 4.832 state ones and the computation typically proceeded within 8 steepest
descent iterations and 8 nested nonlinear state Newton iterations. Just during the
week in Oberwolfach we managed to run 3d topology optimization governed by
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linear magnetostatics and we were able to solve problems of up to 1 million design
unknowns in hours. The optimal design is close to a sphere around the area where
the constant magnetic field is required. The talk was ended with the outlook con-
cerned on using nonlinear multigrid techniques, all–at–once optimization approach
and preconditioning techniques for the arising KKT–systems and adaptivity with
respect to the cost functional.
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[3] D. Lukáš, On solution to an optimal shape design problem in 3–dimensional linear magne-
tostatics, Appl. Math., 30 pp, to appear in 2004.
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Fast Time Domain Integral Equation Solvers
Eric Michielssen

(joint work with Mingyu Lu and Balasubramaniam Shanke)

Efficient schemes for analyzing transient electromagnetic wave scattering and
short-pulse radiation phenomena are important in disciplines ranging from electro-
magnetics to acoustics, geophysics, and elastodynamics. The analysis of transient
scattering from perfectly conducting as well as potentially inhomogeneous penetra-
ble bodies often is effected using marching on in time (MOT) based time domain
integral equation (TDIE) methods.

A typical TDIE solver for analyzing transient electromagnetic scattering from
perfect electrically conducting (PEC) surfaces residing in unbounded 3D lossless
environments operates as follows. The extinction theorem states that the elec-
tromagnetic field anywhere in space can be evaluated upon specification of the
incident field and the total magnetic field, or, equivalently, the current, on the
scatterer’s surface. By enforcing the tangential component of the total electric
field along the surface to vanish, the surface current can be related to the incident
field through an electric field TDIE. To solve this TDIE by MOT methods, the
surface current is represented in terms of Ns spatial basis functions with unknown
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amplitudes at Nt time steps. Then, the instantaneous total electric field is ex-
pressed as a superposition of the incident and scattered fields. The evaluation
of the latter requires the computation of a retarded time boundary integral over
the basis functions representing the field. This procedure leads to a system of
equations that can be solved for the coefficients of the basis functions representing
the surface field at a given time step. Depending on the choice of the time step
size, the basis functions, and the testing procedure, the matrix to be inverted may
be diagonal or sparse, yielding explicit or implicit time stepping schemes, respec-
tively. It has been empirically shown that implicitness and accurate evaluation
of retarded time boundary integrals contribute to the stability of a MOT scheme.
Unfortunately, the overall computational cost of this procedure scales as O(NtN

2
s ),

which prevents the application of classical MOT-based TDIE solvers to the study
of practical, real-world problems. It is noted that the above cost estimate is linear
in only because the 3D lossless medium Green propagator is local in time. When
the above procedure is applied to the study of scattering from 2D objects, or sur-
faces embedded in dissipative or structured (e.g., layered) environments, then the
computational complexity would scale as O(N2

t N2
s ), as Green propagators in such

media all have a wake.
The recently introduced plane wave time-domain (PWTD) algorithm permits

the efficient evaluation of transient wave fields generated by temporally bandlim-
ited sources. The original PWTD scheme targeted sources residing in 3D homoge-
neous and lossless backgrounds [1]. This PWTD scheme constitutes the extension
of the frequency domain (Helmholtz equation) fast multipole method [2, 3] to the
time domain (wave equation) and, when coupled to the above described MOT-
based TDIE solvers, reduces their computational complexity to O(NtNs log2 Ns).
To date, this PWTD scheme has been successfully used to construct (i) fast march-
ing schemes for solving time domain integral equations [4] and (ii) fast boundary
kernels for augmenting finite difference time domain simulators [5]. It even has
been extended to 2D [6], layered [7], and dissipative environments [8] with only
minor changes in the resulting computational complexity estimates. All PWTD
schemes express wave fields as a superposition of plane waves. The evolution of
these plane waves is either known analytically, or governed by one-dimensional
wave equations. In 2D and in layered environments, a Hilbert transform acts on
the plane wave superposition for it to yield the correct transient field. At present,
spectral schemes have been developed that control the accuracy of each and ev-
ery step in these various PWTD schemes; as a result, they can be hybridized
with classical MOT-based TDIE solvers, thereby greatly improving their compu-
tational complexity and memory requirements, without affecting their accuracy.
At present, PWTD-accelerated MOT-based TDIE solvers have been applied to the
analysis of scattering and radiation from conducting [4, 9], resistive and impedance
boundary condition surfaces [10], penetrable lossless [11], lossy [12], and disper-
sive volumes [13], and the analysis of hybrid lumped-distributed circuits [14, 15]
involving up to hundreds of thousands of spatial unknowns, all this for thousands
of time steps.
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The Approximation of the Maxwell Eigenvalue Problem using a
Least-Squares Method

Joseph E. Pasciak
(joint work with James H. Bramble and Tsanio V. Kolev)

In this talk, I consider the eigenvalue problem problem associated with Maxwell’s
equations. These equations can, for example, be used to determine the frequencies
which will propagate through a medium such as a waveguide or photonic crystal
[6, 11, 16].

Although two dimensional versions of Maxwell’s eigenvalue problem often result
in eigenvalue problems involving the Laplacian, three dimensional problems are
significantly more complicated as they result in an eigenvalue problem involving
curl-curl, an operator which is not elliptic. Accordingly, the inverse is no longer
compact leading to a much more complicated analysis. However, as we shall
see, a compact “pseudo” inverse can be constructed which has the same nonzero
eigenvectors.

One of the more popular approaches for approximating Maxwell’s eigenvalue
is based on using curl-conforming spaces such as those developed by Nedelec (cf.
[18, 19]). In such a method one looks for solutions to the problem in H(curl),
the space of vector function which, along with their curls, are in L2(Ω). Analysis
of the eigenvalue problem using these spaces either involves proving collective
compactness [14, 17] or proving convergence in norm [1, 2].

Early engineering approximations to these equations were often attempted using
conforming finite element spaces [3]. These were known to have problems due to
low regularity solutions and multiple valued potentials [10, 12, 15]. Recently, new
methods for dealing with these problems have been proposed [7, 8, 20]. The meth-
ods of [8] depend on weighted functional with weights depending on the strength
of the singularities at corners and edges. In [20], discontinuous Galerkin methods
are proposed.

The approach which we take in this talk is to first relate the problem to a block
system involving the solution of div-curl systems. These div-curl systems are for-
mulated as variational problems following [5] where the solution is posed in L2(Ω)
and the (components of the) test functions are in various subspaces of the Sobolev
space H1(Ω). This results in a very weak formulation of the div-curl problem
where the data can reside in a negative norm space, e.g., in the dual of the test
spaces. That the test functions are in H1(Ω) is a critical attribute of the method
which we take advantage of in our subsequent analysis of the Maxwell eigenvalue
problem. Indeed, this leads to solution operators for the div-curl problem which
are bounded from H−1(Ω) into L2(Ω) in the continuous as well as the discrete
case. Since the approximation is based in L2(Ω), our approximation subspaces
can be very simple, for example, we can use discontinuous functions at the ma-
terial interfaces where the solutions jump while using C0 elements in the interior
where the solution is smooth.
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In this talk, I show how this variational form of the div-curl system can be
used to develop a stable approximation to the Maxwell’s eigenvalue problem. The
eigenfunctions with non-zero eigenvalues are also eigenfunctions of a block compact
skew-Hermitian problem where the blocks correspond to div-curl problems. We
use the div-curl approximation to derive a sequence of approximation operators
which converge in norm to the above mentioned compact operator.

Actual three dimensional applications necessarily contain large numbers of un-
knowns (on the order of millions). Such a large number of unknowns result from
complicated device geometry and the mesh refinement necessary for resolving sin-
gular behavior in the solutions. Since the systems are too large for conventional
direct eigensolvers, the eigenvalues must be computed iteratively. To obtain a sys-
tem which is more amenable to iterative computation, we show that the original
eigenpairs can be computed from those of a compact symmetric real operator.
This system can be approximated in norm by the discrete operator for one div-
curl system and its adjoint and results in a symmetric discrete eigenvalue problem.
The development of effective iterative techniques for computing the eigenvalues of
large symmetric problems has been the subject of intensive research in the past two
decades, e.g., [4, 9, 13]. These methods are more efficient and robust than those
developed for non-symmetric and/or indefinite systems. Thus, the reformulation
of the problem as a symmetric real system represents a significant computational
advantage.

Theorems on the rate of convergence of the discrete eigenvalues are given and
supported by computational experiments.
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Discontinuous Galerkin Methods for Maxwell’s Equations
Ilaria Perugia

In recent years, there has been considerable interest in nonconforming finite
element methods that are based on discontinuous piecewise polynomial approxi-
mation spaces and on local (element-by-element) variational formulations. Such
approaches are referred to as discontinuous Galerkin (DG) methods. The main
advantages of these methods lie in their ability to treat a wide range of problems
within the same unified framework, and their great flexibility in the mesh-design.
Indeed, DG methods can naturally handle non-matching grids and non-uniform,
even anisotropic, polynomial approximation degrees; for this reason, DG meth-
ods are particularly suited within hp-adaptive procedures and for dealing with
multi-material problems. In the following, a short survey on DG methods for the
approximation of Maxwell’s equation is presented.

The original DG method was introduced in [15] for the neutron transport equa-
tion. It is constructed by multiplying the equation by smooth test functions,
integrating by parts element-by-element on a given mesh, replacing trial and test
functions by discontinuous piecewise polynomial functions, and replacing interele-
ment traces by numerical fluxes. Development of DG techniques in the context of
conservation laws lead to the introduction of the Runge-Kutta (RK) DG method
in [3], a high-order method based on a spatial approximation by means of dis-
continuous polynomials of order k with upwind numerical fluxes, and a special
(k + 1)-stage RK method for time-stepping, in combination with slope limiters in
the case of nonlinear problems (see [4] for a review).
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In the context of Maxwell’s equations, RKDG-type methods have been applied
to the problem in time-domain

εr
∂E
∂t

= ∇× H− J, µr
∂H
∂t

= −∇× E,

written in conservation form:

Q(x)
∂q
∂t

+ ∇ ·F(q) = S

with q = [E,H]T , Fi(q) = [−ei ×H, ei ×E]T , and Q = diag(εr, εr, εr, µr, µr, µr).
The use of DG methods in this context is motivated by the possibility of using
unstructured, even non-matching, meshes for dealing with complex geometries, by
the simplicity of incorporating spatially varying coefficients, and by the possibility
of constructing high order methods by simply choosing basis functions; moreover,
the mass matrices are diagonal (or block diagonal), which is advantageous for
time-stepping.

Schemes based on a DG discretization in space with upwind numerical fluxes
and RK time-stepping have been presented several papers: in [14], in combina-
tion with a mortar method for treating nonmatching grids; in [6], together with
stability analysis and hp-error bounds of the proposed scheme (a divergence-free
variant of which can be found in [7]); and in [16], where a unified DG method is
constructed within the computational and the PML regions. A method using cen-
tered numerical fluxes and leap-frog time-stepping in order to reduce dissipation
has been introduced in [20].

Finally, a DG space-time approach has been adopted in [5] and in [17], in order
to obtain schemes with only local CFL control of the time-step for stability, allow-
ing for larger time-steps in larger space elements. These methods use space-time
DG methods on meshes generated by advancing front techniques. In particular,
in [5], for the case of smooth coefficients, an explicit mesh is constructed, allow-
ing for an ordering of the elements with respect to domain of dependence, and
therefore, for an explicit element-by-element advancing front solution. In [17], in
order to deal with inhomogeneous media, the constraints on the meshes are weak-
ened, allowing for meshes aligned with the discontinuities of the coefficients, and
a semi-implicit method, based on an ordering of the mesh by macroelements, is
constructed.

For the Maxwell’s equations in frequency-domain, consider, to fix the ideas, the
following electric field-based formulation:

∇× (µ−1∇× E) − ω2εE + iωσE = −iωJs in Ω
n× E = 0 on ∂Ω.

The term ω2εE is neglected in the low-frequency case. The solutions of this prob-
lem are typically highly oscillatory or strongly singular. DG methods are particu-
larly suited for capturing such solutions, since they allow for an easy implementa-
tion of high-order elements and hp-adaptive procedures. The main ingredient for
the construction of DG schemes, in this context, is the DG approximation of the
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second order curl-curl operator. For a unified presentation of various DG methods
for elliptic problems and their theoretical analysis, see [2].

For the low-frequency case, in the simple case of conductivity σ �= 0, the problem
is elliptic and optimal error estimates can be easily obtained (the case of irregular
meshes and only piecewise smooth material coefficients is studied in [18], where
hp-error bounds are derived). For the high-frequency case, optimal error estimated
have been obtained in [9] in the case of smooth coefficients. Mixed methods for
imposing the divergence-free constraint on the electric field in the regions where
σ = 0, in the low-frequency case, and for providing control on the divergence of
the electric field, in the high-frequency case, have been presented and analyzed
in [11] and [19], respectively. An energy-norm a posteriori estimator for the mixed
method in the low-frequency case has been studied in [10].

Finally, the Maxwell eigenvalue problem has been addressed in [8], where a
nonstabilized local discontinuous Galerkin method is used. Numerical results have
shown that, in the two-dimensional case, the method correctly captures the eigen-
modes, and no spurious mode pollutes the spectrum. In the three-dimensional
case, small spurious modes appear, which can be eliminated by adding a suitable
stabilization to the scheme.

We conclude with some remarks. For the Maxwell equations in frequency-
domain, the eddy-current and the stationary problems, extensive and comparative
studies still need to be performed. The same for coupled field-based and potential-
based formulations. Up to now, a rigorous analysis of the Maxwell eigenvalue prob-
lem has not been performed, as well as a theoretical analysis of the high-frequency
problem in a framework which allows for treating discontinuous material coeffi-
cients. We finally mention that, in addition to some numerical studies (see [13],
[21], [12]), a complete theoretical analysis of dispersion and dissipation errors for
DG methods has been carried out in [1].
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Smith Normal Form as an Adequate Tool to Detect Mesh Defects as
well as to Build Basis Fields for Domains with Loops and Holes

Francesca Rapetti
(joint work with Alain Bossavit (L.G.E.P.) and François Dubois

(C.N.A.M.))

A precise description of industrial geometries relies on the use of computer
assisted design (C.A.D.) tools. Submeshes are generally created when complex
domains with millions of element volumes are concerned. Accidental errors (due
to human mistakes, to roundings, to bugs, ...) when gluing together separately
created parts will result in spurious holes and/or loops. How can we perform an
automatic mesh defect detection ?

The Hodge decomposition for a vector u ∈ L2(Ω)3 consists in its representation
as the sum of three orthogonal components u = gradφ + curlw + θ, the third
component θ depending on the domain topology. How can we build a basis for θ ?

Algebraic topology and linear algebra help giving an answer to these or other
questions.

Let A : X → Y be a linear operator between vector spaces of dimension m
and n respectively. If bases are selected in both spaces, A is represented by a
(n × m)-matrix A. One can choose bases in such a way that

A =
[

0k,m−k Idk,k

0n−k,m−k 0n−k,k

]
.

This is the Smith normal form of A [6]. The normal form clearly exhibits the rank
k, the null space (spanned by the first m − k basis vectors in X ) and the range
(spanned by the last n − k basis vectors in Y) of A (see Figure 1).

Figure 1. Smith normal form for the matrix A.

Suppose now that one has a complex of linear maps ∂p : Xp → Xp−1, such that
∂p∂p+1 = 0. By a suitable choice of bases, one can put them all in Smith form,
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Figure 2. Computational configuration and analytical solution
on the interface.

thus obtaining a complex of matrices on which one can spot the successive ranges
and kernels, and most importantly the quotients Hp = ker(∂p)/ran(∂p+1).

A case in which this is valuable is when the ∂ps are the boundary operators
acting on chains based on p-cells of some discretization mesh (see Figure 2 (left)
where the boundary operators are denoted by black dots carrying the dimension
of the cells they act on). The original ∂p are then the incidence matrices of this
mesh, and take the above form when suitable bases are chosen in the chain spaces
Xp. One can then easily identify the cycles (chains with empty boundary), the
boundaries (p-chains which bound a (p + 1)-one), the homology spaces Hp and
their dimensions bp, the so-called Betti numbers, which are topological invariants
(characteristics of the computational domain, not of the particular mesh), telling
about the numbers of “holes” and “loops” in the meshed region (see Figure 2
(right)).

Such information is useful as a way to check whether the mesh has been con-
sistently built. For istance, the mesh defects occurring when merging submeshes
will result in spurious holes and/or loops, and thus can be detected this way [4].
Hence the interest for algorithms to reduce incidence matrices to normal form,
with a competitive computational cost. They fall in two classes, depending on
whether one works on the primal or the dual mesh.

In [4], we have proposed an algorithm working in O(s2) where s = max(n, m)
for the considered (n×m)-matrices. The results of the proposed algorithm applied
to the incidence matrices of a simplicial discretization of a torus surface are shown
in Figure 3. In this case, we are not looking for mesh defects but to an automatic
way to compute the generators of Hp, p = 1, 2. We work with (incidence) matrices
whose entries are integers, in particular 0, -1, +1. The Smith normal form of
a (n, m)-matrix A is computed with unimodular transformations, represented by
integer matrices with integer matrix inverses and determinants are ±1. Elementary
row operations

• exchange row i with row j
• multiply row i by -1
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Figure 3. Wireframe representation of two loops, generators of
the first homology group H1 of the torus surface, see [5].

• replace row i by (row i) + α (row j), where α is an integer and k �= j

Each of these operations corresponds to a change of basis in Y and similar column
operations correspond to a change of basis in X .

These successive changes are stocked in two unimodular matrices, a (n, n)-
matrix Q and a (m, m)-matrix P . So, we look for Q and P such that QAP is in
Smith form. Then, ker (A) is spanned by the first m− k column vectors of P and
imag (A) is spanned by the last n − k row vectors of Q multiplied by the leading
elements.

Figure 4. The dual side: cohomology.

There is more: by duality, a change of basis for chains induces one on cochains,
which are the discrete representation of electromagnetic fields (see Figure 4). In
particular, when loops or holes are present, there is a need [1] to construct “non-
local” basis fields associated with them, which complete the basis of cell-related
Whitney forms, as considered in [5]. Such fields can be read off from the Smith
normal form, thanks to the geometric interpretation of the coefficients of the pas-
sage matrices. A classification of all possible ways to build representatives of the
cohomology classes (“collars”, “thick cuts”, “tunnels”, etc., as found in the work
of Kotiuga [3], Kettunen [2], etc.) is thus obtained.
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Pole Condition: A new Approach to Solve Scattering Problems
F. Schmidt

(joint work with T. Hohage and L. Zschiedrich)

The pole condition concept is an approach to investigate certain classes of
wave propagation problems on unbounded domains, including the time-dependent
Schrödinger equation, the Helmholtz equation and time-harmonic Maxwell equa-
tions. The basic idea has been developed originally to solve the 1D time-dependent
Schrödinger equation with non-constant exterior potentials [8, 9]. The convenient
handling of heterogeneous exterior domains in 1D situations obtained there was
the motivation to extend this concept to higher space dimensions as well as to
time-harmonic problems. It turned out that the desired generalization can be
done a very natural way.

We discuss the pole condition concept for solving time-harmonic scattering
problems modeled by Helmholtz and Maxwell’s equations on unbounded domains.
The essential aspects are the following. First, the entire space is decomposed into
an interior domain containing the scatterer and an exterior domain. The exterior
domain may have a heterogeneous structure. Among the admissible types of in-
homogeneous exterior domains are waveguide-like inhomogeneities which play an
important role in applications. For the special case of 1D problems it was shown
[7] that even exterior domains with periodic permittivities can be treated.

The basic idea of the pole condition approach is to consider the Laplace trans-
form of the field in the exterior domain in radial direction. Here, radial direction
denotes the distance-like direction in the exterior when covered by a prismatoidal
coordinate system [11]. If we fix the angular-like coordinate of the exterior system
and let the distance-like coordinate tend to infinity, we move on a ray from the
boundary of the interior domain towards infinity. We characterize the exterior
fields by the poles of their Laplace transforms along all possible rays and say that
a field satisfies the pole condition if its Laplace transform has no pole in the lower
half of the complex plane. Fields which satisfy the pole condition are outgoing
fields.
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A formulation of a scattering problem based on the pole condition consists
of three parts: the interior problem, the coupling to the exterior problem, and
the exterior problem in its Laplace transformed version. Additionally we have to
ensure that the solution of the Laplace part contains only functions that satisfy
the pole condition. The latter can be achieved in a number of different ways.
One way is to use an extra condition in form of an integral condition [7], another
to restrict the possible space of Laplace transformed functions by construction.
For the continuous form of the pole condition based formulation of the Helmholtz
scattering problem we obtained a number of results. First, the pole condition is
equivalent to Sommerfeld’s radiation condition in case of homogeneous exterior
domains [5], second, the pole condition yields a new representation formula for
for the exterior solution, third, parts of theorems concerning the series expansions
of exterior fields (theorems of Karp and Wilcox) could be extended. A further
surprising result states that the pole condition and the famous PML method are
very closely related to each other [6].

The different continuous formulations of the pole condition leads to different
numerical algorithms. Until now we investigated mainly two realizations: the
cut function approach [5, 7] which is also the basis if the theoretical analysis and
the real axis method [3, 7]. Whereas the first one allows directly to compute the
exterior fields from the obtained data, the second one yields only the interior
solution but has a simpler structure and can easily be extended to solve, e. g.,
eigenproblems on unbounded domains. A first numerical comparison between the
pole condition approach and the PML methods [3] shows that both cause roughly
the same numerical costs with a slight favour for PML. However, PML is not able
to reproduce the exterior solution.

There are a number of new theoretical results offering new application areas of
the pole condition. In [1] it has been shown by Arens and Hohage that the pole con-
dition and the upward propagating radiation condition are equivalent. This enables
a new approach in solving scattering problems involving unbounded obstacles. In
a recent paper [4] Hohage and Stratis proved the equivalence of the pole condition
and the Silver-Müller condition for electromagnetic scattering problems. The dis-
crete electromagnetic scattering problem in 2D has been considered in [2]. Another
application area of the pole condition concept is the computation of eigensolutions
and resonances of open systems. In [10] we develop a convergence theory for the
1D Schrödinger case which allows a safe determination of converged resonances.
The complete algorithm and main parts of the theory apply to higher dimensions
as well. In [11] Zschiedrich gives a review on the current state of results related to
the pole condition concept, a number of new results for time-dependent equations
and 2D and 3D applications of our code solving time-harmonic electromagnetic
scattering problems.
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Preconditioning for Maxwell Equations
Joachim Schöberl

In this talk, we discuss the construction and analysis of multigrid precondi-
tioners for H(curl) elliptic variational problems. We explain the smoothers of
Hiptmair, and Arnold-Falk-Winther. These smoothers take care of components
in the discrete kernel of the curl-operator, what is the gradient of the H1 finite
element space.

We sketch a new technique for the analysis of multi-level preconditioners in
H(curl). It is based on a multi-level decomposition by recently introduced com-
muting quasi-interpolation operators [1].

The second main topics in the talk is the discussion of algebraic multigrid
methods in H(curl). The idea is to define a coarsening algorithm for all finite
element spaces in H1, H(curl), H(div), and L2, which maintains the complete
sequence property on each multigrid level [2]. Thus, the the same smoothers work
as in the geometric multigrid.

The last topics are new high order finite elements for all the spaces H1, H(curl),
H(div), and L2. The high order H1 elements have lowest order vertex functions,
high order edge-, face-, and element-based shape functions. The H(curl) elements
have lowest order Nédélec (edge) shape functions, and high order edge-, face-, and
element-based shape functions. Next, the H(div) has lowest order Raviart-Thomas
(face) shape functions, and high order face- and element-based ones. Finally, the
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L2 element has the constants, and high-order element functions. We stress the
advantages of the new elements satisfying localized complete sequence properties
for the lowerst order, edge-based, face-base, and element-based shape functions:

WV
h, p+1=1

∇−→ V N0
h

curl−→ QRT 0
h

div−→ Sh, 0

WE
pE+1

∇−→ V E
pE

WF
pF +1

∇−→ V F
pF

curl−→ QF
pF −1

W I
pI+1

∇−→ V I
pI

curl−→ QI
pI−1

div−→ SI
pI−2

For the linear system of equations obtained by these basis function, simple
block-diagonal preconditioners (the blocks contain unknows associated with edges,
faces, and elements) in connection with an good coarse grid solver is efficient
for H(curl)-elliptic problems in the following sense: The condition number is
independent of the relative scaling of the L2-part and the curl-semi-norm in the
quadratic form, as well as independent of the mesh size. The dependency of p
depends on the choice of the basis functions, and is currently a major point in
research.

An other advantage of these basis function is that the order of the gradient
functions and rotational functions can be chosen independently. In the limit case
of a magnetostatic problem, the gradient functions can be totally skipped, which
improves computation time about by a factor of 4. These new high order basis
functions are explained in the upcoming paper [3].

All results are available from http://www.hpfem.jku.at
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Adaptive Multigrid-Methods for the Solution of Time-Harmonic
Eddy-Current Problems

O. Sterz

An important class of electromagnetic problems are low frequency applications
where the magnetic energy dominates the electric energy. Examples are devices
from power engineering like motors, generators, transformers and switch gears
as well as medical hyperthermia applications in cancer therapy. Here, the eddy-
current approximation of the full Maxwell equations can be employed to describe
the electromagnetic fields.
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An upper bound for the modeling error of the eddy-current approximation of
the full Maxwell-equations at a fixed angular frequency ω, as well as an asymp-
totic analysis for ω → 0, is given in [10], further details will be presented in [8].
Concerning the justification of the eddy current model by an asymptotic analysis,
we also want to mention the pioneering works [1] and [2].

Assuming perfect conductor conditions n × E = 0 at the boundary of the
domain Ω, a variational formulation based on the electric field reads: Find E ∈
H0(curl; Ω), such that ∀E′ ∈ H0(curl; Ω)

(µ−1 curlE, curlE′)L2(Ω) + iω(σE,E′)L2(ΩC) = −iω(JG,E′)L2(Ω) .

¿From this formulation we do not get a unique electric field E in the insulating
sub-domain, since we do not control the divergence of E and the total charges
of the conductors. However, the magnetic field H = −(iωµ)−1 curl E, which is
the interesting quantity in most cases of eddy current modeling, is unique. The
discretization is done by edge elements on simplex grids (Whitney-1-forms) as the
most natural choice.

To resolve local phenomena like singular behavior of the fields at edges and
corners as well as small penetration depths (skin effect), we rely on an adaptive
algorithm. With the help of an residual error estimator, see [5], the elements
with the largest estimated error contribution are marked (maximum strategy) and
refined (red/green-refinement). This results in a hierarchy of consistent grids.

The computation of real-world problems needs a large number of unknowns, up
to several millions on a single processor machine are possible. Thus, for the solution
of the linear systems of equations, as the most time consuming task, a fast method
is essential. Therefore, multigrid methods are applied since they offer optimal
complexity. For the smoothing in the multigrid cycles a standard algorithm like
Gauß-Seidel is used in the insulating part of the domain (σ = 0), whereas the
smoothing in the conductive part (σ > 0) needs a modification: Here, we may
apply the idea proposed in [6], which is based on a Helmholtz decomposition and
results in an additional smoothing step in the space of scalar potentials. Another
possibility is the application of an overlapping block smoother, see [3].

In case of locally adapted grids the overall complexity may not be optimal unless
the smoothing is restricted to the refined region. This leads to the implementation
of local multigrid methods, which can be realized by grids that do not cover the
whole computational domain at each level, see Fig. 5.

We finally mention, that the singularity of the arising linear system of equations
is not a problem, as long as we take care of two things:

(1) The right hand side is in the range space of the matrix to guarantee solv-
ability.

(2) During the iterative solution process the kernel components of the solution
will not grow (or will grow slowly enough) to prevent cancellation errors.

The first condition can be satisfied by an adequate computation of the discrete exci-
tation currents. To comply with the latter condition, we apply some approximate
projections onto the orthogonal complement of the kernel of the curl-operator.
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Figure 5. Example of a locally refined unit square: global grids
(left) and local grids (right) of the multigrid hierarchy.

This can be realized with low costs by additional multigrid-sweeps on a Poisson-
problem, see [10, 11].

All these concepts has been implemented in the adaptive finite element software
EMUG (electromagnetics on unstructured grids), which is based on the simulation
toolbox UG, see [4, 10]. EMUG has been successfully applied to benchmark prob-
lems as well as realistic problems. A parallel prototype of the electromagnetic
simulation tool is currently being developed.
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Perfectly Matched Layers
Fernando L. Teixeira

The simulation of electromagnetic problems in unbounded regions with partial
differential equation (PDE) based methods, such as finite element (FE) and finite
difference (FD) methods, necessitates the use of an absorbing boundary condition
(ABC) to emulate the radiation condition at infinity. Perfectly matched layers
(PML) are absorption layers used toward his purpose. The PML achieves a reflec-
tionless absorption of electromagnetic waves in the continuum limit as the mesh
discretization size goes to zero. The absorption inside the PML operates through
conductive losses, so that an exponential decay for the fields inside the PML is
obtained. Therefore, when the computational domain is surrounded by a PML
region, spurious reflections from the grid boundaries can be made exponentially
smaller. Being a local ABC, the PML retains the nearest-neighbor interaction
characteristic of PDE-based methods, and therefore it is particularly suited for
PDE-bases simulations on parallel computers. Also because of this property, the
PML retains the inherent sparsity and (low) computational complexity of PDE-
based methods.

When first introduced in the literature [1], the PML relied upon the use of
matched artificial electric and magnetic conductivities and the splitting of the
electromagnetic field components into two subcomponents each (split-field formu-
lation). Because of this, the resulting fields inside the PML layer were rendered
nonphysical (non-Maxwellian). The PML was later shown to be equivalent to a
complex coordinate stretching of the coordinate space [2] or a complex coordinate
transformation (analytic continuation of the coordinate space) [3],[4],[5]. Via such
transformation, the (real) spatial coordinates are mapped as

ζ → ζ̃ =
∫ ζ

0

sζ(ζ′)dζ′

where sζ , with ζ = x, y, z, are the so-called complex stretching variables, given by

sζ(ζ, ω) = aζ(ζ) + i
Ωζ(ζ)

ω

with aζ ≥ 1 and Ωζ ≥ 0 (profile functions). The first inequality ensures that
evanescent waves will have a faster exponential decay in the PML region, and the
second inequality ensures that propagating waves will also decay exponentially
along the respective coordinates in the PML. The ordinary Maxwell’s equations
are recovered from the above when sζ = 1. Therefore, the complex stretching
variables can be seen as added degrees of freedom to Maxwell’s equations.

The PML has also found an interesting dual formulation (Maxwellian PML)
with a more clear physical interpretation whereby the PML is represented by
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frequency dependent material (constitutive) tensors ε and µ [6],[7]. These tensors
also produce reflectionless absorption in the continuum limit. In addition to a more
direct physical interpretation, the Maxwellian PML yields an easier interfacing
with FE codes and a strongly well-posed formulation, as opposed to a weakly
well-posed formulation in the original split-field PML [8].

The PML was first developed for planar grid terminations (Cartesian coordi-
nates) [1],[2]. In order to be used with more general grid terminations, the PML
later extended to curvilinear coordinates [3],[4],[5]. Although the first of such ex-
tensions have dealt with non-Maxwellian formulations only, it was later shown that
Maxwellian PMLs could also be obtained in curvilinear geometries [9],[10]. In its
most general form (for doubly curved surfaces), the curvilinear PML correspond to
a conformal layer of anisotropic material tensors with inhomogeneous constitutive
properties that depend on the local geometry (principal curvatures) of the mesh
termination surface S [10],[11]. These PML constitutive parameters are given by
µ = µΛ and ε = εΛ, with [10]

Λ = t̂1t̂1

(
sh1h̃2

h̃1h2

)
+ t̂2t̂2

(
sh̃1h2

h1h̃2

)
+ n̂n̂

(
h̃1h̃2

sh1h2

)
.

Here s is the complex tretching coordinate along the normal coordinate ξ3 at
a point P in the mesh termination surface S, and hi and h̃i, i = 1, 2 are the
nonstretched and stretched, respectively, (local) metric coefficients [10]. The unit
vectors t̂i, i = 1, 2 are tangent to S at P along the principal lines of curvature
that define tangential orthogonal coordinates ξ1 and ξ2, and n̂ is the unit normal
vector at that point (outward). The metric coefficients are given by hi = ri/r0i,
where r0i are the principal radii of curvature at P and ri = r0i + ξ3, i = 1, 2.
The conformal PML is hence constructed over parallel surfaces to S. A basic
limitation that exist in this general case, however, is that both radii of curvature
should be non-negative (i.e., the PML can only be defined over planar or concave
termination surfaces as viewed from inside the computational domain). Otherwise,
dynamical instabilities ensue [11]. We note that the Cartesian, cylindrical, and
spherical PMLs are special cases of this general curvilinear case, followed (possibly)
by a successive application of the analytic continuation in orthogonal directions,
if needed to achieve absorption in corner regions.

It is also possible to generalize the PML to terminate problems in more complex
media, such as linear interior media exhibiting frequency dispersion and/or (bi)
anisotropy [12]. This is in contrast to other local ABC, where an exact extension
is often not possible in such cases. This extension is particularly important, for
example, in electromagnetic simulations involving subsurface problems or complex
materials [13]. For example, given an arbitrary dispersive and/or (bi)anisotropic
linear interior media in a Cartesian domain with constitutive tensors ε(ω), ξ(ω),
ζ(ω), µ(ω) , the corresponding Maxwellian PML bianisotropic constitutive param-
eters are given as [12]

λPML(ω) = (detS)−1
(
S · λ(ω) · S

)
,
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where the symbol λ stands for any of the above four constitutive tensors, and

S(ω) = diag{s−1
x , s−1

y , s−1
z }

Finally, we note that PML concept also admits a geometric interpretation as a
complexification of the metric of space in the Fourier domain [14]. By exploring
this interpretation, it can be shown that the differential forms language [15],[16]
provides an elegant framework to unify the various PML formulations and ob-
tain further generalizations. This is because the metric invariance of Maxwell’s
equations (in the sense of [17],[18]) is explicitely manifest in such language. A
modification in the metric (diffeomorphism) corresponds to a modification on the
Hodge operator, which fully incorporates the constitutive relations. The existence
of Maxwellian PMLs can be seen as a simple consequence of the metric invariance
of Maxwell’s equations. The various PML formulations in the vector calculus lan-
guage arise from the different choices on how to map differential forms to vector
fields. This map fixes an isomorphism between differential forms and vectors and
it depends on a metric. If the real metric is chosen to define such map, then the
Maxwellian PML is receovered. Alternatively, if the complex (stretched) metric is
chosen, then the non-Maxwellian PML is recovered. This also reveals that if other
consistent metrics are chosen to fix the form-vector isomorphism (e.g., hybridiza-
tions of the previous ones), other (indeed, infinitely many) PML formulations are
possible, albeit more cumbersome for practical implementation in numerical algo-
rithms [14]. In such context, the existing PML formulations are particular cases
of these choices.
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Some New Inexact Uzawa Methods and Non-overlapping DD
Preconditioners for Solving Maxwell’s Equations in Non-homogeneous

Media
Jun Zou

(joint work with Qiya Hu)

This talk will review some new preconditioned Uzawa iterative methods for
solving saddle-point systems, and a non-overlapping domain decomposition pre-
conditioner for solving three-dimensional Maxwell’s equations in non-homogeneous
media.

Iterative methods for saddle-point system. Consider the system

(1) Ax + By = f , Btx = g

where A is a symmetric and positive definite n × n matrix, and B is an n ×
m matrix with m ≤ n. The system (1) is assumed to be nonsingular, so the
Schur complement matrix C = BtA−1B is positive definite. Linear systems such
as (1) arise often from finite element discretizations of Maxwell equations and
Navier-Stokes equations. Solving the saddle-point system (1) is usually much
more difficult than solving the SPD system Ax = b. Recently the following inexact
preconditioned Uzawa-type algorithm:

xi+1 = xi + Â−1[f − (Axi + Byi)] , yi+1 = yi + Ĉ−1(Btxi+1 − g)(2)

has been widely used and studied (cf. [1] [2] [3] ) for solving (1). Here Â and Ĉ
are preconditioners for A and C. The existing convergence results indicate that
these algorithms converges assuming some good knowledge of the spectrum of the
preconditioned matrices Â−1A and Ĉ−1C or under some proper scalings of the
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preconditioners Â and Ĉ. This “preprocessing” may not be easy and convenient
to achieve in some applications.

Is it possible to introduce some relaxation parameters in (2) so that the resulting
algorithm always converges for any SPD preconditioners Â and Ĉ, and converges
with good rate when good preconditioners are available ? The following algorithm
was proposed for this purpose (cf.[4]):

xi+1 = xi + ωiÂ
−1[f − (Axi + Byi)] , yi+1 = yi + τiĈ

−1(Btxi+1 − g)(3)

where two parameters ωi and τi can be updated using only the actions of Â−1 and
Ĉ−1.

The detailed convergence and convergence rate of algorithm (3) were given in
terms of the condition numbers κ(Â−1A) and κ(Ĉ−1C), without any conditions on
preconditioner Ĉ, see [4]. Unfortunately our proofs hold only with the condition
that Â is properly scaled so that the eigenvalues of A−1Â are bounded by one, al-
though numerical experiments still demonstrated convergence when this condition
is violated.

When a good preconditioner Â is not available, one may replace the precondi-
tioning part of Â in (3) by some nonlinear iteration. This leads to the following
algorithm (cf. [5]):

xi+1 = xi + Ψ(f − (Axi + Byi)) , yi+1 = yi + τiĈ
−1(Btxi+1 − g)(4)

where Ψ is a nonlinear map in Rn such that for any φ ∈ Rn, Ψ(φ) approximates
the solution ξ of Aξ = φ. And the parameter τi can be updated using only the
actions of Ĉ−1 and Ψ.

The detailed convergence and convergence rate of the algorithm (4) can be given
in terms of the condition number κ(Ĉ−1C) and the tolerance parameter used for
Ψ, and no any conditions on the preconditioner Ĉ are needed.

The algorithm (4) may not work well when the conditioning of the precondi-
tioned Schur complement Ĉ−1C is much worse than the conditioning of system
Â−1A. In this case, we may use a few PCG iterations with preconditioner Ĉ to
improve the conditioning of Ĉ−1C, then apply the algorithm (4). This suggests
the following algorithm (cf. [7]):

xi+1 = xi + Ψ(f − (Axi + Byi)) , yi+1 = yi + τiΨH(Btxi+1 − g),(5)

where ΨH(gi) for any gi is the iterate generated by the PCG method with precon-
ditioner Ĉ for solving Hψ = gi with H = BT Â−1B such that for some δ ∈ (0, 1),

‖ΨH(gi) − H−1gi‖H ≤ δ ‖H−1gi‖H .

The actual effect of ΨH(gi) amounts to generating a new preconditioner Q̂i such
that the conditioning of Q̂−1

i C is much improved than the one of Ĉ−1C and
κ(Q̂−1

i C) is about the same as κ(Â−1A) (cf. [7]). The convergence and conver-
gence rate of this algorithm was given in [7] and also applied to solving nonlinear
saddle-point system like

F (x) + By = f, Btx = g .
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Non-overlapping domain decomposition methods. Consider the Maxwell
system:

(6)

 ∇× (α∇× u) + γ0βu = f in Ω
∇ · (βu) = g in Ω

where Ω is a Lipschitz polyhedral domain in R3, not necessarily convex. α(x) and β(x)
are positive but may be discontinuous in Ω. The perfect boundary condition u × n = 0
is assumed on ∂Ω. The constant γ0 is non-negative, and it is allowed to be identically
zero. It is this extreme case that causes the most troublesome technical difficulty in the
analysis.

The variational saddle-point problem associated with system (6) is formulated as
follows:

Find (u, p) ∈ H0(curl; Ω) × H1
0 (Ω) such that

(7)


(α∇× u,∇× v) + γ0(βu,v) + (∇p, βv) = (f , v), ∀v ∈ H0(curl; Ω)
(βu,∇q) = (g, q), ∀q ∈ H1

0 (Ω).

Domain decompositions and edge elements. Decompose Ω into N non-overlap-
ping tetrahedral subdomains {Ωi}N

i , with each Ωi of size d. The common face of sub-
domains Ωi and Ωj is denoted by Γij , and set Γ = ∪Γij , and Γi = Γ ∩ ∂Ωi. Then
we divide each Ωi into smaller tetrahedral elements of size h so that elements from two
neighboring subdomains match with each other on the interface Γ. Let Th be the result-
ing triangulation of the domain Ω. We shall approximate the field u and multiplier p by
the Nédélec edge element space of lowest order and the piecewise linear nodal element
space of H1

0 (Ω), denoted by Vh(Ω) and Zh(Ω). Then the edge element approximation of
system (7) is to find (uh, ph) ∈ Vh(Ω) × Zh(Ω) such that

(8)


(α∇× uh,∇× vh) + γ0(βuh,vh) + (∇ph, βvh) = (f ,vh), ∀vh ∈ Vh(Ω)
(βuh,∇qh) = (g, qh), ∀qh ∈ Zh(Ω).

For any face f of Ωi, fb denotes the union of all Th-induced (closed) triangles on f, which
have either one single vertex or one edge lying on ∂f, and f∂ denotes the open set f\fb.
For any subdomain Ωi, define ∆i = ∪f⊂Γi

fb. With each Ωi, we define a local operator
Ai on Vh(Ωi), a standard restriction space of Vh(Ω) on Ωi, by

(Aiu,v) = (α∇× u,∇× v)Ωi + (αu,v)Ωi , ∀u, v ∈ Vh(Ωi).

And Ã is defined similarly to Ai but on the global space Vh(Ω). For any Φ ∈ Vh(Γi), we
define its discrete Ai-extension Ri

hΦ in Vh(Γi): Ri
hΦ × n = Φ on Γi and solves

(AiR
i
hΦ, vh) = 0, ∀vh ∈ V 0

h (Ωi).

We can write system (8) as the operator form:

(9) (Ā + γ0 β I)uh + Bph = f̄h, Btuh = gh.

Noting that the operator Ā is singular in Vh(Ω), we can not apply the existing Uzawa-
type iterative solvers for solving the saddle-point system when γ0 = 0. To avoid the
difficulty, we rewrite (9) into the following equivalent system

(10) Auh + Bph = fh, Btuh = gh

where A = Ā + γ0 β I for γ0 �= 0 and A = Ā + r0BĈ−1Bt if γ0 = 0. Now one can

apply, for example, the inexact Uzawa algorithm (3) for (10). It is important to note

that the action of Ĉ−1 needs only once in each iteration, and the convergence rate of this

algorithm is determined by κ(Â−1A) and κ(Ĉ−1BtÂ−1B).
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Construction of preconditioners for A and BtA−1B.
One can show (cf. [6]) that if Ĉ is a preconditioner for BtA−1B such that

(β∇φ,∇φ) <∼ (Ĉφ, φ) <∼ G(d/h)(β∇φ,∇φ) for all φ ∈ Zh(Ω),

then we have G(d/h)−1(Ãvh,vh) <∼ (Avh,vh) <∼ (Ãvh,vh), for all vh ∈ Vh(Ω).

So it suffices to construct a preconditioner for Ã, instead of A.
Let λe(v) be the moment of v on any edge e, V H(Ω) ⊂ Vh(Ω), consisting of all

discrete Ai-extensions in each Ωi, and

V p(Ω) =
NY

k=1

V 0
h (Ωk) , V ij(Ω) =

n
v ∈ V H(Ω); supp(v) ⊂ Ωi ∪ Ωj ∪ Γij

o
,

V 0(Ω) =
n
v ∈ V H(Ω); λe(v) = 0 for each e ∈ f∂ with f ⊂ Γ

o

while Âp and Âij are operators on V p(Ω) and V ij(Ω), and Â0 the coarse solver
in V 0(Ω):

(Âpv,v) =∼
NX

k=1

(Akv,v)Ωk ∀v ∈ V p(Ω);

(Âijv,v) =∼ (Aivi,vi)Ωi + (Ajvj , vj)Ωj ∀v ∈ V ij(Ω)

(Â0v,w) = h[1 + log(d/h)]
NX

i=1

αi

n
〈divτ (v × n)|Γi , divτ (w × n)|Γi〉∆i

+〈v × n,w × n〉∆i

o

Then the additive preconditioner Â formed by Â0, Âp and Âij is nearly optimal,
i.e. κ(Â−1A) <∼ G(d/h)[1 + log(d/h)]2 , also independent of jumps of material
coefficients (cf.[6]).
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Raphaël Rouquier (joint with J. Chuang)
Categorification of Weyl groups and Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . 645

Roman Bezrukavnikov (joint with D. Kaledin)
McKay equivalence for symplectic quotient singularities . . . . . . . . . . . . . . . . . 646

Victor Ginzburg (joint with R. Bezrukavnikov, M. Finkelberg)
Cherednik algebras and Hilbert schemes in characteristic p . . . . . . . . . . . . . . 648

Boris Kunyavskii (joint with M. Borovoi)
Arithmetic birational invariants of linear algebraic groups over some
geometric fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 648

Philippe Gille
A non rational group variety of type E6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 649

Emmanuel Peyre (joint with A. Chamber-Loir)
Rational points and curves on flag varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 650

Jochen Kuttler (joint with J. B. Carrell)
Tangent cones to Schubert varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654

Tom Braden
Torsion in intersection cohomology of Schubert varieties . . . . . . . . . . . . . . . . 655

Eric Sommers
Normality of nilpotent varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 656

V. Lakshmibai (joint with V. Kreiman, P. Magyar, and J. Weyman)
Standard Monomial basis for nilpotent orbit closures . . . . . . . . . . . . . . . . . . . . 657



636 Oberwolfach Report 12/2004

Vikram Mehta (joint with V. Balaji)
Singularities of moduli spaces of vector bundles in char. 0 and char. p . . 660

J. Hausen
Good quotients for reductive group actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 660

Harm Derksen
Universal denominators of invariant rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 664

Anders S. Buch
Alternating signs of quiver coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 664

Jean-Pierre Serre
On the values of the characters of compact Lie groups . . . . . . . . . . . . . . . . . . . 666



Algebraische Gruppen 637

Abstracts

LS-Galleries, the path model and MV-cycles
Peter Littelmann

(joint work with S. Gaussent)

The talk is a report on joint work [2] with Stéphane Gaussent (Nancy).
The aim of the work is to connect the combinatorics of the path model for

representations of a complex semisimple algebraic group G [4] with the work of
Mirković and Vilonen [6] on the intersection cohomology of Schubert varieties in
the affine Grassmannian G of its Langlands dual group Ǧ.

Recall that G is the quotient G = Ǧ(C((t)))/Ǧ(C[[t]]). As Ǧ(C[[t]])–variety, G
decomposes [3] into the disjoint union of orbits Gλ = Ǧ(C[[t]]).λ, where λ runs
over all dominant characters of G (= co-characters of Ǧ).

The closure Xλ = Gλ of such an orbit is a finite dimensional projective variety
(in terms of Kac–Moody groups, it is a Schubert variety). The intersection co-
homology of this variety is closely connected with the irreducible representation
V (λ) of G of highest weight λ. Lusztig [5] has shown that the Poincaré series of
the stalks of the intersection cohomology sheaf in a point x ∈ Gµ, µ � λ, coincides
with a q–version of the weight multiplicity of µ in V (λ). Mirković and Vilonen
construct in [6] a canonical basis of IH•(Xλ), represented by certain cycles called
MV–cycles in the following. This explicit basis has been used by Vasserot in [7]
to construct an action of G on IH•(Xλ) such that the latter is an irreducible
representation of highest weight λ.

In our combinatorial setting, the language of paths is replaced by the language
of galleries in an apartment, and LS-paths are replaced by LS–galleries. The
translation between the two settings is rather straightforward.

Consider a Demazure–Hansen–Bott–Samelson desingularization Σ̂(λ) of Xλ. If
λ is regular, fixing such a desingularization is equivalent to fixing a minimal gallery
γλ joining the origin and λ. The homology of Σ̂(λ) has a basis given by Bia�lynicki–
Birula cells, which are indexed by the T –fixed points in Σ̂(λ). The connection with
galleries is obtained as follows: by [1], the points of Σ̂(λ) can be identified with
galleries of type γλ in the affine Tits building associated to Ǧ, and the T –fixed
points correspond in this language to galleries of type γλ in the apartment fixed
by the choice of T . We show that the retraction from −∞ of the building onto
the apartment induces on the level of galleries a map from Σ̂(λ) onto the set of
galleries of type γλ, such that the fibres are precisely the Bia�lynicki–Birula cells.
We determine those galleries γ such that the associated cell has a non-empty
intersection Sγ with Gλ (identified with an open subset of Σ̂(λ)), and we show
that the closure Sγ ⊂ Xλ is a MV-cycle if and only if γ is a LS-gallery. The
galleries can also be used to derive more information about the cycles (dimension,
affine open subsets of the form Ca × (C∗)b, . . .).
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Algebras with trace and Clebsch-Gordan coefficients for quantum
groups

Corrado De Concini
(joint work with Procesi, Reshetikhin, Rosso)

We have reported on joint work with Procesi, Reshetikhin and Rosso. All rings will
be algebras over a field of characteristic zero. An associative algebra with trace,
over a commutative ring A is an associative algebra R with a 1-ary operation

t : R→ R

which is assumed to satisfy the following axioms:

(1) t is A−linear.
(2) t(a)b = b t(a), ∀a, b ∈ R.
(3) t(ab) = t(ba), ∀a, b ∈ R.
(4) t(t(a)b) = t(a)t(b), ∀a, b ∈ R.

This operation is called a formal trace. We denote t(R) := {t(a), a ∈ R} the
image of t. We have:

1) t(R) is an A−subalgebra and that t is also t(R)−linear.
2) t(R) is in the center of R.
3) t is 0 on the space of commutators [R, R].

The basic example is the algebra of n×n matrices over a commutative ring B.
For the algebra of matrices one has the Cayley Hamilton theorem:

Every matrix M satisfies its characteristic polynomial χM (t) := det(t−M).

The main remark that allows to pass to the formal theory is that, in charac-
teristic 0, there are universal polynomials Pi(t1, . . . , ti) with rational coefficients,
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such that:

χM (t) = tn +
n∑

i=1

Pi(tr(M), . . . , tr(M i))tn−i.

Thus we can consider the Cayley Hamilton polynomial of an element in an
arbitrary algebra with trace and we are led to make the following.

Definition 1. An algebra with trace R is said to be an n−Cayley Hamilton
algebra, or to satisfy the nth Cayley Hamilton identity if:

1) t(1) = n.
2) χn

a(a) = 0, ∀a ∈ R.

A structure of Cayley Hamilton algebra can be given in the following situation.
Let A be a domain and assume that A ⊂ R and R is an A−module of finite type.
Furthermore assume that A is integrally closed in its quotient field F .

Set S := R⊗A F . S is a finite dimensional division ring.
Let Z denote the center of S Set dimZ S = h2 and p := [Z : F ] = dimF Z.
Consider the F−linear operator aL : S → S, aL(b) := ab and put tS/F (a) =

1
hk tr(aL).

Theorem 1. The reduced trace tS/F maps R into A, so we will denote by tR/A

the induced trace.
The algebras R, S with their reduced trace are n−Cayley Hamilton algebras of

degree n = hp = [S : F ] = [R : A] (we set [R : A] := [S : F ]).

Assume now that we have two domains R1 ⊂ R2 over two commutative rings
A1 ⊂ A2 ⊂ R2, that each Ri is finitely generated as Ai module and that the two
rings Ai are integrally closed. We thus have the two reduced traces tRi/Ai

. We say
that the two algebras are compatible if denoting by Z1 the center of R1, Z1⊗A1 A2

is a domain.

Theorem 2. Given two compatible algebras R1 ⊂ R2 we have that for a positive
integer r:

r tR1/A1 = tR2/A2 on R1

One can give various applications of these ideas. One is the following. Let g
denote a semisimple Lie algebra and let Uε be the quantized enveloping algebra
with deformation parameter specialized at a primitive �-th root of 1 (� odd and
prime with 3 if there are G2 factors). Uε is a Hopf algebra with comultiplication

∆ : Uε → Uε ⊗ Uε.

One knows that the center Z of Uε contains a Hopf subalgebra Z0 and that Uε is a
finite free Z0 module. In particular by taking central characters, one can associate
to every irreducible representation V of Uε an element π(V ) in the algebraic group
H =SpecZ0. Applying Theorem 2 with R1 = ∆(Uε), A1 = ∆(Z0), R2 = Uε ⊗ Uε,
A2 = Z ⊗ Z, we deduce:
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Theorem 3. Given two generic irreducible representations V and W of Uε with
h = π(V ), k = π(W ),

V ⊗W �
⊕

U∈π−1(hk)

U⊕�(dimg−rkg)/2
.

Projective normality of complete symmetric varieties
Andrea Maffei

(joint work with R. Chiriv̀ı )

The results of this talk have been obtained together with Rocco Chiriv̀ı of the
University of Pisa.

Let G be an adjoint semisimple algebraic group over C and σ : G → G an
involution of algebraic groups. Denote by H the subgroup of points fixed by σ.
A wonderful G-equivariant compactification X of the symmetric variety G/H has
been constructed by De Concini and Procesi [5] in characteristic zero and by De
Concini and Springer [6] in general. Our main result is the following.

Theorem A ([2]). If L andM are line bundles on X, generated by global sections,
then the multiplication Γ(X,L)⊗ Γ(X,M)→ Γ(X,L ⊗M) is surjective.

This generalizes a result of Kannan [8] on the wonderful compactification of
groups, and in characteristic zero it answers a question of Faltings [7]. In positive
characteristic De Concini has given a counterexample to the same theorem. It is
maybe worth observing here that these varieties are Frobenius split (and probably
canonical Frobenius split).

We say that a line bundle L is bigger or equal to a line bundleM if L⊗M−1 is
generated by global sections. We call this the dominant ordering. The proof of the
theorem is essentially by induction on the dimension of X and on the dominant
order on line bundles. Using the description of the boundary of G/H in X given
in [5] it is possible to reduce the claim to a few cases controlled by some special
triples of weights of a root system that we call “low triples”.

We can give the definition of root system for an abstract root system. Let Φ
be a root system, ∆ a basis of simple roots and Λ+ the corresponding monoid of
dominant weights and indicate with ≤ the dominant order. Given λ, µ, ν ∈ Λ+, we
say that (λ, µ, ν) is a low triple if the following conditions hold: (i) if λ′, µ′ ∈ Λ+

satisfy λ′ ≤ λ, µ′ ≤ µ and ν ≤ λ′+µ′, then λ′ = λ, µ′ = µ; (ii) ν+
∑

α∈∆ α ≤ λ+µ.
We have the following classification which suffices to finish the proof of Theorem A.

Theorem B ([2]). A triple (λ, µ, ν) of dominant weights is a low triple if and only
if λ and µ are minuscule weights, µ = −w0λ and ν = 0, for the longest element
w0 of the Weyl group of Φ.
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Since X is smooth, Theorem A implies that for all line bundles L generated by
global sections the cone over the image of X in P(Γ(X,L)∗) is normal.

Together with Corrado De Concini, we have applied Theorem A to the inves-
tigation of normality of cones of other immersions of X . Consider an irreducible
representation V of LieG such that H has a fixed point h in P(V ). Let CV be the
cone over the closure of the G-orbit XV through h. The natural map G/H −→ XV

induced by g 
−→ gh extends to X and defines a line bundle LV generated by global
sections. We have obtained the following description of the normalization of CV .

Theorem C ([3]). The integral closure of the coordinate ring of CV is the ring⊕
n≥0 Γ(X,L⊗n

V ).

In particular (by Theorem A above and the description of the sections of a line
bundle given in [5]), we can classify the representations for which CV is normal.
generalizing the results obtained in [4] in the case of the compactification of a
group.

A simple generalization of this result allows us to give a uniform proof of the
normality of some classical varieties that appear in Lie theory.
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Complete reducibility and strong reductivity
Gerhard Röhrle

(joint work with M. Bate and B. Martin)

Abstract. Let G be a connected reductive linear algebraic group and
let H be a closed subgroup of G. Our main result shows that H is
G-completely reducible if and only if H is strongly reductive in G. As
a consequence we provide an affirmative answer to a question posed
by J.-P. Serre, whether a normal subgroup of a G-completely reducible
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subgroup of G is again G-completely reducible. Apart from this we
discuss other applications. In particular, we prove a converse to Serre’s
question, namely that H is G-completely reducible if and only if its
normalizer NG(H) is.

This is a report on joint work with M. Bate and B. Martin.

Let G be a connected reductive linear algebraic group defined over an alge-
braically closed field k. Let H be a closed subgroup of G. Following R.W. Richard-
son, we say that H is strongly reductive in G provided H is not contained in any
proper parabolic subgroup of CG(S), where S is a maximal torus of CG(H), [2,
Def. 16.1]. Observe that this notion does not depend on the choice of the maximal
torus S of CG(H). Richardson introduced this notion in order to characterize
closed orbits for the diagonal action of G on the direct product of a finite number
of copies of G or its Lie algebra LieG, [2, Thm. 16.4]. In [2, Lem. 16.2] Richard-
son showed that a closed subgroup H of GL(V ) (where V is a finite dimensional
k-space) is strongly reductive if and only if V is a semisimple H-module. Our aim
is to extend this result to arbitrary reductive groups. For that purpose we require
the notion of G-complete reducibility due to J.-P. Serre, [3]. Following Serre, a
subgroup H of G is called G-completely reducible (G-cr) provided that whenever
H is contained in a parabolic subgroup P of G, it is contained in a Levi subgroup
of P . In case G = GL(V ) a subgroup H is G-cr exactly when V is a semisimple
H-module.

The principal result of this talk is

Theorem 1. Let G be reductive and suppose H is a closed subgroup of G. Then
H is G-completely reducible if and only if H is strongly reductive in G.

The notion of G-complete reducibility is part of the philosophy developed by J.-
P. Serre, J. Tits and others to extend standard results from representation theory
to algebraic groups by replacing representations H → GL(V ) with morphisms
H → G, where the target group is an arbitrary reductive algebraic group. Theorem
1 is an example of such an extension.

Using Theorem 1 and existing results on strong reductivity, we immediately get
new results on G-complete reducibility.

The following result which follows readily from Theorem 1 and [1, Thm. 2] gives
an affirmative answer to a question posed by J.-P. Serre, [3, p. 24]. The special
case when G = GL(V ) is just a particular instance of Clifford theory.

Theorem 2. Let G be reductive and let H be a closed subgroup of G with closed
normal subgroup N . If H is G-completely reducible, then so is N .

Serre proves a converse to Theorem 2 in [3, Property 5] under the assumption
that the index of N in H is prime to chark. Examples show that this restriction
cannot be removed. For instance, let U be a finite unipotent subgroup of G
contained in a Borel subgroup of G. Then, by a construction due to Borel and
Tits there exists a parabolic subgroup P of G so that U ⊆ Ru(P ). In particular,
U is not G-cr, but clearly U0 = {1} is. In Theorem 4 below we give a converse of
Theorem 2 without characteristic restrictions but with the additional assumption
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that H contains the centralizer in G of N . In particular, we derive that a closed
subgroup H of G is G-completely reducible if and only if its normalizer NG(H) is,
cf. Corollary 5.

Much of the work in this paper is based on the following result:

Proposition 3. Let x1, . . . , xn ∈ G (for n ∈ N) and let H be the subgroup of
G (topologically) generated by x1, . . . , xn. Then H is G-completely reducible if
and only if the orbit of (x1, . . . , xn) under the diagonal action of G on Gn by
simultaneous conjugation is closed.

Proposition 3 allows us to use methods from geometric invariant theory to study
G-completely reducible subgroups. E.g. it is crucial for our next

Theorem 4. Let H be a closed G-completely reducible subgroup of G and suppose
K is a closed subgroup of G satisfying HCG(H) ⊆ K ⊆ NG(H). Then K is
G-completely reducible.

The following are immediate consequences of Theorems 2 and 4.

Corollary 5. Let H be a closed subgroup of G. Then H is G-completely reducible
if and only if NG(H) is.

Corollary 6. Let H be a closed subgroup of G. If H is G-completely reducible,
then so is CG(H).

Time permitting we shall discuss other applications of Theorem 1 and new
results for G-completely reducible subgroups of G

Finally, we will indicate Serre’s approach to G-complete reducibility by means
of the homotopy type of the fixed point subcomplex of the building of G.
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On the canonical embeddings of certain homogeneous spaces
Dmitri A. Timashev

(joint work with I. V. Arzhantsev)

This is a joint work with I. V. Arzhantsev, see [3]. Let G be a connected reductive
algebraic group over an algebraically closed field k of characteristic 0, and H its
closed subgroup. The subgroup H is said to have the Grosshans property [1] if
the homogeneous space G/H is quasiaffine and the coordinate algebra k[G/H ] is
finitely generated. In this situation among all equivariant open affine embeddings
X ←↩ G/H one can distinguish a minimal one X = Spec k[G/H ], called the
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canonical embedding. The study of the canonical embedding is a geometric way to
examine the properties of the coordinate algebra of G/H .

It is well known [2] that the unipotent radical Pu of a parabolic subgroup P of G
is a Grosshans subgroup. We study the canonical embeddings of the spaces G/Pu.
This interesting class of affine varieties includes the universal affine embedding
of G/U , where U is a maximal unipotent subgroup of G, the space of linear
maps to a symplectic vector space with isotropic image, etc. Our main results
include: the description of the orbital decomposition for the canonical embedding
X ←↩ G/Pu; computing the modality of the G-action; classification of the smooth
canonical embeddings; construction of the minimal ambient G-module V ⊃ X (in
the algebraic language this is equivalent to the description of a minimal generating
set for k[G/Pu]).

Our approach works for a wider class of affine embeddings of G/Pu. The idea is
to consider G/Pu as a homogeneous space under G× L, where the Levi subgroup
L ⊆ P acts by right translations. It is clear that this (G×L)-action extends to the
canonical embedding. More generally, we consider arbitrary (G × L)-equivariant
affine embeddings X ←↩ G/Pu. Several interesting varieties such as varieties of
complexes belong to this class.

Such affine embeddings are classified by finitely generated semigroups S of G-
dominant weights having the property that all highest weights of tensor products
of simple L-modules with highest weights in S belong to S, too. Furthermore,
every choice of the generators λ1, . . . , λm ∈ S gives rise to a natural G-equivariant
embedding X ↪→ Hom(V Pu , V ), where V is the sum of simple G-modules of highest
weights λ1, . . . , λm. The convex cone Σ+ spanned by S is nothing else but the
dominant part of the cone Σ spanned by the weight polytope of V Pu . The variety
X is normal iff S is the semigroup of all lattice points of Σ+.

We prove that the (G × L)-orbits in X are in bijection with the faces of Σ
whose interiors contain dominant weights, orbit representatives being given by the
projectors onto the subspaces of V Pu spanned by eigenvectors of eigenweights in
a given face. Also we compute the stabilizers of these points in G × L and in G,
and the modality of the action G : X .

These results are applied to canonical embeddings as follows. The semigroup
S here consists of all dominant weights, and Σ is the span of the dominant Weyl
chamber by the Weyl group of L. The (G × L)-orbits in X are in bijection with
the subdiagrams in the Dynkin diagram of G such that no connected component
of such a subdiagram is contained in the Dynkin diagram of L. In terms of these
diagrams, we compute the stabilizers and the modality of G : X .

We prove that the only essential cases of smooth embeddings in the considered
class are: X1 = G, X2 = Mat(n, n − 1), X3 = Mat(n, n), all other smooth cases
being given by a product construction. The first two examples are canonical
embeddings with P = G for X1; G = SL(n), P the stabilizer of a hyperplane in
kn for X2; G = P = GL(n) for X3.

The techniques used in the description of affine (G × L)-embeddings of G/Pu

are parallel to those in the study of equivariant embeddings of reductive groups



Algebraische Gruppen 645

[4]. This analogy becomes more transparent in view of the bijection between
these affine embeddings G/Pu ↪→ X and algebraic monoids M with the group of
invertibles L, given by X = Spec k[G×P M ].

Finally, returning to the case of the canonical embedding X ←↩ G/Pu, we
describe the G-module structure on the tangent space of X at the G-fixed point,
assuming that G is simply connected simple.
This space is obtained from

⊕
i Hom(V Pu

i , Vi), where Vi are the fundamental simple
G-modules, by removing certain summands according to an explicit algorithm.
The tangent space at the fixed point is at the same time the minimal ambient
G-module for X .
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Categorification of Weyl groups and Lie algebras
Raphaël Rouquier

(joint work with J. Chuang)

It is classical that various actions of Weyl groups or Lie algebras on vector spaces
come from functors acting on abelian or triangulated categories of algebraic or
geometric origin, whose Grothendieck group is that space. We want to explain
that the natural transformations between these functors should satisfy certain
algebraic relations, leading to a better control of the triangulated categories acted
on. Namely, we believe there is a “canonical” categorification of a number of
classical algebras or groups, in particular Kac-Moody algebras, Weyl groups, braid
groups (a monoidal category given by generators and relations).

In a joint work with Joseph Chuang, we explain the setting for sl2, which leads
to a construction of equivalences of derived categories between blocks of Hecke
algebras of type A.

An sl2-categorification of an abelian category is the data of adjoint exact end-
ofunctors E and F inducing an sl2-action on the Grothendieck group and the
data of endomorphisms X of E and T of E2 satisfying the defining relations of
(degenerate) affine Hecke algebras.

We prove a categorified version of the relation [e, f ] = h. We construct divided
powers of E and F and a categorification Θ of the simple reflection (following a
construction of Rickard). Our main result is a proof that Θ is a self-equivalence
at the level of derived categories.
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We construct a minimal categorification of the simple sl2-representations and
show that the proof of the results above can be reduced to this case of a minimal
categorification.

We apply these results to the sum of the module categories of all Hecke algebras
of type A at an e-th root of unity in characteristic 0 (there are similar results in
characteristic p > 0).

Recall that there is an action of ŝle on the sum of Grothendieck groups of
categories of modules over Hecke algebras of type A at an e-th root of unity. The
action of the generators ei and fi come from exact functors between modules (“i-
restriction” and “i-induction”). The adjoint action of the simple reflections of
the affine Weyl group can then be categorified as inversible endofunctors of the
derived category, since every i leads to an sl2-categorification. As a consequence,
two blocks in the same affine Weyl group orbit have equivalent derived categories.

McKay equivalence for symplectic quotient singularities
Roman Bezrukavnikov

(joint work with D. Kaledin)

Let K be an algebraically closed field of characteristic 0, let V be a finite-
dimensional K-vector space equipped with a non-degenerate skew-symmetric form
ω ∈ Λ2(V ∗), and let Γ ⊂ Sp(V ) be a finite subgroup. Suppose that we are given
a resolution of singularities of the quotient variety π : X → V/Γ such that the
symplectic form on the smooth part of V/Γ extends to a non-degenerate closed
2-form Ω ∈ H0(Ω2

X). In a joint work with D. Kaledin, see [BK], we prove the
following

Theorem. There exists an equivalence of OΓ
V -linear triangulated categories

Db(Coh(X)) ∼= Db(CohΓ(V )).

A conjecture of this type was first made by M. Reid [R]; a more general state-
ment was conjectured by A. Bondal and D. Orlov, [BOr, §5].

When dim(V ) = 2 such an equivalence is well-known, [KV]; in fact, our ar-
gument relies on these results. Recently a similar statement was established by
T. Bridgeland, A. King and M. Reid [BKR] for crepant resolutions of Gorenstein
quotients of vector spaces of dimension 3. The result of [BKR] does not follow
from our theorem, because a symplectic vector space can not be 3-dimensional.
Notice though that our additional assumption on the resolution is not restrictive
— every crepant resolution X of a symplectic quotient singularity in fact carries
a non-degenerate symplectic form (see e.g. [Ka]).

Our proof uses reduction to positive characteristic, and quantization of the
symplectic variety Xk over a field k of characteristic p > 0. Our method is sug-
gested by the results of [BMR], where D-module technique is applied to study
representations of simple Lie algebras in positive characteristic.
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The key ingredient of the proof is a quantization of Xk whose global sections
coincide with the standard quantization of H0(OX) = H0(V,OV )Γ (the role of
this quantization in our picture is similar to the role played by the (crystalline)
differential operators in [BMR]). By quantization we mean a deformation of the
structure sheaf OX to a sheaf of non-commutative k[h]-algebras Oh(X) such that
the algebra of global sections H0(X,Oh) is identified to the subalgebra WΓ ⊂ W
of Γ-invariant vectors in the (completed) Weyl algebra W of the vector space V .

It turns out that the reduction of Oh(X) at a non-zero value of the deformation
parameter h (e.g. at h = 1) is an Azumaya algebra on X

(1)
k (a parallel statement

for the ring of differential operators was discovered by Mirkovic and Rumynin,
see [BMR]). The category of modules over the latter is the category of coherent
sheaves on some gerb over X(1).

One then argues that the above Azumaya algebra on X(1) is derived affine, i.e.
the derived functor of global sections provides an equivalence between the derived
category of sheaves of modules, and the derived category of modules over its global
sections; this algebra of global sections is identified with the algebra WΓ, where
W is the reduction of the Weyl algebra at h = 1.

Furthermore, for large p we have a Morita equivalence between WΓ and W#Γ,
the smash-product of W and Γ.
Thus we get an equivalence between Db(W#Γ-modfg) and the derived category
of modules over the Azumaya algebra on X(1). The algebra W is an Azumaya
algebra over V (1); thus, roughly speaking, the latter equivalence differs from the
desired one by a twist with a certain gerb. We then use the norm map on Brauer
groups, and Gabber’s Theorem [G] to pass from sheaves over a gerb to coherent
sheaves on the underlying variety.

Then the equivalence over k of large positive characteristic is constructed; by a
standard procedure we derive the desired statement over a field of characteristic
zero.

The above Theorem implies, more or less directly, that any crepant resolution
X of the quotient V/Γ is the moduli space of Γ-equivariant Artinian sheaves on V
satisfying some stability conditions (what is known nowadays as G-constellations).

In the case when X = Hilbn(A2) is the Hilbert scheme of n points on the affine
plane our argument reproves some of the results by M. Haiman, which constitute
a part of his proof of the n! Conjecture.

Also, our methods were used by Finkelberg and Ginzburg to relate representa-
tion theory of (a graded version of) Cherednik double affine Hecke algebra (a.k.a.
the symplectic reflection algebra) in characteristic p to geometry of the Hilbert
scheme; this is explained in the talk by Victor Ginzburg at this conference.
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Cherednik algebras and Hilbert schemes in characteristic p

Victor Ginzburg
(joint work with R. Bezrukavnikov, M. Finkelberg)

We prove a localisation theorem for the type A rational Cherednik algebra Hc =
H1,c over an algebraic closure of the finite field Fp. In the most interesting special
case where the parameter c takes values in Fp, we construct an Azumaya algebra
Ac on Hilbn, the Hilbert scheme of n points in the plane, such that the algebra
of global sections of Ac is isomorphic to Hc. Our localisation theorem provides an
equivalence between the bounded derived categories of Hc-modules and sheaves of
coherent Ac-modules on the Hilbert scheme, respectively. Furthermore, we show
that the Azumaya algebra splits on the formal completion of each fiber of the
Hilbert-Chow morphism. This provides a link between our results and those of
Bridgeland-King-Reid and Haiman.

Arithmetic birational invariants of linear algebraic groups over some
geometric fields
Boris Kunyavskii

(joint work with M. Borovoi)

We discuss two birational invariants: the set of classes of R-equivalence G(k)/R,
and the unramified Brauer group Brnr G. Our goal is to extend some results from
the arithmetic case (where k is a number field) to the case where k is a field of
cohomological dimension two. More precisely, for k of one of the following types:

(i) k = k0(X), dim X = 2, k0 = k0, char k0 = 0;
(ii) k = fraction field of a 2-dimensional, excellent, henselian local domain

with residue field k0;
(iii) k = l((t)), c. d.(l) = 1, char l = 0,
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which were earlier studied by Colliot-Thélène, Gille, and Parimala, we prove that
G(k)/R and Brnr G/ Br k can be expressed through the algebraic fundamental
group π1(G). More precisely, in the above set-up, let

0→ QG → P → π1(G)→ 0

be a coflasque resolution of π1(G), that is, P is a permutation Gal(k/k)-module,
and H1(Γ′, QG) = 0 for all open Γ′ ⊂ Gal(k/k). Then G(k)/R ∼= H1(k, FG), where
FG is the k-torus with cocharacter module QG, and Brnr G/ Br k ∼= H1(k, Q∨

G),
where Q∨

G = Hom(QG, Z) is the dual module.
Furthermore, if G ↪→ V is a smooth compactification of G, NG = Pic(V ×k k)

is the Picard module, SG is the Néron-Severi torus (= the torus with character
module NG), then G(k)/R ∼= H1(k, SG). This shows that the group G(k)/R is a
birational invariant of G.

To appear in J. of Algebra, 2004 (with an appendix by P. Gille).

A non rational group variety of type E6

Philippe Gille

Let G/k be a semisimple algebraic group defined over a field k. The question
whether the group variety G/k is k-rational (i.e. birational to an affine space) has
been investigated for classical groups by several authors: Platonov, Yanchevskii,
Merkurjev, Chernousov...

The talk deals with the rationality question for exceptional groups. For triali-
tarian groups of type D4 and groups of type F4, the rationality question is open.
Using the Bruhat-Tits theory [T], we have found a simply connected group of type
E6 which is not a k-rational variety. The field k is then a 2-iterated power series
field over some Merkurjev’s suitable field. The proof of the non-rationality goes
by a specialization argument involving Chow groups of 0-cycles on G/k.
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Rational points and curves on flag varieties
Emmanuel Peyre

(joint work with A. Chamber-Loir)

1. Heights

It is well known that there are many analogies between the rational points on
a variety V defined over a number field K and the rational curves on a variety V
over C and that one of the simplest way to make these links more precise is to
consider rational points on a global field of finite characteristic.

In this talk we shall consider the three settings simultaneously:
(1) Over Q we may define several natural heights on the projective space, for

example the height HN : PN (Q)→ R defined by

HN ((x0 : . . . : xN )) =
√

x2
0 + · · ·+ x2

N ,

if x0, . . . , xN are coprime integers. The corresponding logarithmic height is hN =
log HN .

More generally, if K is a number field, let MK be the set of places of K. For
any place v of K, we denote by Kv the completion of K for the topology defined
by v and the absolute value | · |v is normalized by d(ax)v = |a|vdxv for any Haar
measure dxv . We then choose v-adic norms ‖ · ‖v : KN+1

v → R, for example we
may define the norm ‖(x0, . . . , xN )‖v as sup0≤i≤N |xi|v if v is a finite place, as√∑N

i=0 x2
i if Kv is isomorphic to R, and as

∑N
i=0 xixi if Kv is isomorphic to C.

Then HN : PN (K)→ R is defined by

HN (x0 : . . . : xN ) =
∏
v

‖(x0, . . . , xN )‖v

and hN = log HN .
(2) If K = Fq(C) where C is a smooth projective curve of genus g over Fq, then

there is a bijection from the set of points in the projective space PN (K) to the set
Mor(C,PN

Fq
). Let us denote by x̃ the image of a point x. Then

hN (x) = deg(x̃∗(O(1)))

where x̃∗(O(1)) belongs to the Picard group of the curve C. We also put HN = qhN .
(3) Similarly, if K = k(C) where C is a smooth projective curve over a field k,

we define
hN (x) = deg(x̃∗(O(1)))

where x̃∗(O(1)) belongs to the Picard group of the curve C.
In all settings, if V is a variety over K, any morphism φ : V → PN

K induces a
map h : V (K)→ R defined by h = hN ◦ φ. We want to study asymptotically the
set

{ x ∈ V (K) | h(x) < log(B) }
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as B goes to +∞. To illustrate this, I represented such sets as points on the
projective plane, as lines on the plane and as points in P1

Q(i).

P2
Q

Lines in P2
Q P1

Q(i)

2. Height zeta functions

One of the main tool to study the asymptotic behavior of the number of points
of bounded height is the height zeta function.

(1) Over a number field, it is defined for any open subset U of V by

ζU,H(s) =
∑

x∈U(K)

1
H(x)s

where this series converges.
(2) Similarly, over Fq(T ), for any open subset U of V

ZU,h(T ) =
∑

x∈U(K)

T h(x) and ζU,H(s) = ZU,h(q−s).

(3) In the functional setting, we are in fact interested in moduli spaces of
morphisms from the curve C to the variety V . Let Mk be the group generated
by symbols [V ] for V variety over k with the relations [V ] = [V ′] if V and V ′ are
isomorphic and

[V ] = [F ] + [V − F ]
for any closed subset F of V .

If U is an open subset of V , for any integer n, there exists a variety Un over k
such that for any extension k′ of k, there is a functorial bijection from Un(k′) to
the set of points of U(k′(C)) of height n. The motivic height zeta function is the
formal series in Mk[[T ]] defined by

Zmot
U,h (T ) =

∑
n∈N

[Un]T n.

If k is a finite field, one may go from the functional setting to the classical one by
using the map

Mk → Z
[V ] 
→ �V (Fq).
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This map sends Zmot
U,h to the classical zeta function ZU,h.

3. The case of flag varieties

For flag varieties, one may use the fact, first discovered by Franke, Manin and
Tschinkel [FMT] that, in that case, the height zeta function coincides with an
Eisenstein series. One may then apply the difficult and deep results obtained for
Eisenstein series by Langlands over number fields [Lan], by Harder [Harder] and
Morris ([Mo1] and [Mo2]) over global fields of finite characteristic and by Kapranov
[Ka] in the functional setting.

Notations 3.1. Let G be a split semi-simple simply-connected algebraic group
over K, let P be a smooth parabolic subgroup of G, let B be a Borel subgroup of G
contained in P and let T be a split maximal torus of G contained in B. We denote
by Φ the root system of T in G, by Φ+ the positive roots corresponding to B and
by ∆ the corresponding basis of the root system. Let ΦP be the roots of T in the
Lie algebra Lie(Ru(P )) of the unipotent radical of P . The set ΦP is contained in
the set of positive roots. We also put ∆P = ΦP ∩∆.

Let V = G/P . There exists a canonical isomorphism from the character group
X∗(P ) of P to Pic(V ) sending the character χ to the line bundle Lχ = G×P A1

K

where P acts on the affine line via χ. There is also an injective restriction map
res : X∗(P ) → X∗(T ). Let ρP (resp. ρB) be the half-sum of the roots in ΦP

(resp. Φ+) then 2ρP belongs to the image of X∗(P ) and we denote also by 2ρP its
inverse image in X∗(P ). The line bundle L2ρP is isomorphic to the anticanonical
line bundle ω−1

V and is very ample. From now on, all the heights used will be
relative to ω−1

V .

(1) In the number field case, it is possible to choose the height on V so that
the height zeta function coincides with the value of an Eisenstein series:

ζV,H(s) =
∑

x∈G/P (K)

H(x)−s = EG
P ((2s− 1)ρP , e).

Franke, Manin and Tschinkel then applied the work of Langlands and have proven
the following results:

- ζV,H(s) converges for Re(s) > 1,
- It extends to a meromorphic function on the projective plane,
- It has a pole of order t = rkPic(V ) at s = 1,
- There is a explicit formula for the leading term of the development of

ζV,H(s) in Laurent series at s = 1:

lim
s→1

(s− 1)tζV,H(s) =
∏

α∈ΦP −∆P

ξK(〈α̌, ρB〉)
ξK(〈α̌, ρB〉+ 1)

∏
α∈∆P

ress=1 ξ

ξK(2)〈α̌, 2ρP 〉
,

where

ξK(s) = d
s/2
K (π−s/2Γ(s/2))r1((2π)−sΓ(s))r2ζK(s),
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r1 being the number of real places of K and r2 the number of complex
places. This limit may be reinterpreted as

lim
s→1

(s− 1)tζV,H(s) =
∏

α∈∆P

1
〈α̌, 2ρP 〉

ωH(V (AK))

where ωH is a Tamagawa measure on V (AK).
(2) The connection with Eisenstein series is also valid for global fields of finite

characteristic and we may apply the work of Harder and Morris to get the following
results:

- ZV,h(z) converges for |z| < q−1,
- ZV,h(T ) is a rational function,
- ZV,h(z) has a pole of order t at z = q−1

- the leading term at z = q−1, that is limz→q−1 (z− q−1)tZV,h(z) is given by

qdim(V )(1−g)
∏

α∈ΦP −∆P

ZK(q−〈α̌,ρB〉)
ZK(q−〈α̌,ρB〉−1)

∏
α∈∆P

resz=q−1 ZK

ZK(q−2)〈α̌, 2ρP 〉

which may be reinterpreted as in the number field case.
(3) In the functional setting, we need to use an extension of Mk constructed

by Denef and Loeser to give an analog to the last assertion. LetMloc
k be the ring

Mk[L−1] and, for any integer n, let FnMloc
k be the subgroup of Mloc

k generated
by the elements of the form L−i[V ] where i − dim(V ) ≥ m. Then M̂k is the
completion ofMloc

k for this filtration.
- The varieties Vn verify:

lim
n→+∞

dim(Vn)
n

≤ 1,

- Zmot
V,h (T ) is a rational function,

- the formal series( ∏
α∈∆P

(
1− (LT )〈α̌,2ρP 〉))Zmot

V,h (T )

converges in M̂k at T = L−1,
- at this point it takes the value

Ldim(V )(1−g)
∏

α∈ΦP −∆P

Zmot
K (L−〈α̌,ρB〉)

Zmot
K (L−〈α̌,ρB〉−1)

∏
α∈∆P

Zmot
K (T )(1− LT )(L−1)

Zmot
K (L−2)

where Zmot
K is the zeta function of the field defined by

Zmot
K (T ) =

∑
n∈N

[C(n)]T n,

C(n) being the n-th symmetric power of C. Kapranov proved that Zmot
K

verifies

Zmot
K (T ) =

P (T )
(1− T )(1− LT )
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for a polynomial P in Mk[T ] of degree 2g which satisfies a functional
equation. Once again this may be interpreted in terms of a Tamagawa
number in a motivic setting.
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Tangent cones to Schubert varieties
Jochen Kuttler

(joint work with J. B. Carrell)

Suppose G is a connected semisimple algebraic group over C. Fix T ⊂ B ⊂ G, a
maximal torus and a Borel subgroup respectively. For every w ∈ W = NG(T )/T
(which is in one to one correspondence with (G/B)T ) denote by X(w) ⊂ G/B
the associated Schubert variety Bw. Following ideas of Dale Peterson we obtain a
generalization to Peterson’s ADE-Theorem, which states that in types ADE every
rationally smooth point of X(w) is in fact smooth (see [1] for more details). If G
has no component of type G2, we generalize this to: x ∈ X(w)T is smooth if and
only if for all y ≥ x (with respect to the Bruhat-Chevalley ordering on (G/B)T )
the reduced tangent cone Ty(X(w)) is linear, ie. its linear span Θy(X(w)) satisfies
dim Θy(X(w)) = dimX . Furthermore, we give a method to compute Θx(X(w))
at a maximal singularity, provided G has no G2 factor, which is assumed for the
remainder of this text.

For this, let TE(X(w), x) denote the span of tangent lines to the T -stable curves
containing x, and let Tx(X(w)) denote the Bx-submodule of Tx(X(w)) generated
by TE(X(w), x) with Bx = {b ∈ B | bx = x}. Then

TE(X(w), x) ⊂ Tx(X(w)) ⊂ Θx(X(w)).

Let µ, φ be two negative long orthogonal roots occurring as weights of TE(X(w), x).
Then {µ, φ} is called an orthogonal B2-pair (for X(w) at x) if {µ, φ} is contained
in a copy of B2 ⊂ Φ, the roots of G, and if the following holds: suppose α, β are
the (unique) positive generators of this B2 with α short, then we require rαx < x
and rαrβx ≤ w. Here rα ∈ W is the reflection associated to a root α.

We show that every T -weight of Θx(X(w))/Tx(X(w)) arises as 1
2 (µ + φ) where

{µ, φ} is an orthogonal B2-pair, whenever x is a maximal singularity.
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A second method to compute Θx(X(w)) is given by using so called Peterson
translates : following an idea of Dale Peterson, to a T -stable curve C containing x
we associate

τC(X(w), x) = lim
z→x
z 
=x

Tz(X(w)),

a T -stable linear subspace of Tx(X(w)), which can be computed explicitly at max-
imal singularities x, whenever CT = {x, y} with y > x. We then have

Θx(X(w)) =
∑
C

CT ={x,y}
for some y>x

τC(X(w), x),

where, again, x is a maximal singularity. A more thorough investigation of the
schematic tangent cone itself yields a description of the T -fixed points in the fiber
of the Nash blowing up over a maximal singular point: each such fixed point is a
Peterson translate, provided G is simply laced or the number of T -stable curves
containing x equals dim X(w). This is proved by showing that the blowing up
Bx(S) with center x of the (T -stable affine) slice S of X(w) at x is nonsingular,
admitting an equivariant surjective map to N(S), the Nash blowing up of S ([3]):
Since every T -fixed point in Bx(S) lies on Bx(C) for some T -stable curve C ⊂ S
([2]), it follows that each T -fixed point of N(S) lies on a T -stable curve which lifts
a curve in S, and therefore is a Peterson translate.
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Torsion in intersection cohomology of Schubert varieties
Tom Braden

To a reduced word a = (si1 , si2 , . . . , sik
) for an element w in the Weyl group W of

a semisimple complex algebraic group G, we can associate a Bott-Samelson variety

BS(a) = Pi1 ×B Pi2 ×B · · · ×B Pik
/B.

The multiplication map π to the flag variety G/B makes BS(a) a resolution of
singularities of the Schubert variety Xw = BwB/B.

We study the question: does the statement of the Decomposition Theorem,
proved by Beilinson, Bernstein, Deligne, and Gabber for sheaves with coefficients
in k = Q, hold for other coefficient rings k? In other words, is there an isomorphism

(1) Rπ∗kBS(a)
∼=

⊕
α

IC•(Xyα ; k)[nα],
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where yα ∈ W and nα ∈ Z? Soergel has shown that an affirmative answer for k
an algebraically closed field of characteristic p would prove Lusztig’s conjectured
character formula for modular representations of a simply connected split algebraic
group of the same type as G, for weights around the Steinberg weight.

We have the following criterion to decide if a splitting (1) is possible. For an
element x ∈ W with x ≤ w, we let ix : Cx → Xw be the inclusion.

Theorem 1. Let a, k be as above. A decomposition of the form (1) is possible if
and only if every prime p for which p-torsion appears in the cokernel of the natural
map

(2) H•(i!xRπ∗ZBS(a))→ H•(i∗xRπ∗ZBS(a))

for some x ≤ w is a unit in k.
Furthermore, if y ∈ W , then there is a decomposition (1) for every w ≤ y and

every reduced word a for w if and only if for all w ≤ y, the stalks and costalks of
IC•(Xw; k) are free k-modules which vanish in odd degrees and whose ranks are
given in the usual way by Kazhdan-Lusztig polynomials.

The theorem that rationally smooth Schubert varieties are smooth in types A,
D, E proved by Deodhar [D] (type A), Peterson, and Carrell-Kuttler [CK] might
suggest that for these groups the decomposition should hold for all rings and all
characteristics. However, we have the following examples where the decomposition
theorem fails for Z or Z/2 coefficients.

Let G be the group SL8(C); then W = S8 is the symmetric group on 8 letters.
Let si denote the transposition of i and i + 1. Then we consider the hexagon
permutations:

w = sc
4s3s2s1s5s4s3s2s6s5s4s3s8s7s6s5s

d
4, c, d ∈ {0, 1}.

Billey and Warrington [BW] have shown that avoiding these four permutations
along with the longest element s1s2s1 in S3 characterizes the permutations for
which Xw has a small Bott-Samelson resolution. For this choice of w, we let
x = sc

4s2s3s4s5s6s5s
d
4.

For our other example, let G be a group of type D4. Order the simple reflections
{s1, s2, s3, s4} so that s1, s2, and s3 all commute. Then we consider the pair of
elements in W : w = s1s2s3s4s3s2s1, and x = s1s2s3.

Theorem 2. Let w, x be any of the five pairs described above. Then the cokernel
of the map (2) has 2-torsion.
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Normality of nilpotent varieties
Eric Sommers

For the classical groups, Kraft and Procesi have resolved the question of when
the closure of a nilpotent orbit is normal, except in the case of some of the orbits
for a special orthogonal group which are not invariant under the full orthogonal
group. For example, the normality of the closure of an orbit with Jordan block
sizes (4, 4, 2, 2) can not be decided using previously known methods.

In this talk we show that these remaining orbits do have normal closure by
showing that the regular functions on these orbits are naturally a quotient of the
regular functions on an orbit whose closure is known to be normal. Along the way
we prove and use a new result concerning the vanishing of the higher cohomology
of vector bundles on flag varieties.
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Standard Monomial basis for nilpotent orbit closures
V. Lakshmibai

(joint work with V. Kreiman, P. Magyar, and J. Weyman)

We shall work over the base field k := C. Let G = GLn(k),N = the variety of
nilpotent n × n matrices. For the action of G on N given by conjugation, the
G-orbits are indexed by partitions of n. For a partition λ of n, let Nλ denote
the corresponding orbit closure. Note that N = Nλ, where λ = (n, 0, · · · , 0).
We construct a basis for k[Nλ], the ring of regular functions on Nλ. For this
construction, we use the following result of Lusztig:

Theorem ([5]). A nilpotent orbit closure Nλ gets identified with an open subset
of a certain affine Schubert variety in the affine Grassmannian.

We first recall the following classical result of Hodge on the Grassmannian.

1. The Grassmannian & its Schubert varieties

Let us fix the integers 1 ≤ d < n and let V = kn. The Grassmannian Gd,n is
the set of d-dimensional subspaces U ⊂ V ; with respect to a basis a1, . . . , ad of U ,
where

aj =




a1j

a2j

. . .
anj


 , with aij ∈ k, for 1 ≤ i ≤ n, 1 ≤ j ≤ d

(here, each vector aj is written as a column vector with respect to the standard
basis of kn), U may be represented by the n × d matrix A = (aij) (of rank d),
whose columns are the vectors a1, . . . , ad.
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1.1. Plücker embedding and Plücker co-ordinates. Let

p : Gd,n → P(∧dV )

be the Plücker embedding. Define the set

Id,n := {i = (i1, . . . , id) | 1 ≤ i1 < · · · < id ≤ n}
For i ∈ Id,n, the i-th component of p is denoted by pi; the pi’s, with i ∈ Id,n, are
called the Plücker coordinates . If a point U in Gd,n is represented by the n × d
matrix A (as above), then pi1,...,id

(U) = det(Ai1,...,id
), where Ai1,...,id

denotes the
d× d sub matrix of A consisting of the rows with indices i1, . . . , id.

1.2. Schubert Varieties of Gd,n. For 1 ≤ t ≤ n, let Vt be the subspace of V
spanned by {e1, . . . , et}. For each i ∈ Id,n, the Schubert variety associated to i is
defined to be

Xi = {U ∈ Gd,n | dim(U ∪ Vit) ≥ t, 1 ≤ t ≤ d}.

Remark 1.2.1. We have that under the set-theoretic bijection between the set of
Schubert varieties and the set Id,n, the partial order on the set of Schubert varieties
given by inclusion induces the partial order ≥ on Id,n : i ≥ j ⇔ it ≥ jt, ∀t.

1.3. Standard Monomial Basis for Schubert varieties in Gd,n. Let R be the
homogeneous co-ordinate ring of Gd,n for the Plücker embedding, and for τ ∈ Id,n,
let R(τ) be the homogeneous co-ordinate ring of the Schubert variety X(τ).

Definition 1.3.1. A monomial f = pτ1 · · · pτm is said to be standard if

(*) τ1 ≥ · · · ≥ τm.

Such a monomial is said to be standard on X(τ), if in addition to condition (*),
we have τ ≥ τ1.

Theorem 1.3.2 ([2, 3]). Standard monomials on X(τ) of degree m give a basis
for R(τ)m.

As a corollary, we obtain that if L denotes the tautological line bundle on
P(∧dV ) (as well as its restriction to X(τ)), then the standard monomials on X(τ)
of degree m form a basis for H0(X(τ), Lm).

2. The Affine Grassmannian & its Schubert varieties

Let F = k((t)), the field of Laurent series, A = k[[t]], the ring of formal
power series. Let G = SLn(k), B the Borel subgroup consisting of upper tri-
angular matrices, and T the maximal torus consisting of diagonal matrices. Let
G = SLn(F ),P = SLn(A),B = ev−1(B), where ev is the evaluation map ev :
SLn(A) → SLn(k), t 
→ 0. Let Ŵ be the affine Weyl group. Then G/B is an
ind-variety; further, G/B = ∪w∈Ŵ BwB (modB). Set X(w) = ∪τ≤w BτB (modB).
Then, X(w) is the affine Schubert variety associated to w. Even though, G/B is
infinite dimensional, X(w) is a finite dimensional projective variety. Similarly, one
defines Schubert varieties inside the affine Grassmannian G/P .
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2.1. Sketch of the construction of the basis: The first step in our construction
is to give a matrix presentation for the elements of G/P , the affine Grassmannian
(as in the case of the classical Grassmannian). Once we have a matrix presenta-
tion, then we could talk about Plücker co-ordinates on the affine Grassmannian;
we could then define standard monomials in the Plücker co-ordinates on the affine
Grassmannian (as well as on its Schubert varieties) similar to the classical situa-
tion.

Let k∞ = span{ei, i ∈ Z}, where by span, we mean that we allow for rightward-
infinite linear combinations. For i ∈ Z, let Ei = span{ej, j ≥ i}. For a subset S
such that Np ⊃ S ⊃ Nq, for some p, q ∈ Z, let ES = span{ej , j ∈ S} (here, Np =
{p, p + 1, · · · }); note that Ep ⊃ ES ⊃ Eq. Define Gr∞, the infinite Grassmannian
= {subspaces E ⊂ k∞|Ep ⊃ E ⊃ Eq, for some p, q ∈ Z}. Let GL∞ = {A =
(aij)Z×Z | all but a finite number of aij − δij are 0, and detA �= 0}. Then GL∞
acts transitively on Gr∞, the isotropy at E1(= span{ej, j ≥ 1}) being a certain
parabolic subgroup P∞. Let σ : k∞ → k∞ be the map, ej 
→ ej+n. Define Ĝrn,
the affine Grassmannian = {σ−stable subspaces of k∞}.

Identify k∞ ∼= Fn, ej 
→ tcei, where c and i are given by j = i + nc, 0 ≤
i ≤ n − 1 (here, we denote the standard basis for Fn by {e0, · · · , en−1}). Let
τ : Fn → Fn be the map v 
→ tv. Via this identification, Ĝrn may be identified
with {A−lattices in Fn}.
Connected components of Ĝrn:
For i ∈ Z, let Ĝri

n := {A−lattices L | dimk(L/L∩L0) = dimk(L0/L∩L0)}, where
L0 is the A-lattice Ae0 ⊕ · · · ⊕ Aen−1. The Ĝri

n’s, i ∈ Z give the connected
components of Ĝrn. We have an identification G/P ∼= Ĝr0

n, gP 
→ gL0(= Age0 ⊕
· · · ⊕ Agen−1). Thus via the embedding G/P ↪→ Gr∞, we obtain a Z × Z matrix
presentation for elements of G/P . Let

Y0 = {S |Np ⊃ S ⊃ Nq, |S \ N| = |N \ S|}.

For S ∈ Y0, let pS denote the Plücker co-ordinate on Ĝr0
n defined in the obvious

way.

Definition 2.1.1. Let S = (s1 < s2 < · · · ) ∈ Y0. We say, S is admissible if
si+1 − si ≤ n.

Theorem 2.1.2 (cf.[1]). {pS , S admissible} is a basis for H0(G/P , L), L being the
basic line bundle on G/P.

We define operators {eα, fα, α simple} similar to Kashiwara’s crystal operators
(cf. [4]), using which we associate to each S ∈ Y0 a canonical pair (�S� > �S�) of
elements of Ŵ , and call these respectively the ceiling and the floor of S.

Definition 2.1.3. A monomial pS1 · · · pSm , Si ∈ Y0 is standard on X(τ)
if τ ≥ �S1� ≥ �S1� ≥ �S2� ≥ · · · ≥ �Sm�.
Theorem 2.1.4. Monomials in pS’s standard on X(τ) of degree m form a basis
of H0(X(τ), Lm).

As a corollary, we obtain a basis for k[Nλ].
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Singularities of moduli spaces of vector bundles in char. 0 and char. p

Vikram Mehta
(joint work with V. Balaji)

We study the singularities of the moduli spaces of vector bundles on curves. These
moduli spaces over arbitrary base have been constructed by Seshadri. If UW →W
is the relative moduli space over W , then UW ⊗W K gives the ”correct” moduli
space over K, as this is a flat base change. We prove that UW /(p) also gives the
correct moduli space in characteristic p.

This is achieved by studying the action of Aut(V ) on the local moduli space.
The key point is that these local moduli spaces have a good filtration relative to
Aut(V ). This enables us to conclude that these invariants in char. 0 specialize
to the invariants in char. p. Also we prove that the moduli spaces in char. p are
strongly F -regular and consequently, the moduli spaces in char. 0 have canonical
singularities.

We conclude with some remarks on the moduli spaces of principal G-bundles
in arbitrary characteristic.

Good quotients for reductive group actions
J. Hausen

Good quotients. In the sequel, G is a reductive complex algebraic group, and
X is a normal complex algebraic G-variety. A good quotient for X is a morphism
p : X → X//G to an algebraic space X//G such that for every affine étale neigh-
bourhood V → X//G the inverse image p−1(V ) is affine, G-invariant, and the
structure sheaf OV equals the sheaf of invariants p∗(Op−1(V ))G.

We are interested in the family FG of all G-invariant open subsets admitting
a good quotient p : U → U//G. Inside FG, we will consider subfamilies with pre-
scribed properties on the quotient space, e.g., the family FG

sep ⊂ FG of subsets with
a separated quotient space, or the family FG

qp ⊂ FG of subsets with a quasiprojec-
tive quotient space.
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Let “∗” stand for a property imposed on the quotient space, e.g., separatedness
or quasiprojectivity. Then a set U1 ∈ FG

∗ is called maximal if there exists no
U2 ∈ FG∗ containing U1 as a proper subset such that U1 is saturated with respect
to the quotient map p2 : U2 → U2//G, i.e., satisfies U1 = p−1

2 (p2(U1)). By a basic
result of A. Bia�lynicki-Birula, there are only finitely many maximal U ∈ FG

sep.
The central task of the theory of good quotients is to describe or even construct

all maximal sets U ∈ FG
∗ . In the sequel, we report on some results obtained since

the appearance of Bia�lynicki-Birula’s survey article [2].

Around Mumford’s GIT. Here we consider the family FG
qp ⊂ FG of open sub-

sets with quasiprojective quotient spaces. In his fundamental book, D. Mumford
introduces the notion of a G-linearized line bundle L on X , and to any such L he
associates a set of semistable points Xss(L). The main features of this construction
are well known:

• Xss(L) ∈ FG
qp holds, that means that there is a good quotient Xss(L) →

Xss(L)//G, and the quotient space is quasiprojective;
• if X is smooth and U ∈ FG

qp is maximal, then U = Xss(L) for some
G-linearized line bundle L on X ;
• for projective X and ample L, the Hilbert–Mumford Criterion character-

izes semistability in terms of one parameter subgroups C∗ → G;
• for projective X , the sets Xss(L) with L ample correspond order revers-

ingly to the cones of a fan subdivision of the G-ample cone, see [4] and [9].

In the case of a projective X and an ample L, the quotient space Xss//L is
projective, but even for smooth projective X , there may exist U ∈ FG

qp with U//G
projective that do not arise from ample bundles. Moreover, if X is not smooth,
then there may exist maximal U ∈ FG

qp that do not arise from any G-linearized
line bundle.

To overcome the latter problem, we propose in [8] the following approach: con-
sider a Weil divisor D on X , the subsemigroup Λ ⊂ WDiv(X) generated by D,
and the data

A :=
⊕
E∈Λ

OX(E), X̂ := Spec(A).

Then a G-linearization of D is a certain lifting of the G-action to X̂, and x ∈ X
is semistable, written x ∈ Xss(D), if there is a G-invariant f ∈ Γ(X,OX(nD)),
where n > 0, such that Xf is affine, x ∈ Xf holds, and D is Cartier on Xf . The
basic features are the following:

• Xss(D) ∈ FG
qp holds, and, conversely, if U ∈ FG

qp is maximal, then U =
Xss(D) for some G-linearized Weil divisor D on X ;

• given a maximal torus T ⊂ G, we have a generalized Hilbert-Mumford
Criterion

Xss(D, G) =
⋂
g∈G

g ·Xss(D, T ).
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Divisorial quotient spaces. Borelli calls a prevariety Y divisorial if any y ∈ Y
admits an affine neighbourhood Y \D with an effective Cartier divisor D on Y .
This concept comprises quasiprojective as well as smooth varieties. It turns out
that a prevariety is divisorial if and only if it is the quotient of a quasiaffine variety
by a free torus action.

Let FG
div ⊂ FG denote the family of subsets with a divisorial quotient space. We

discuss the construction of such sets presented in [5] and [8]. Consider a finitely
generated subgroup Λ ⊂WDiv(X) of the group of Weil divisors of the G-variety
X . Then we have the data

A :=
⊕
D∈Λ

OX(D), X̂ := Spec(A).

Similarly as before, a G-linearization of Λ is a certain lifting of the G-action
to X̂. A point x ∈ X is semistable, written x ∈ Xss(Λ), if there is a G-invariant
homogeneous f ∈ Γ(X,OX(Λ)) such that Xf is affine with x ∈ Xf , all D ∈ Λ are
Cartier on Xf , and almost all D ∈ Λ admit an invertible h ∈ Γ(Xf ,AD)G. The
basic features are

• Xss(Λ) ∈ FG
div holds, and, conversely, if U ∈ FG

div is maximal, then U =
Xss(Λ) for some G-linearized group Λ of Weil divisors on X ;
• given a maximal torus T ⊂ G, we have a generalized Hilbert-Mumford

Criterion:

Xss(Λ, G) =
⋂
g∈G

g ·Xss(Λ, T ).

An application of this construction is the following algebraicity criterion for
orbit spaces, see [5]: Suppose that X is Q-factorial and that G acts properly.
Then the algebraic space X/G is an algebraic variety if and only if the induced
action of the Weyl group W (T ) on the algebraic variety X/T has an algebraic
variety as orbit space.

CombinaTorics. Here, X is a toric variety, and T is a subtorus of the big torus
TX ⊂ X . In this setting, J. Świȩcicka observed that any maximal U ∈ FT

sep is
already TX -invariant. Thus, the description of the maximal sets U ∈ FT

sep becomes
a purely toric problem.

A first approach is the language of fans. Let X arise from a fan Σ in the lattice
of one parameter subgroups of TX . Then the maximal U ∈ FT

sep correspond to
the subfans Σ′ ⊂ Σ that are maximal with the property that any two maximal
cones admit a separating linear form, which is invariant under the lattice of one
parameter subgroups of the small torus T ⊂ TX , see e.g. [6].

Another approach is the language of bunches of cones in the character lattice
of the small torus, compare [3] and [1]. Suppose that X = Cn holds. Then T acts
via

t·z = (χ1(t)z1, . . . , χn(t)zn).
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A weight cone is a cone generated by some of the weights χi ∈ Char(T ). A bunch
is a collection Φ of weight cones such that for any arbitrary weight cone σ we have:

σ ∈ Φ ⇐⇒ ∅ �= relint(σ) ∩ relint(τ) �= relint(τ) for all σ �= τ ∈ Φ.

The possible bunches are in one to one correspondence with the maximal U ∈
FT

sep. The translation from the language of bunches to the language of fans is
based on a linear Gale transformation. Moreover, the language of bunches has
an analogue for X = Pn, obtained by replacing the weight cones with weight
polytopes, see [2].

Finally, consider an arbitrary Q-factorial T -variety X that has the A2-property,
i.e., any two x, x′ ∈ X have a common affine neighborhood in X . Then there are
only finitely many maximal U1, . . . , Ur ∈ FT

A2
, and X admits a T -equivariant closed

embedding into a toric variety Z such that Ui = X ∩Wi for some maximal open
Wi ⊂ Z having a good quotient Wi →Wi//T with Wi//T separated, see [6].

Reduction Theorems. Now G is a connected reductive group, and T ⊂ G is a
maximal torus. Consider a given family FT

∗ , let U ∈ FT
∗ be maximal, and set

W (U) :=
⋂
g∈G

g ·U.

Then Bia�lynicki-Birula asks when we have (a) W (U) ∈ FG, or (b) W (U) ∈ FG
∗ , or

even when (c) W (U) is maximal in FG∗ .
A first couple of results can be derived using Mumford’s GIT and the general-

izations presented before: Suppose that G is semisimple and that U is invariant
under the normalizer N(T ) ⊂ G. Then

• for U ∈ FT
proj, one has (c), see [2] for smooth X , and [8] for normal X ;

• for U ∈ FT
qp, one has (b), see [8];

• for a maximal U ∈ FT
div, one has (b), see [8].

An interesting question is that of complete quotients — here only for G = SL2

is something known, see [2]. Further reduction theorems are the following:
• for U = X ∈ FT

sep, one has (a), see [2];
• for X = Pn, Cn and U ∈ FT

sep, one has (a), see [2];
• for Q-factorial X and U ∈ FT

A2
, one has (a), see [7].
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Universal denominators of invariant rings
Harm Derksen

Suppose that R is a finitely generated graded ring and M is a finitely graded
module. It is not always true that the denominator of the Hilbert series of M
divides the denominator of the Hilbert series of R. (By Hilbert’s Syzygy Theorem
this is true if R is a polynomial ring.) This observation leads to my notion of
”the universal denominator of a module”. Usually the universal denominator of
a module is the denominator of the Hilbert series but there are exceptions. The
universal denominator behaves much nicer. I could present various formulas for
universal denominators of Hilbert series. There are various applications:

(a) I can prove a statement that is very close to one of the conjectures of
Dixmier about the denominator of the Hilbert series for invariants of bi-
nary forms.

(b) In case the coefficients of the Hilbert series have combinatorial interpre-
tation, one can prove properties about these combinatorial numbers. For
example, Jerzy Weyman and I proved the polynomiallity of Littlewood-
Richardson numbers. The notion of the universal denominator sheds new
light on this result.

(c) Universal denominators can be used to bound the denominator of invariant
rings. For example, Nolan Wallach’s computation of the Hilbert series for
the invariants of 4 qubits can be simplified by using better bounds for the
denominator.

Alternating signs of quiver coefficients
Anders S. Buch

Let E0 → E1 → · · · → En be a sequence of vector bundles and bundle maps
over a non-singular variety X . A set of rank conditions for this sequence is a
collection r = {rij} of non-negative integers, for 0 ≤ i ≤ j ≤ n, such that rii is
the rank of Ei for every i. This data defines the quiver variety

Ωr = {x ∈ X | rank(Ei(x)→ Ej(x)) ≤ rij ∀i < j} .

I demand that the rank conditions can occur, i.e. they describe an orbit in a quiver
representation, and that the bundle maps are sufficiently general, so that the quiver
variety obtains its expected codimension d(r) =

∑
i<j(ri,j−1 − rij)(ri+1,j − rij).
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In earlier work with Fulton [3], we proved a formula for the cohomology class
of the quiver variety Ωr in the cohomology ring of X . I later generalized this to
the following formula for the Grothendieck class of Ωr in the Grothendieck ring of
algebraic vector bundles on X [1]:

[OΩr ] =
∑

µ

cµ(r)Gµ1 (E1; E0) ·Gµ2(E2; E1) · · ·Gµn(En; En−1) ∈ K(X) .

The sum is over sequences µ of partitions, and the elements Gµi are K-theoretic
generalizations of Schur determinants called stable Grothendieck polynomials. The
quiver coefficients cµ(r) appearing in this formula are uniquely determined by the
fact that the formula is true for all varieties X , as well as the condition that
these coefficients do not change when the same number is added to all the rank
conditions.

The quiver coefficients are indexed by sequences of partitions µ for which the
sum of the weights is greater than or equal to the codimension d(r). The coeffi-
cients cµ(r) for which

∑
|µi| = d(r) also appear in the cohomology formula and

are called cohomological quiver coefficients. It was conjectured that cohomological
quiver coefficients are non-negative and that the general quiver coefficients have
signs that alternate with codimension, that is

(−1)
P |µi|−d(r)cµ(r) ≥ 0 .

The conjecture for cohomological quiver coefficients has been proved by Knutson,
Miller, and Shimozono [4]. In my talk (based on [2]) I present a proof of the
general conjecture, which furthermore results in a combinatorial formula for K-
theoretic quiver coefficients. My main result is a K-theoretic generalization of
the component formula of [4]. It writes the Grothendieck class of a quiver variety
as an alternating sum of products of stable Grothendieck polynomials given by
permutations:

[OΩr ] =
∑

(−1)
P

�(ui)−d(r) Gu1 (E1; E0) ·Gu2(E2; E1) · · ·Gun(En; En−1) .

This sum is over certain sequences of permutations (u1, . . . , un) which I call KMS-
factorizations for the rank conditions r. Since Lascoux has proved that any stable
Grothendieck polynomial given by a permutation is an alternating linear combi-
nation of stable Grothendieck polynomials for partitions [5], this formula implies
that K-theoretic quiver coefficients have alternating signs.

I also introduce and prove some new variants of the factor sequences conjecture
from [3], and I prove Knutson, Miller, and Shimozono’s conjecture that their double
ratio formula agrees with the original quiver formulas.
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On the values of the characters of compact Lie groups
Jean-Pierre Serre

The lecture discussed three loosely related theorems on the characters of a
compact Lie group G.

1. A generalization of a theorem of Burnside

Theorem 1. Let χ be the character of an irreducible complex representation of
G. Assume χ(1) > 1. Then there exists an element x of G, of finite order, with
χ(x) = 0.

When G is finite, this is a well-known result of Burnside.

2. Positive characters with mean value equal to 1

Let f be a virtual character of G having the following two properties:

(a) f(x) is real ≥ 0 for every x ∈ G.
(b) The mean value 〈f, 1〉 of f is equal to 1.

There are many examples of such characters when G is finite (e.g. permutation
characters relative to a transitive action). Not so when G is connected. More
precisely:

Question. If G is connected and simply connected, is it true that every character
f having properties (a) and (b) is equal to χ.χ̄, where χ is an irreducible (complex)
character of G?

Theorem 2. The answer to the question above is “yes” when G is of rank 1, i.e.
when G = SU2(C).

3. The character of the adjoint representation

Consider the adjoint representation Ad : G→ Aut (Lie G).

Theorem 3. One has Tr Ad(x) ≥ − rank(G) for every x ∈ G.

The minimal value of Tr Ad(x) can be determined explicitly:

Choose a maximal torus T of G ; let N be its normalizer and let W be the
quotient N/T (so that W is the Weyl group if G is connected). For any w ∈ W ,
let TrT (w) be the trace of w acting on Lie T . Theorem 3 can be refined as:
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Theorem 3
′
. One has inf

x∈G
Tr Ad(x) = inf

w∈W
TrT (w).

This shows in particular that inf Tr Ad(x) is an integer, a fact which was not a
priori obvious. It also shows that inf Tr Ad(x) is equal to − rank(G) if and only
if W contains an element which acts on T by t 
→ t−1.

When G is connected and simple, Theorem 3
′
gives:

inf Tr Ad(x) = − rank(G) if G is of type A1, Bn, Cn, Dn (n even), G2, F4, E7, E8 ,

inf Tr Ad(x) =



−1 if G is of type An (n ≥ 1)

2− n if G is of type Dn (n odd ≥ 3)

−3 if G is of type E6 .

4. Proofs

They are not published yet. Here are some hints for the interested reader :

Theorem 1: Use the properties of the “principal A1 subgroup” of G.

Theorem 2: An exercise on positive-valued trigonometric polynomials.

Theorem 3
′
: If w ∈ W is such that TrT (w) is minimum, any representative

x of w in N is such that Tr Ad(x) = TrT (w); this proves the inequality inf Tr
Ad(x) ≤ inf TrT (w). The opposite inequality can be checked by a case-by-case
explicit computation. The classical groups are easy enough, but F4, E6, E7 and E8

are not (especially E6, which I owe to Alain Connes). I hope there is a better proof.
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Introduction by the Organisers

The meeting was organized by Bernard Chazelle (Princeton), William Chen (Syd-
ney) and Anand Srivastav (Kiel), and was attended by some twenty participants
from over ten countries and three continents.

The purpose of the meeting was to encourage and enhance dialogue and collab-
oration between the theoretical and practical aspects of discrepancy theory. The
topics covered included:

(1) Classical discrepancy theory, including low discrepancy sequences, geo-
metric discrepancy and number theoretical aspects.

(2) Combinatorial discrepancy theory, including coloring of hypergraphs and
arithmetic structures.

(3) Algorithms and complexity, including relations of discrepancy theory to
derandomization of probabilistic algorithms and pseudorandomness, com-
plexity classes, data structures in computational geometry and applica-
tions in combinatorial optimization.

(4) Numerical integration in high dimension and its complexity.
Nineteen talks were presented, including a few of a survey nature as well as

others that concentrated on specific recent results. These talks demonstrated the
diversity on all four areas and their inter-relationships, as well as the vitality of
these areas of research.

The organizers and participants would like to take this opportunity to thank
again the “Mathematisches Forschungsinstitut Oberwolfach” for having provided
a comfortable and inspiring environment for the meeting and the scientific work.
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The pleasant atmosphere and superb facilities contributed to the overall success
of the meeting.

We include the abstracts of all the talks in alphabetical order of the speakers.



Discrepancy Theory and Its Applications 675

Workshop on Discrepancy Theory and Its Applications

Table of Contents

Imre Bárány
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Abstracts

Balanced partitions of vector sequences
Imre Bárány

Let d, N ∈ N. Let ‖ · ‖ be any norm on R
d and B = {v ∈ R

d : ‖v‖ ≤ 1} its unit
ball. Some time ago I proved the following result [2]: Let v1, v2, . . . , vN ⊆ B be a
finite sequence of vectors. Then there are signs εi ∈ {−1, 1} such that∥∥∥∥∥∥

∑
i∈[n]

εivi

∥∥∥∥∥∥ ≤ 2d

for all n ∈ [N ] = {1, 2, . . . , N}. In other words, there is a partition [N ] = I1 ∪ I2

such that ∥∥∥∥∥∥
∑

i∈Ij∩[n]

vi − 1
2

∑
i∈[n]

vi

∥∥∥∥∥∥ ≤ d

for all n ∈ [N ] and j ∈ [2].
This partitioning version of the theorem was extended to partitions into r > 2

classes with error bound (r − 1)d in [3]. In my talk, I explained how the factor
(r − 1) can be replaced by a constant. To state this result precisely, we introduce
some convenient notation: Let V be the given sequence of vectors v1, v2, . . . , vN .
We use the (non-standard) notation∑

k

V =
k∑

i=1

vi.

Further, for a subsequence X of V , we define∑
k

X =
∑

i≤k, vi∈X

vi.

Theorem 1. For every sequence V ⊂ B, and for every integer r ≥ 2, there is a
partition of V into r subsequences X1, . . . , Xr such that for all k and j,∑

k

Xj ∈ 1
r

∑
k

V + C(r)dB,

where C(r) is a constant depending only on r. In particular, C(2) ≤ 1, C(3) ≤ 1.5,
and C(r) ≤ 2.005 always.

It is worth mentioning here that the result holds for all norms in R
d. This is

due to the fact that proofs use linear dependence among some vectors, with the
norm playing very little role. But most likely, much better bounds are valid for
particular norms. For instance, it is conjectured that for the r = 2 and Euclidean
norm case the best bound is of order

√
d.
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Moreover, for some norms the bound given above is tight, apart from the precise
value of C(r). An example showing this is the �1 norm, when the sequence is just
e1, e2, . . . , ed (the standard basis) and r is much smaller than d.

The proof of the theorem, with further results of this type, is to appear in [1].

References

[1] I. Bárány, B. Doerr. Balanced partitions of vector sequences (to appear).
[2] I. Bárány, V.S. Grinberg. On some combinatorial questions in finite-dimensional spaces.

Linear Algebra Appl., 41 (1981), 1–9.
[3] B. Doerr, A. Srivastav. Multicolour discrepancies. Combinatorics, Probability and Comput-

ing, 12 (2003), 365–399.

Limitations to regularity
József Beck

In 1981 I [1] proved the following “irregularity” result. For every n, there is an
n-element point set in the unit square which does not have a balanced 2-coloring
in the following quantitative sense: Whatever way one 2-colors the n points red
and blue, there is always an axis-parallel rectangle in which the number of red
points differs from the number of blue points by at least (log n)/100.

My argument was nonconstructive. I could not provide an explicit example of
such an n-set. Note that the usual grid is not good. A chessboard type alternating
2-coloring is so balanced that the two color classes differ by at most one.

Roth [4] later gave the following explicit example. Consider the tilted
√

n×√
n

grid, where the slope is a quadratic irrational like
√

2. An equivalent reformulation
of Roth’s theorem goes as follows. Given any 2-coloring of the n×n square lattice
(“grid”), there is always a tilted rectangle of slope

√
2, say, such that the number

of red points differs from the number of blue points by at least c log n, where c > 0
is an absolute constant. Note, however, that the size of the “unbalanced” rectangle
cannot be specified in advance.

The following questions arise naturally:
(1) What happens in the case of circles?
(2) Can one specify the radius of the circle in advance?
(3) How about one-sided discrepancy for circles?
(4) Is there any other “natural geometric shape” for which translated copies

alone give “unbounded irregularity”?
The first question was basically solved by Schmidt [5] many years earlier. His

integral equation method, developed in the late 1960’s, can be easily adapted to
show that the 2-coloring discrepancy of circles is as large as a power of n, rather
than log n. Unfortunately Schmidt’s method does not work for circles of fixed
radius, and cannot handle one-sided discrepancy.

In the early 1990’s I could answer Question 4. My natural shape was a “hyper-
bola segment”. Consider the region between the two curves y = 1/x and y = −1/x
where 1 ≤ x ≤ n; I call it the hyperbolic needle of length n. It has area 2 log n,
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and it has the following remarkable extra large irregularity property: Given any
2-coloring of the n × n square lattice, there is always a translated copy of the
hyperbolic needle of length n with slope

√
2, say, in which the number of red

points differs from the number of blue points by at least c log n, where c > 0 is an
absolute constant. Since the area of the hyperbolic needle is 2 log n, it means that
the irregularity is proportional to the area. This explains the name “extra large
irregularity”.

I could even prove a one-sided version [3] as follows. Assume that n is even,
and the n × n square lattice has a globally balanced 2-coloring, in the sense that
there are n2/2 red points and n2/2 blue points. Assume also that the n×n square
lattice is a torus, so that we can “wrap around” the hyperbolic needles. Then
there is always a translated copy of the hyperbolic needle of length n with slope√

2, say, on the n × n torus in which the number of red points is more than the
number of blue points by at least c log n, where c > 0 is an absolute constant.

Note that the theorem holds for hyperbolic needle of any length � < n. Then
the corresponding irregularity is constant times log � instead of log n.

Recently I could give an affirmative answer to Questions 2 and 3. The main
result, which answers both questions at the same time, goes as follows: Again
assume that n is even, and that the n × n square lattice has a globally balanced
2-coloring in the sense that there are n2/2 red points and n2/2 blue points. Let R
be an arbitrary real number with 2 < R < n/2. Also assume that the n×n square
lattice is a torus, so that we can “wrap around” the circles of radius R. Then
there is always a circle of radius R on the n× n torus in which the number of red
points is more than the number of blue points by at least c

√
log R, where c > 0 is

an absolute constant. In the case of varying radius, a weaker result, see [2].
The order

√
log R is almost certainly very far from optimal. I conjecture that

the truth is a power of R rather than a power of log R, but I do not have the
slightest idea how to prove it. But I am not complaining – I was more than happy
to prove anything “tending to infinity”.

References

[1] J. Beck. Balanced two-colorings of finite sets in the square I. Combinatorica, 1 (1981),
327–335.

[2] J. Beck. On a problem of W.M. Schmidt concerning one-sided irregularities of point distri-
butions. Math. Ann., 285 (1989), 29–55.

[3] J. Beck. Randomness in lattice point problems. Discrete Math., 229 (2001), 29–55.
[4] K.F. Roth. On a theorem of Beck. Glasgow Math. J., 27 (1985), 195–201.
[5] W.M. Schmidt. Irregularities of distribution IV. Invent. Math., 7 (1969), 55–82.
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Classical discrepancy
William Chen

(joint work with Maxim Skriganov)

Let P be a distribution of N points in the unit square [0, 1]2. For every x =
(x1, x2) in [0, 1]2, let Z[P ; B(x)] = |P ∩ B(x)| denote the number of points of the
distribution P that fall into the rectangle B(x) = [0, x1) × [0, x2), and consider
the corresponding discrepancy function D[P ; B(x)] = Z[P ; B(x)] − Nx1x2.

Theorem 1.
(i) There exists a positive absolute constant c such that for every positive

integer N and every distribution P of N points in the unit square [0, 1]2,
we have ∫

[0,1]2
|D[P ; B(x)]|2 dx > c log N.

(ii) There exists a positive absolute constant C such that for every integer
N ≥ 2, there exists a distribution P of N points in the unit square [0, 1]2

such that ∫
[0,1]2

|D[P ; B(x)]|2 dx < C log N.

The lower bound was obtained by Roth [7] in 1954, while the upper bound was
obtained by Davenport [5] in 1956. Indeed, the lower bound can be extended to
point distributions in the k-dimensional unit cube for arbitrary k ≥ 2 without any
extra difficulty, as shown in Roth [7] with lower bound c(k)(log N)k−1. However,
ideas different from those of Davenport are necessary to extend the upper bound
to the k-dimensional unit cube for arbitrary k ≥ 2.

Much work in connection with the upper bound involves the van der Corput
point sets and their generalizations. The van der Corput point set of 2h points in
[0, 1]2 is given by

(1) P(2h) = {(0.a1 . . . ah, 0.ah . . . a1) : a1, . . . , ah ∈ {0, 1}},
where we have used digit expansion base 2 on the right hand side. However,

(2)
∫

[0,1]2
|D[P(2h); B(x)]|2 dx = 2−6h2 + O(h),

as shown by Halton and Zaremba [6], and so this does not give a proof of the
upper bound.

This difficulty was studied in detail by Chen and Skriganov [2], using classi-
cal Fourier analysis, since the van der Corput point sets have nice periodicity
properties. Recall that x = (x1, x2) denotes the top right vertex of the rectangle
B(x). Suppose that x1 
= 1. Then it can be shown that there exists a finite set
I(x1) ⊆ {1, . . . , h} such that

D[P(2h); B(x)] =
∑

s∈I(x1)

(
cs − ψ

(
x2 + zs

2s−h

))
+ O(1).
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One therefore needs to study sums of the form∑
s′∈I(x1)

∑
s′′∈I(x1)

(
cs′ − ψ

(
x2 + zs′

2s′−h

))(
cs′′ − ψ

(
x2 + zs′′

2s′′−h

))
.

Using Fourier analysis and integrating with respect to the variable x2 over the
interval [0, 1], one can show that each of the summands above gives rise to an
integral∫ 1

0

(
cs′ − ψ

(
x2 + zs′

2s′−h

))(
cs′′ − ψ

(
x2 + zs′′

2s′′−h

))
dx2 = cs′cs′′+O

(
22min{s′,s′′}

2s′+s′′

)
.

Unfortunately, the sum ∑
s′∈I(x1)

∑
s′′∈I(x1)

cs′cs′′

leads to the term 2−6h2 in (2).
There are various ways of overcoming this difficulty. In Roth [8], one uses a

translation variable t and translates the point set P(2h) vertically modulo 1 to
obtain the point set P(2h; t) and a corresponding discrepancy function

D[P(2h; t); B(x)] =
∑

s∈I(x1)

(
ψ

(
zs + t

2s−h

)
− ψ

(
ws + t

2s−h

))
+ O(1),

where z2 and w2 are constants that depend on x2. Squaring and integrating with
respect to the variable t over the interval [0, 1], we now handle integrals of the
form ∫ 1

0

ψ

(
zs′ + t

2s′−h

)
ψ

(
zs′′ + t

2s′′−h

)
dt = O

(
22min{s′,s′′}

2s′+s′′

)
.

In Chen [1], one uses digit translations to modify the point set P(2h) horizontally
to obtain the point set P(2h; χ) and a corresponding discrepancy function

D[P(2h; χ); B(x)] =
∑

s∈I(x1)

(
cs(χ) + ψ

(
x2 + zs(χ)

2s−h

))
+ O(1).

Squaring and integrating with respect to the variable x2 over the interval [0, 1] and
being economical with the truth, we now essentially handle integrals of the form∫ 1

0

(
cs′(χ) + ψ

(
x2 + zs′(χ)

2s′−h

))(
cs′′(χ) + ψ

(
x2 + zs′′(χ)

2s′′−h

))
dx2

= cs′(χ)cs′′ (χ) + O

(
22min{s′,s′′}

2s′+s′′

)
.

Furthermore, over a large collection of digit translations χ, the sum∑
s′∈I(x1)

∑
s′′∈I(x1)

cs′(χ)cs′′ (χ)

has a small average. However, both of these involve probabilistic variables, and so
no explicit point sets P satisfying the conclusion of Theorem 1(ii) are obtained.
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The van der Corput point sets (1) also possess nice group structure. Clearly
P(2h) forms a group under coordinatewise and digitwise addition modulo 2, and is
isomorphic to the direct product Z

h
2 . This observation immediately invites the use

of Fourier-Walsh functions and series. The discussion can be conducted in general
in base p, where p is a fixed prime. In other words, we consider the generalization
of the classical van der Corput point sets P(2h) to sets of the form

P(ph) = {(0.a1 . . . ah, 0.ah . . . a1) : a1, . . . , ah ∈ {0, 1, . . . , p − 1}},
where we now use digit expansion base p on the right hand side. Clearly P(ph)
forms a group of ph elements under coordinatewise and digitwise addition modulo
p, and is isomorphic to the direct product Z

h
p . This suggests the use of Fourier-

Walsh functions and series base p. Using the abbreviation P for the point set
P(ph), one can show that an approximation Dh[P ; B(x)] of the discrepancy func-
tion D[P ; B(x)] satisfies

Dh[P ; B(x)] =
ph−1∑
�1=0

ph−1∑
�2=0

(�1,�2) �=(0,0)

∑
p∈P

w�1(p1)w�2 (p2)

 χ̃�1(x1)χ̃�2(x2).

Here w�, where � ∈ N0 = N∪{0}, denotes the �-th base p Walsh function, and χ̃�(x)
denotes the �-th coefficient of Fourier-Walsh series of the characteristic function
of the interval [0, x). Since the Walsh functions are characters of the group P , the
orthogonality relationship∑

p∈P
w�1(p1)w�2(p2) =

{
ph if (�1, �2) ∈ P⊥,
0 otherwise,

where P⊥ ⊆ N
2
0 is the orthogonal dual to the group P , gives

Dh[P ; B(x)] = ph
∑

(�1,�2)∈P⊥\{(0,0)}
χ̃�1(x1)χ̃�2(x2).

One would like to square this expression and then integrate with respect to x =
(x1, x2) over the unit square [0, 1]2. Unfortunately, the Fourier-Walsh coefficients

(3) χ̃�1(x1)χ̃�2(x2), (�1, �2) ∈ P⊥ \ {(0, 0)},
are not orthogonal in L2([0, 1]2) in general. In Chen and Skriganov [3], it is
shown that as long as the prime p is chosen large enough, there exist groups P
of ph elements in the square [0, 1]2, in the spirit of van der Corput, such that
the Fourier-Walsh coefficients (3) are quasi-orthonormal in L2([0, 1]2). Indeed,
they are able to establish Theorem 1(ii) for arbitrary dimensions with explicitly
constructed point sets. More recently, Chen and Skriganov [4] have shown that
in fact, as long as the prime p is chosen large enough, there exist groups P of
ph elements in the square [0, 1]2, in the spirit of van der Corput, such that the
Fourier-Walsh coefficients (3) are orthogonal in L2([0, 1]2), so that∫

[0,1]2
|Dh[P ; B(x)]|2 dx = p2h

∑
(�1,�2)∈P⊥\{(0,0)}

∫
[0,1]2

|χ̃�1(x1)χ̃�2(x2)|2 dx.
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Furthermore, they have shown that, corresponding to the group P of ph elements
in the square [0, 1]2, there is a group G of order p2h of digit shifts such that

1
|G|
∑
t∈G

∫
[0,1]2

|Dh[P⊕t; B(x)]|2 dx = p2h
∑

(�1,�2)∈P⊥\{(0,0)}

∫
[0,1]2

|χ̃�1(x1)χ̃�2(x2)|2 dx.

This is a consequence of the orthogonality relationship∑
t∈G

w�′1(t1)w�′2(t2)w�′′1 (t1)w�′′2 (t2) =
{

p2h if (�′1, �
′
2) = (�′′1 , �′′2),

0 otherwise.

We therefore now have a better understanding of the probabilistic argument of
Chen [1].
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Multi-color discrepancies
Benjamin Doerr

(joint work with Anand Srivastav)

We extend the notion of combinatorial discrepancy of hypergraphs to arbitrary
numbers of colors. Unless otherwise stated, the following results appeared in [5].
Let H = (X, E) denote a finite hypergraph, i.e., X is a finite set and E is a
family of subsets of X . Put n = |X | and m = |E|. A c-coloring of H is a
mapping χ : X → M , where M is any set of cardinality c. Usually, we take
M = [c] := {1, . . . , c}. The basic idea of measuring the deviation from perfect
balance motivates these definitions of the discrepancy of H with respect to χ and
the discrepancy of H in c colors:

disc(H, χ, c) := max
i∈M, E∈E

∣∣∣∣|χ−1(i) ∩ E| − |E|
c

∣∣∣∣ ,
disc(H, c) := min

χ:X→[c]
disc(H, χ, c).
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Let us start with an example which shows that a hypergraph may have very
different discrepancies in different numbers of colors. Let k ∈ N and n = 4k. Set

Hn = ([n], {X ⊆ [n] : |X ∩ [n/2]| = |X \ [n/2]|}).
Obviously, Hn has 2-color discrepancy zero, but disc(Hn, 4) = 1

8n.
In fact, such examples exist for nearly any two numbers of colors. Unless c1

divides c2, there are hypergraphs Hn on n vertices having discrepancy Θ(n) in c1

colors and zero discrepancy in c2 colors. This has been investigated in [2].
For some 2-color discrepancy results, the proofs seem to rely heavily on the fact

that only two colors are used. This applies in particular to those where the partial
coloring method introduced by Beck [1] is used. A key step there is to construct
a low discrepancy partial coloring χ := 1

2 (χ1 − χ2) from two colorings χ1, χ2 with
χ1(E) ≈ χ2(E) for all E ∈ E . It is not clear to us how this idea can be extended
to c colors.

The idea of recursive coloring is to successively enlarge the number of partition
classes. We start with a suitable 2-coloring of X with color classes X1, X2 and
then iterate this process on the subhypergraphs induced by X1 and X2. If the
weighted 2-color discrepancies of the induced subhypergraphs are bounded, such
a recursive approach can be analyzed, even if c is not a power of 2. For p ∈ [0, 1],
denote the discrepancy of H with respect to the weight (p, 1 − p) by

disc(H, (p, 1 − p)) = min
χ:X→[2]

max
E∈E
∣∣|E ∩ χ−1(1)| − p|E|∣∣ .

Theorem 1. Let disc(H0, (p, 1 − p)) ≤ K for all induced subgraphs H0 of H and
all p ∈ [0, 1]. Then the inequality disc(H, c) ≤ 2.0005K holds for all numbers c of
colors.

For many classical results, a refinement of the above ideas yields even stronger
bounds that decrease for larger numbers of colors. For reasons of space we are
not able to state the general result precisely. Roughly speaking, we have that if
induced subhypergraphs on n0 vertices have 2-color discrepancy at most O(nα

0 )
for some α ∈]0, 1[, then disc(H, c) = O((n/c)α). This gives, among many others,
the following bounds, where in all cases, the implicit constants do not depend on
c:

• General bound: disc(H, c) ≤ 45
√

(n/c) log(4m) + 1.
• Spencer’s six standard deviations [7]: For all hypergraphs H having n = m

vertices and hyperedges, disc(H, c) = O(
√

(n/c) log c).
• Arithmetic progressions: The hypergraph An of arithmetic progressions

in [n] satisfies disc(An, c) = O(c−0.16n0.25) for c ≤ n0.25. This extends the
bound of Matoušek and Spencer [6].

A second general approach is to mimic the proofs of two-color results. Since the
choice of the colors ±1 for two colors allows several powerful arguments, the key
problem is to choose a suitable set of colors for the general case. The colors we
use are vectors in R

c. We obtain a multi-color analogue of the Beck-Fiala theorem
showing that disc(H, c) ≤ 2∆(H) and one of the Bárány-Grunberg theorems. The
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latter was improved by Bárány in his talk by reducing the multiplicative depen-
dence on the number of colors to a constant.

An analogue of an eigenvalue bound attributed to Lovász and Sós shows that

disc(H, c) ≥
√

n(c − 1)
mc2

λmin(A�A),

where A� is an incidence matrix of A. This can be used to show a lower bound
of 0.04c−1/2n1/4 for the c-color discrepancy of the arithmetic progressions in [n].

For hypergraph having n = m vertices and edges, using a random construction
we recently showed that our upper bound in Spencer’s six standard deviations is
sharp apart from constant factors [4].

Theorem 2. For all c ∈ N≥2 and n ≥ c log c, there is a hypergraph having n

vertices, n hyperedges and c-color discrepancy at least 1
40

√
(n/c) log c.

In contrast to the (ordinary) c-color discrepancy, there is a strong correlation
between the hereditary discrepancies of a hypergraph in different numbers of colors.

Theorem 3. For any two numbers of colors c1, c2 ∈ N≥2 and all hypergraphs H,
we have

herdisc(H, c2) ≤ 3c2
1 herdisc(H, c1).

Hence herdisc(·, c2) = Θc1,c2(herdisc(·, c1)). The proof given in [3] actually
solves a more general problem, namely it reduces the color rounding problem in
c2 colors to the hereditary discrepancy problem in c1 colors. We currently have
no purely combinatorial proof.
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Digital expansions and uniformly distributed sequences modulo 1
Michael Drmota

Let sq(n) denote the sum-of-digits function of the q-ary digital expansion of
the non-negative integer n. Then it is well known that the sequence (sq(n)α) is
uniformly distributed modulo 1 if and only if α is irrational. The purpose of this
talk is to present a survey of recent results of this kind and also to present the
methods that are used. We will deal with the following topics:
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(1) Uniform distribution of (f(n)α) for additive functions related to various
digital expansions.

(2) Discrepancy bounds for (sq(n)α) in terms of the continued fraction expan-
sion of α.

(3) Uniform distribution of (sq1(n)α1, .., sqd
(n)αd) for coprime bases q1, . . . , qd

and irrational α1, . . . , αd.
(4) Uniform distribution of (sq(n)α)n∈S for certain subsequences S; for exam-

ple, squares.
Let f(n) be a q-additive function, e.g., the q-ary sum-of-digits function sq(n).

Then it is worth considering the generating function

FN (x) =
∑
n<N

xf(n).

Owing to the recursive structure of q-ary digital expansion, one directly gets re-
currences for FN (x) that (usually) lead to (more or less) explicit (or asymptotic)
expressions for FN (x). For example, for the binary sum-of-digits function one has∑

n<2k

xs2(n) = (1 + x)2.

The advantage of these kinds of representation is that they directly imply results
on

• the distribution #{n < N : f(n) ≤ x} as N → ∞ (Gaussian limiting
distributions), and

• uniform distribution and discrepancy estimates of the sequence (f(n)α)
for irrational numbers α.

For example, in order to treat uniform distribution of (f(n)α), one has to evaluate
FN (x) for x = e2πihα.

Of course, with the help of this method one obtains upper bounds for exponen-
tial sums and for the discrepancy, however, usually not optimal ones. Nevertheless,
it is possilbe to get more precise discrepancy estimates by using the continued frac-
tion expansion of α (see [3]). For example, if α has bounded continued fraction
expansion, then one gets

1√
log N

� DN (sq(n)α) � log log log N√
log N

.

It is also an interesting problem to consider d-dimensional sequences

(sq1(n)α1, . . . , sqd
(n)αd)

for coprime bases q1, . . . , qd and irrational α1, . . . , αd. With the help of exponential
sum estimates (see [3]), it follows that these kinds of sequences are uniformly
distributed modulo 1 for all irrational numbers α1, . . . , αd.

In other words, this is a mathematical formulation of the well accepted fact
that q-ary digital expansions are independent if the bases q1, . . . , qd are coprime.
Interestingly one can be even more precise. With the help of methods of Bassily
and Katai [1] and by proper use of Baker’s theorem on linear forms in logarithms,
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it follows that the joint distribution of (sq1(n), sq2 (n)) is asympotically Gaussian
and independent if q1 and q2 are coprime (see [2]). It is even possible to derive
asymptotic expansions for the numbers #{n < N : sq1(n) = k1, sq2(n) = k2}.

Finally we consider the (binary) sum-of-digits function s(n2) of squares. There
are no precise results on the distribution of squares. For example, it is an unsolved
problem of Gelfond [5] whether the asymptotic frequency of s(n2) being even is
1/2 or not. Equivalently we can ask whether∑

n<N

(−1)s(n2) = o(N)?

We could not answer this question. However, in joint work with Rivat [4], the sum
of binary digits s(n2) is split into two parts s[<k](n2)+s[≥k](n2), where s[<k](n2) =
s(n2 mod 2k) collects the first k digits and s[≥k](n2) = s(�n2/2k�) collects the
remaining digits. With the help of the generating function approach mentioned
above, we derive very precise results on the distribution on s[<k](n2) and s[≥k](n2).
We provide asymptotic formulas for the numbers #{n < 2k : s[<k](n2) = m} and
#{n < 2k : s[≥k](n2) = m} and show that the sequences (s[<k](n2)α)n<2k and
(s[≥k](n2)α)n<2k are very well distributed modulo 1.
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Geometric discrepancies and δ-covers
Michael Gnewuch

(joint work with Benjamin Doerr)

It is of interest to derive bounds for geometric discrepancies, e.g., the ∗- or the
unanchored discrepancy, with good behaviour in the parameter of dimension d.
An upper bound for the ∗-discrepancy with a nearly optimal behaviour in d and
explicitly known constants was proved; see Theorem 1 in [1]. Here we introduce
the notion of δ-covers on the d-dimensional unit cube [0, 1]d and give bounds for
their minimal cardinality. From these estimates we obtain upper bounds for the
∗-discrepancy and its inverse, which improve the results of [1]. We achieve similar
results for the unanchored discrepancy.

For x, y ∈ [0, 1]d, we write [x, y[=
∏

i∈[d][xi, yi[. Let δ > 0. We say that some
finite subset Γ is a δ-cover of [0, 1]d if for all y ∈ [0, 1]d, there are x, z ∈ Γ ∪ {0}
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such that xi ≤ yi ≤ zi for all i and vol([0, z[) − vol([0, x[) ≤ δ. We denote the
minimal cardinality of all δ-covers by N(d, δ).

We get a first bound on N(d, δ) by considering an equidistant grid Γm with mesh
size 1/m, where m = �d/δ�. Obviously Γm is a δ-cover of [0, 1]d with cardinality
(m + 1)d. We then derive a better bound by calculating the coordinates of a
non-equidistant grid Γ = {x0, . . . , xκ(δ,d)}d with the following recursive procedure:

x0 := 1

x1 := (1 − δ)1/d

for i ≥ 1 do(1)

xi+1 := (xi − δ)x1−d
1

if xi+1 ≤ δ, then κ(δ, d) := i + 1 and stop

The sequence x0, x1, . . . is finite and strictly decreasing. Γ is a δ-cover of [0, 1]d,
which establishes the following bound on N(d, δ).

Theorem 1. Let d ≥ 2 and 0 ≤ δ < 1. Then N(d, δ) ≤ (κ(δ, d) + 1)d, where

(2) κ(δ, d) =
⌈

d

d − 1
log(1 − (1 − δ)1/d) − log(δ)

log(1 − δ)

⌉
.

The estimate

κ(δ, d) ≤
⌈

d

d − 1
log d

δ

⌉
holds, and the quotient of the left and the right hand sides of the inequality con-
verges to 1 as δ → 0.

Another recursive construction gives us a bound with better asymptotic be-
haviour in d. The construction in dimension d uses the (d − 1)-dimensional con-
struction and a scaling property and leads to the next theorem. Note that all
O-notation refer to the variable δ−1 only.

Theorem 2. Let d ≥ 2 and 0 < δ < 1. Then, with a constant C ≤ 2e,

(3) N(d, δ) ≤ 2d dd

d!

(
δ−1 +

d + 1
4

− 1
2d

)d

≤ Cdδ−d + O(δ−d+1).

A lower bound for the cardinality of each δ-cover is stated in the next theorem.

Theorem 3. Let δ ∈]0, 1]. Then, with a constant c ≥ e−1,

N(d, δ) ≥ 2
5

d!
dd

δ−d − 2
5
d!

d−1∑
k=0

dk(log(dδ)−1)k

k!
≥ cdδ−d + O((log δ−1)d−1).

We now discuss applications to ∗-discrepancy. The L∞-∗-discrepancy is given
by

d∗∞(n, d) = inf
t1,...,tn∈[0,1]d

d∗∞(t1, ..., tn),
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where

d∗∞(t1, ..., tn) = sup
x∈[0,1]d

∣∣∣∣∣vol([0, x[) − 1
n

n∑
k=1

1[0,x[(tk)

∣∣∣∣∣ .
The inverse of the ∗-discrepancy is defined by

n∗
∞(ε, d) = min{n ∈ N : d∗∞(n, d) ≤ ε}

for given ε > 0. For any δ-cover Γ of [0, 1]d, the following approximation property
holds: For every t1,. . . ,tn ∈ [0, 1]d, we have

d∗∞(t1, ..., tn) ≤ max
x∈Γ

∣∣∣∣∣vol([0, x[) − 1
n

n∑
i=1

1[0,x[(ti)

∣∣∣∣∣+ δ.

Using this and our results on δ-covers, we obtain the following result.

Theorem 4. Let d ≥ 2 and ε > 0. If ε ≤ 8/(d + 1), then there exists a constant
C ≤ 8e, independent of ε and d, with

n∗
∞(ε, d) ≤

⌈
2ε−2

(
d log

(
C

ε

)
+ log 2

)⌉
.

For all 0 < ε ≤ 1, we have

(4) n∗
∞(ε, d) ≤

⌈
2ε−2

(
d log

(
κ
(ε

2
, d
)

+ 1
)

+ log 2
)⌉

,

where κ(ε/2, d) is defined as in (2). If

n ≥ 2
(

d log
(⌈

2d

d − 1
log d

⌉
+ 1
)

+ log 2
)

,

then, with ρ = 2
√

2 log 2/5 < 1.0532,

d∗∞(n, d) ≤ √
2n−1/2(d log(�ρn1/2� + 1) + log 2)1/2.

We verified this theorem by adapting the proof idea from Theorem 1 of [1]. The
proof considers n equally distributed independent random variables representing
the possible point configurations, and in this situation our approximation property
above allows us to make use of Hoeffding’s inequality. Note that the same proof
technique was also employed in [2] and [3].

Using (4), we can give explicit bounds for the inverse of the ∗-discrepancy.
Corresponding to the same values of d and ε as in Section 2 of [1], we have the
following bounds:

n∗
∞(0.45, 5) ≤ 116 n∗

∞(0.1, 5) ≤ 3828

n∗
∞(0.45, 10) ≤ 244 n∗

∞(0.1, 10) ≤ 8003

n∗
∞(0.45, 20) ≤ 514 n∗

∞(0.1, 20) ≤ 16648

n∗
∞(0.45, 40) ≤ 1103 n∗

∞(0.1, 40) ≤ 34679

n∗
∞(0.45, 60) ≤ 1686 n∗

∞(0.1, 60) ≤ 53020

n∗
∞(0.45, 80) ≤ 2291 n∗

∞(0.1, 80) ≤ 71777
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The bounds in [1] were achieved by using the same technique that we adapted
in the proof of Theorem 4 and by analysing the average behaviour of the Lp-∗-
discrepancy for even integers p. Our bounds are smaller by factors between 5 and
8.1 than the bounds in [1] that make use of Hoeffding’s inequality, and they are
still smaller than the bounds resulting from the average Lp-∗-discrepancy analysis
– roughly by a factor 3 for ε = 0.45 and 1.6 for ε = 0.1.

We conclude by making some remarks on unanchored discrepancy. Instead of
δ-covers of [0, 1]d we can define δ-covers for characteristic functions of axis-parallel
boxes in [0, 1]d. This definition is a special case of the more general notion of
one-sided (µ, δ)-covers in [3]. We use our results about N(d, δ) to get bounds for
the minimal cardinality of these modified δ-covers, which lead to upper bounds
for the unanchored discrepancy. Those bounds are similar to the ones for the
∗-discrepancy in Theorem 4 – more or less, we just have to substitute d by 2d in
each estimate.
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Discrepancy and declustering
Nils Hebbinghaus

(joint work with Benjamin Doerr and Sören Werth)

The declustering problem is to assign data blocks from a multi-dimensional
grid system to one of M storage devices in a balanced manner. More precisely, we
consider a grid V = [n1]× . . .× [nd] for some positive integers n1, . . . , nd. Here we
use the notations [n] := {1, 2, . . . , n} and [n..m] := {n, n + 1, . . . , m} for n, m ∈ N

with n ≤ m.
A query Q requests the data assigned to a sub-grid [x1..y1] × . . . × [xd..yd] for

some integers 1 ≤ xi ≤ yi ≤ ni. We assume that the time to process such a query
is proportional to the maximum number of requested data blocks that are stored
in a single device. If we represent the assignment of the data blocks to the devices
by a mapping χ : V → [M ], then the query time of the query above is

max
i∈[M ]

|χ−1(i) ∩ Q|,

where we identify the query Q with its associated sub-grid. Clearly, no declustering
scheme can do better than |Q|/M . Hence a natural performance measure is the
additive deviation from this lower bound.

Thus the problem turns out to be a combinatorial discrepancy problem in M
colors. Denote by E the set of all sub-grids in V . Then H = (V, E) is a hypergraph.
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For a coloring χ : V → [M ], the positive discrepancy of H with respect to χ and
the positive discrepancy of H in M colors are respectively

disc+(H, χ) := max
i∈[M ], E∈E

(
|χ−1(i) ∩ E| − 1

M
|E|
)

,

disc+(H, M) := min
χ:V →[M ]

disc+(H, χ).

A similar definition was introduced by Srivastav and the first author in [4]. The
only difference is that we regard positive instead of absolute deviations. Indepen-
dently, Anstee, Demetrovics, Katona and Sali [1] and Sinha, Bhatia and Chen [8]
proved a lower bound of Ω(log M) for the additive error of any declustering scheme
in dimension 2. Sinha et al. [8] also gave the bound Ω(log(d−1)/2 M) for arbitrary
d ≥ 3, but their proof contains a crucial error.

The current best upper bounds in arbitrary dimension for the declustering
schemes are proposed by C.-M. Chen and C. Cheng [3]. They present two schemes
for d-dimensional problems with an additive error O(logd−1 M). The first one
works if M = pk for some k ∈ N and p a prime such that p ≥ d, whereas the
second works for arbitrary M , but the error increases with N .

For the upper bounds, we present an improved scheme that yields an additive
error of O(logd−1 M) for a broader range of values of M , which is independent of
the data size. Our requirement on M is that if M = q1 . . . qk, where q1 < . . . < qk,
is the canonical factorization of M into prime powers, we require d ≤ q1 +1. Thus,
in particular, our schemes work for M being a power of 2 (such that M ≥ d − 1)
and without any restriction on M in dimensions 2 and 3, which is very useful from
the viewpoint of application. We also show that the latin hypercube construction
used by Chen et al. [3] is much better than claimed. Where they show that the
latin hypercube coloring extended to the whole grid has an error of at most 2d

times the one of the latin hypercube, we show that both errors are the same.
For the lower bound, we present the first correct proof of the Ω(log(d−1)/2 M)

bound. Again, a more careful analysis shows that the positive discrepancy is at
least 1/2d times the normal discrepancy instead of 3−d as claimed in [8]. Note
that in typical applications with M between 16 and 1024, these 2d and 3d factors
are at least as important as finding the right exponent of the logM term.

Since a central result of our investigation is on discrepancy bounds that are
independent of the size of the grid, we usually work with the hypergraph Hd

N =
([N ]d, Ed

N ), where

Ed
N =

{
d∏

i=1

[xi..yi] : 1 ≤ xi ≤ yi ≤ N

}
for some sufficiently large integer N . We have the following result.

Theorem 1. Let M , d ≥ 2 be positive integers and q1 the smallest prime power
in the canonical factorization of M into prime powers. We have

(i) disc+(Hd
N , M) = O(logd−1 M) for d ≤ q1 + 1, independently of N ∈ N;

and
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(ii) disc+(Hd
N , M) = Ω(log(d−1)/2 M) for N ≥ M .

The combinatorial discrepancy results are shown via strong results from geo-
metric discrepancy theory. The problem of geometric discrepancy in the unit cube
[0, 1[d is to distribute n ∈ N points evenly with respect to axis-parallel boxes: In
every box R there should be approximately n vol(R) points, where vol(R) denotes
the volume of R. Again, discrepancy quantifies the distance to a perfect distribu-
tion. The discrepancy of a point set P with respect to a box R ⊆ [0, 1[d and the
set of all axis-parallel boxes Rd are defined by

D(P , R) = ||P ∩ R| − n vol(R)|,
D(P ,Rd) = sup

R∈Rd

|D(P , R)|.

The general idea in the proofs of the lower bound in Sinha et al. [8] and Anstee
et al. [1] is the same, described here in two dimensions.

Starting with an arbitrary M -coloring of [M ]2, there is a monochromatic set
P̂ with M vertices. Based on this set, an M -point set P in [0, 1[2 is constructed.
By discrepancy theory [7], there is a rectangle R such that D(P , R) = Ω(log M).
Rounding R to the [M ]2 grid, they construct a hyperedge R̂ that has almost the
volume as R. Additionally R̂ contains as many vertices of P̂ as R points of P .
With the help of R̂ and a short calculation the lower bound of the additive error
Ω(log M) is shown.

The small, but crucial, mistake in the proof of Sinha et al. [8] lies in the transfer
from the geometric discrepancy setting back to the combinatorial one. Recall that
the authors started with a color class of exactly Md−1 points. They scaled it
down by a factor of M to a set in the unit cube (note that this is a subset of
{0, 1/M, 2/M, . . . , (M − 1)/M}d). Then their geometric discrepancy argument
yields a rectangle of polylogarithmic discrepancy. However, the rectangle [0, (M −
1)/M ]d has a much larger discrepancy: It contains all Md−1 points, but has a
volume of ((M −1)/M)d only. This immediately yields a discrepancy of Md−1(1−
((M − 1)/M)d) = Ω(Md−2). For dimension d ≥ 3, this is larger than the upper
bound, also indicating an error in the proof of Sinha et al. [8]. The last argument
also shows that rounding an arbitrary box to a box in the grid can cause a roundoff
error, which is of magnitude larger than the discrepancy. For this reason, a direct
generalization using the lower bound of Roth [6] is not possible. A more careful
analysis is needed. In particular, we have to ensure the existence of a small box
having large discrepancy. Using ideas of Beck [2], we show the following.

Theorem 2. For any n-point set P in the unit cube [0, 1[d, there is an axis-parallel
cube Q with side at most n−(2d−3)d/(d−1)2(2d+1) fully contained in [0, 1[d with

D(P , Q) = Ω(log(d−1)/2 n).

Now Theorem 1(ii) follows from Theorem 2 using the roundoff reduction of
Anstee et al. [1] and Sinha et al. [8].

For the proof of our upper bound, we use geometric discrepancies to construct
a declustering scheme. The notation of Niederreiter [5] is used in the following.
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For an integer b ≥ 2, an elementary interval in base b is an interval of the form

E =
d∏

i=1

[aib
−di , (ai + 1)b−di[,

with integers di ≥ 0 and 0 ≤ ai < bdi for 1 ≤ i ≤ d. For integers t, m such that
0 ≤ t ≤ m, a (t, m, d)-net in base b is a point set of bm points in [0, 1[d such
that all elementary intervals with volume bt−m contain exactly bt points. Note
that any elementary interval with volume bt−m has discrepancy zero in a (t, m, d)-
net. Since any subset of an elementary interval of volume bt−m has discrepancy
at most bt and any box can be packed with elementary intervals in a way that
the uncovered part can be covered by O(logd−1 n) elementary intervals of volume
bt−m, the following is immediate.

Theorem 3. A (t, m, d)-net P has discrepancy D(P ,Rd) = O(logd−1 n).

The central argument in our proof of the upper bound is the following result of
Niederreiter [5] on the existence of (0, m, d)-nets. From the viewpoint of applica-
tion it is important that his proof is constructive.

Theorem 4. Let b ≥ 2 be an arbitrary base and b = q1q2 . . . qu be the canonical
factorization of b into prime powers such that q1 < . . . < qu. Then for any m ≥ 0
and d ≤ q1 + 1, there exists a (0, m, d)-net in base b.

We construct colorings of Hd
N from (0, m, d)-nets with small discrepancy. We

start with colorings for Hd
M .

Theorem 5. Let Pnet be a (0, d − 1, d)-net in base M in [0, 1[d. Then there is
an M -coloring χM of Hd

M = ([M ]d, Ed
M ) such that all rows of [M ]d contain every

color exactly once and disc(Hd
M , χM ) ≤ D(Pnet,Rd).

In Theorem 6 below, we show that it is sufficient to consider the discrepancy
of Hd

M with respect to these colorings for determining the upper bound of the
discrepancy of Hd

N . Theorem 6 is a reasonable improvement of Theorem 4.2 in [3],
where

disc(Hd
N , χ) ≤ 2ddisc(Hd

M , χM )

is shown. Note that this reduces the implicit constant in the upper bound by
factor of 2d.

Theorem 6. Let χM be an M -coloring of Hd
M such that all rows of [M ]d con-

tain every color exactly once and χ a coloring of Hd
N defined by χ(x1, . . . , xd) =

χM (y1, . . . , yd) such that xi ≡ yi (mod M) for i ∈ [d], xi ∈ [N ] and yi ∈ [M ].
Then

disc(Hd
N , χ) = disc(Hd

M , χM ).

The upper bound in Theorem 1 follows from the above.
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Quantum algorithms for numerical integration
Stefan Heinrich

One of the most challenging questions of today, in the overlap of computer
science, mathematics, and physics, is the exploration of potential capabilities of
quantum computers. Milestones which intensified and enlarged research consider-
ably were the algorithm of Shor [6], who showed that quantum computers could
factor large integers efficiently (which is widely believed to be infeasible on clas-
sical computers) and the quantum search algorithm of Grover [1], which provides
a quadratic speedup over deterministic and randomized classical algorithms of
searching a database.

So far research was mainly concentrated on discrete problems like the above and
many others one encounters in computer science. Much less is known about com-
putational problems of analysis, including such typical field of application as high
dimensional integration. We seek to understand how well these problems can be
solved in the quantum model of computation (that is, on a – hypothetical – quan-
tum computer) and how the outcome compares to the efficiency of deterministic
or Monte Carlo algorithms on a classical (i.e. non-quantum) computer.

First steps were made by Novak [5], who considered integration of functions
from Hölder spaces. This line of research was continued by the author [2], where
quantum algorithms for the integration of Lp-functions and, as a key prerequisite,
for the computation of the mean of p-summable sequences were constructed. In [2],
a rigorous model of quantum computation for numerical problems was developed,
as well. The case of integration of functions from Sobolev spaces is considered
in [3], and more on the computation of the mean was presented in [4]. These
papers also established matching lower bounds.
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Combining these results with previous ones of information-based complexity
theory about the best possible ways of solving the respective problems determin-
istically or by Monte Carlo on classical computers, we are now in a position to
fairly well answer the question where quantum computation can provide a speedup
in high dimensional integration and where not. We know cases among the above
where quantum algorithms yield an exponential speedup over deterministic algo-
rithms and a quadratic speedup over randomized ones (on classical computers).
The talk gives an overview about the state of the art in this field.
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Geometric transversal problems
Jiř́ı Matoušek

A fairly general formulation of the basic problem in discrepancy theory is this:
We are given a ground set X (often R

d), a system F of subsets of X (such as
all axis-parallel boxes), a probability measure µ on X such that all sets of F are
measurable, and a parameter ε > 0, and we want to find a probability measure ν
supported on n points of X , with n = n(F , µ, ε) as small as possible, such that
|µ(F ) − ν(F )| ≤ ε for all F ∈ F . A related problem discussed in this talk is that
of finding a small transversal for all large sets in F , that is, a set N ⊆ X with
N ∩ F 
= ∅ for all F ∈ F with µ(F ) ≥ ε. Such an N is called a weak ε-net for F
with respect to µ.

Well known results of Vapnik and Chervonenkis and of Haussler and Welzl
show that if the VC-dimension of F is finite, then there is ν as above supported on
O(ε−2 log ε−1) points and N of size O(ε−1 log ε−1). Moreover, finite VC-dimension
is necessary if we want ν or N of size bounded in terms of ε and F hereditarily
(also for F restricted to any subset Y ⊆ X).

Interestingly, if we do not consider restrictions of F to subsets of X , then
weak ε-nets of bounded size exist for some set systems of infinite VC-dimension
too. A prime example is the system of all convex sets in R

d. Let us denote by
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f(d, ε) the smallest number such that every probability measure µ in R
d admits

a weak ε-net for convex sets with respect to µ. It is nontrivial to prove that
f(d, ε) < ∞ for all d and ε > 0 (this was first done by Alon, Bárány, Füredi, and
Kleitman). The best known upper bound is f(d, ε) = O(ε−d(log ε−1)c(d)) for every
fixed d with a suitable constant c(d). The only known nontrivial lower bound is
f(d, 0.01) = eΩ(

√
d ) as d → ∞. It would be very interesting to improve the

quadratic upper bound on f(2, ε), say, or to provide a superlinear lower bound.
A nice (and perhaps hard) problem in high-dimensional convex geometry is to
improve bounds on the minimum size of a weak ε-net for convex sets in R

d with
respect to µ, the uniform measure on Sd−1 (this is the example used for the eΩ(

√
d )

lower bound mentioned above).
For general set systems F , the existence of weak ε-nets of bounded size seems

closely related to the fractional Helly property, which is weaker than finite VC-
dimension, but no satisfactory characterization is known.

Most of the material of this talk is covered in detail, for example, in the book [2],
where detailed references are also provided. Some more recent results from [3], [1],
and [4] are also reported.
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New bounds for the star discrepancy
Erich Novak

(joint work with Aicke Hinrichs)

Can we compute, up to some error ε > 0, the integral

Id(f) =
∫

[0,1]d
f(x) dx

for f : [0, 1]d → R from Fd in polynomial time, i.e.,

cost(ε, Fd) ≤ Cε−γdβ?

In some applications the dimension d is (very) large. The answer depends on the
classes Fd, see the survey [4]. For certain Fd, we have to study the star-discrepancy.

Let Mn = {t1, . . . , tn} ⊂ [0, 1]d. The star-discrepancy disc∞(Mn) is defined by

disc∞(Mn) = sup
x∈[0,1]d

∣∣∣∣∣x1 . . . xd − 1
n

n∑
i=1

1[0,x)(ti)

∣∣∣∣∣ .
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Low discrepancy sequences are quite often used in numerical analysis for the so
called quasi-Monte Carlo methods. One obtains

disc∞(Mn) ≤ Cd n−1(log n)d−1,

or similar upper bounds. It is not known whether these known Mn have a small
discrepancy if d is large (say d > 10) and n is moderate (say n ≈ 10d2). In
this direction we present and comment on the following main results, established
respectively in [1] and [2].

Theorem 1. There exists c > 0 such that for any n, d ∈ N, there exists Mn with

(1) disc∞(Mn) ≤ c

√
d

n
.

Theorem 2. There exists k > 0 such that

disc∞(Mn) ≥ k min
(

d

n
, 1
)

for all Mn and all n, d ∈ N.

Both results are proved using the Vapnik-Červonenkis dimension. The proof
of the upper bound is probabilistic. It is not known how we can construct points
Mn ⊂ [0, 1]d in polynomial (in n and d) time such that (1), or a slightly weaker
estimate, holds.

Can we prove results with “less randomness”? Can we find a “small” subset
of [0, 1]dn containing a low discrepancy set Mn? We now discuss how the p-
discrepancy might be of some help for these. The p-discrepancy of Mn is defined
by

discp(Mn) =

(∫
[0,1]d

∣∣∣∣∣x1 . . . xd − 1
n

n∑
i=1

1[0,x)(ti)

∣∣∣∣∣
p

dx

)1/p

.

The discrepancy function is not “too peaked”, one can obtain upper bounds for
disc∞(Mn) from upper bounds of discp(Mn). The idea is to compute the expecta-
tion E(discp

p(Mn)) for even p with different distributions on [0, 1]nd. We consider
the Lebesgue measure λ and another measure. For even p, we obtain

discp
p(Mn) =

p∑
j=0

(
p

j

)
(−n)−j

∑
(u1,...,uj)∈{1,...,n}j

(p−j+1)−d
d∏

m=1

min
k=1,...,j

(1−tp−j+1
uk,m ),

and so

E(discp
p(Mn))

=
p∑

j=0

(
p

j

)
(−n)−j

∑
(u1,...,uj)∈{1,...,n}j

(p − j + 1)−d
E

(
d∏

m=1

min
k=1,...,j

(1 − tp−j+1
uk,m )

)
.

We consider first the case of Lebesgue measure. We obtain

Eλ

(
d∏

m=1

min
k=1,...,j

(1 − tαk,m)

)
=
(

α

α + j

)d

.
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Let #(j, k, n) be the number of tuples (u1, . . . , uj) ∈ {1, . . . , n}j such that k dif-
ferent elements occur. Then

Eλ(discp
p(Mn)) =

p∑
j=0

(
p

j

)
(−n)−j

j∑
k=0

(k + p − j + 1)−d#(j, k, n).

The numbers #(j, k, n) can be written with the Stirling numbers of first and second
type. Using the fact that

p−r+j∑
k=0

(
p

r + k − j

)
(−1)ks(k, k − j)S(k − j + r, k) = 0

for p = 2m even, r = 0, . . . , m − 1 and j = 0, . . . , r, we obtain

(Eλ(discp
p(Mn)))1/p ≤ 4p(p + 2)1/p2−d/pn−1/2.

Compared with Theorem 1, one obtains a slightly weaker upper bound, see [1].
An improvement is possible using symmetrization. Let Xi(Mn)(x) = 1[0,x)(ti).

Then X1, . . . , Xn are i.i.d. random variables with values in Lp and one gets, see [3],

Eλ

(∥∥∥∥∥ 1
n

n∑
i=1

(Xi − EXi)

∥∥∥∥∥
p)

≤ Eλ,ε

(
2

∥∥∥∥∥ 1
n

n∑
i=1

εiXi

∥∥∥∥∥
)p

.

Similar computation as above yields

Eλ,ε

(
2

∥∥∥∥∥ 1
n

n∑
i=1

εiXi

∥∥∥∥∥
)p

= 2pn−p

p/2∑
k=0

(k + 1)−d#(p/2, k, n).

Observe that now there is no cancellation of positive and negative terms, and one
gets

(Eλ(discp
p(Mn)))1/p ≤ 2

√
p(p + 2)1/p2−d/pn−1/2.

The upper bound (n proportional to d) follows.
Next, we consider generalized lattices with shift. Now

Mz,∆
n = {tj = jz + ∆ (mod 1) : j = 0, . . . , n − 1}

with z, ∆ ∈ [0, 1]d. Consider

Ez,∆(discp
p(M

z,∆
n )) =

∫
[0,1]2d

discp
p(M

z,∆
n ) dzd∆.

Is it true that
Ez,∆(discp

p(M
z,∆
n )) ≤ Eλ(discp

p(Mn))?
One would need the numbers

Ez,∆

(
d∏

m=1

min
k=1,...,j

(1 − tαuk,m)

)
,

i.e., the two-dimensional integrals∫ 1

0

∫ 1

0

max((j1z + ∆)α
1 , (j2z + ∆)α

1 , . . . , (jkz + ∆)α
1 ) dzd∆,
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with ji different natural numbers and (jiz+∆)1 are modulo 1, i.e., x = �x�+(x)1,
α ∈ {1, . . . , p + 1} and k ∈ {0, 1, . . . , p}.

An open problem is to prove an upper bound, such as (1), for lattices Mn.
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Discrepancy of (0, 1)-sequences
Friedrich Pillichshammer

(joint work with Gerhard Larcher)

For a sequence x0, x1, . . . of points in the 1-dimensional unit interval [0, 1), the
discrepancy function ∆N , where N ≥ 1, is defined as ∆N (α) := AN ([0, α))/N −α,
for 0 ≤ α ≤ 1, where AN ([0, α)) denotes the number of indices i satisfying 0 ≤ i ≤
N − 1 and xi ∈ [0, α). Now the Lp-discrepancy Lp,N , for p ≥ 1, of the sequence is
defined as the Lp-norm of the discrepancy function ∆N , i.e., for 1 ≤ p < ∞, we
set

Lp,N = Lp,N (x0, x1, . . .) :=
(∫ 1

0

|∆N (α)|p dα

)1/p

.

For p = ∞, we get the usual star discrepancy

D∗
N = D∗

N (x0, x1, . . .) := sup
0≤α≤1

|∆N (α)|

of the sequence.
We consider the discrepancy of a special class of sequences in [0, 1), namely

the class of the so-called digital (0, 1)-sequences. Digital (0, 1)-sequences or, more
generally, digital (t, s)-sequences were introduced by Niederreiter [3, 4], and they
provide at the moment the most efficient method for generating sequences with
small discrepancy.

We consider the discrepancy of digital (0, 1)-sequences over Z2. Choose an N×N

matrix C over Z2 such that every left upper m × m matrix C(m) has full rank
over Z2. For n ≥ 0, let n = n0 + n12 + n222 + . . . be the base 2 representation of
n. Then multiply the vector �n = (n0, n1, . . .)T with the matrix C to obtain

C�n =: (y1(n), y2(n), . . .)T ∈ Z
∞
2 ,

and set

xn :=
y1(n)

2
+

y2(n)
22

+ . . . .
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Every sequence constructed in this way is called digital (0, 1)-sequence over Z2.
The most famous digital (0, 1)-sequence over Z2 is the well known van der

Corput sequence which is generated by the N × N identity matrix.
Niederreiter [3, 4] proved that for any digital (0, 1)-sequence over Z2, we have

ND∗
N ≤ log N

2 log 2
+ O(1)

for any N ∈ N. There is also a well known lower bound due to Schmidt [8] which
tells us that for any sequence in [0, 1), for the star discrepancy D∗

N , we have

ND∗
N ≥ log N

66 log 4

for infinitely many values of N ∈ N. Hence the star discrepancy of any digital
(0, 1)-sequence over Z2 is of best possible order in N .

Our first result [5] is the following improvement of Niederreiter’s result.

Theorem 1. Let D̃∗
N denote the star discrepancy of any digital (0, 1)-sequence

over Z2. For every N ≥ 1, we have

ND̃∗
N ≤ ND∗

N ≤ log N

3 log 2
+ 1,

where D∗
N denotes the star discrepancy of the van der Corput sequence.

Hence the van der Corput sequence is the worst distributed digital (0, 1)-
sequence over Z2 with respect to star discrepancy. For the star discrepancy of
the van der Corput sequence we can say even more.

Theorem 2. Let D∗
n denote the star discrepancy of the first n elements of the van

der Corput sequence. For every ε > 0, we have

lim
N→∞

1
N

∣∣∣∣{n ≤ N :
log 2

4
− ε ≤ nD∗

n

log n
≤ log 2

4
+ ε

}∣∣∣∣ = 1.

Finally we consider the L2-discrepancy of digital (0, 1)-sequences. We can prove
the following.

Theorem 3. For the L2-discrepancy of any digital (0, 1)-sequence over Z2 gener-
ated by a non-singular upper triangular (NUT) matrix, we have

(NL2,N)2 ≤
(

log N

6 log 2

)2

+ O(log N).

This is a generalization of a result of Faure [2] who proved this bound for the
L2-discrepancy of the van der Corput sequence. Further, we know from [1, 5, 6]
that

lim sup
N→∞

NL2,N

log N
=

1
6 log 2

for the L2-discrepancy of the van der Corput sequence. Hence we have the following
consequence.
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Theorem 4. We have

lim sup
N→∞

sup
NL2,N

log N
=

1
6 log 2

,

where the sup is extended over all digital (0, 1)-sequences generated by an NUT
matrix. In other words, the van der Corput sequence is essentially the worst dis-
tributed digital (0, 1)-sequence over Z2 which is generated by an NUT matrix.

We compare this result with the lower bound of Roth [7] which tells us that
there exists a constant c > 0 such that for the L2-discrepancy, for any sequence in
[0, 1), we have

L2,N ≥ c

√
log N

N

for infinitely many values of N ∈ N. So our upper bound is not best possible
in the sense of Roth’s lower bound. The following question arises: Is there a
digital (0, 1)-sequence over Z2 generated by an NUT matrix C such that for the
L2-discrepancy of this sequence, we have

L2,N ≤ c1

√
log N

N

for any N ≥ 2, where c1 > 0?
Until now no such sequence is known. Motivated by results from [5], we consider

the digital (0, 1)-sequence generated by the matrix

(1) C =


1 1 1 . . .
0 1 1 . . .
0 0 1 . . .
...

...
...

. . .

 .

Theorem 5. For the L2-discrepancy of the digital (0, 1)-sequence generated by the
matrix C from (1), we have, for any ε > 0,

(2) lim
N→∞

1
N

∣∣∣∣{n ≤ N : L2,n ≤ c
(log n)1/2+ε

n

}∣∣∣∣ = 1.

Theorem 6. For the digital (0, 1)-sequence from Theorem 5, we have

L2,N > c
log N

N

for infinitely many N ∈ N, where c > 0.

To summarize, it is well known that the star discrepancy of any digital (0, 1)-
sequence over Z2 is best possible in the order of magnitude in N . On the other
hand, the question on whether there exist digital (0, 1)-sequences with best possible
order of L2-discrepancy (in the sense of Roth) or not seems to be a very difficult
open problem.
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Combinatorial complexity of convex sequences and some other hard
Erdős problems
Mischa Rudnev

I am not a 100% aware whether there is a precise definition of what constitutes
a “hard Erdős problem”. However, there is a sort of general agreement about some
of those great many questions posed by Erdős. Take for example the “distance
conjecture”: Let PN ⊂ R

d be a point set of N elements, where N is large. Let

∆(PN ) = {t = ‖x − y‖ : x, y ∈ PN}
be the Euclidean distance set of PN . Prove that its cardinality

(1) |∆(PN )| = Ωε(N2/d).

Above and below, the symbols Ω, � or Ωε, � (O, � or Oε, �) are used to
indicate lower (upper) bounds in the usual way. The symbol ≈ stands for equality
up to a constant (depending on d).

The distance conjecture has been mostly approached by methods of combinato-
rial geometry. See for example the book of Matoušek [10] for the state-of-the-art.
The best result so far, specifically in d = 2, is ε slightly below 1/7, due to Solymosi
and Toth [12], improved a bit by Tardos [14].

The case when PN is well-distributed (i.e., when there exists a cube Q con-
taining PN and a pair of constants (c, C) such that a ball of radius c centered at
any p ∈ PN contains no other points of PN , while any ball of radius C, centered
anywhere in Q does contain some p ∈ PN ) is of special interest. For example, if
PN = Z

2 ∩ [0,
√

N ]2, then we have |∆(PN )| ≈ N/
√

log N , so for d = 2, the bound
(1) is best possible.

It is expected [6] that in the well-distributed case, the distance conjecture should
be true with the bound |∆(PN )| = Ω(N2/d/ log2 N), using the methods of Fourier
analysis. Turn each p ∈ PN into a small ball, endow the resulting set with a natural
probability measure µ, and then study the distance measure νµ, generated by µ.
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The theory was neatly set up by Mattila [11], in connection with the question of
Falconer [3], whether any Borel set of Hausdorff dimension s > d/2 has a distance
set of positive Lebesque measure. An example with integer lattice points shows
that d/2 would be the best possible, see [3]. The present status of Falconer’s
conjecture is s = d(d + 1)/2(d + 1) due to Wolff [15] and Erdogan [2].

Application of Fourier analysis methods to the well-distributed set case prompts
one to try to appeal to the methods developed for mean square discrepancy of the
lattice point distribution, see, e.g., [8]. However, in the latter case, there is the
Poisson summation formula, which results in a curious fact that the corresponding
distance measure νµ are commensurable point-wise.

The results obtained via Fourier analysis are easily extendible to non-isotropic
distances, determined by a symmetric strictly convex body K, with a smooth
boundary (K is a Euclidean ball for the Euclidean distance ‖ · ‖), as long as
there is a lower bound for Gaussian curvature on ∂K. The effect of curvature is
crucial and displays itself in a variety questions, one of which is discussed below.
The motivation for it comes from estimating the Lp-norms of some trigonometric
polynomials and a theorem of Konyagin [9]. See below.

The rest exposes the results of our recent work [7]. Let B = {1, 2, . . . , N} be
a “base” set. Let S = {sj}N

j=1 be a strictly convex sequence, i.e., the differences
sj+1 − sj are strictly monotone in j. One can assume that sj = f(j), j ∈ B, for
some strictly convex function f . There is no bound on D2f from below, except
for D2f > 0.

Consider the equation

(2) sj1 + . . . + sjd
= sjd+1 + . . . + sj2d

.

Let Cd be the number of solutions of (2), with all j’s in B. It appears reasonable
to conjecture that without any algebraic assumptions on f , one has

(3) Cd = Oε(N2d−2).

Traditionally, problems like this one have been studied by algebraic methods, see
the survey [5]. For example, (3) follows easily if f(x) = xm, where m = 2, 3, . . . .
But Konyagin used combinatorics, namely the Szemerédi-Trotter (henceforth ST
theorem – see [13] for a proof - bounding the number of incidences I for an ar-
rangement (L,P) of lines (curves) and points in R

2 as I � |L|+ |P|+ (|L||P|)2/3)
to get a robust bound

C2 = O(N5/2),

no matter what S, as long as it is strictly convex. A paper by Elekes et al. [1] falls
short of proving this result, instead giving the lower bound N3/2 for the number
of the elements of the sumset 2S = S + S. Konyagin’s result was repeated by
Garaev [4], who removed ST as the (only) prerequisite for the proof.

The following theorem of Iosevich, Ten and the author generalizes Konyagin’s
theorem for d ≥ 2.

Theorem 1. For d ≥ 2, let α = 2(1 − 2−d). Then |Cd| = O(N2d−α).
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At the moment, the author is confident that conjecture (3) can be vindicated
for a wide class of f ′s by using the Fourier transform. The approach was roughly
outlined in the final section of [7]. Our recent proof [6] of the Erdős distance
conjecture for well-distributed sets uses the same ideas. However the constant in
estimate (3) may end up being dependent on the lower bound for D2f .

If the sequence {si}i∈B is integer-valued, we deduce an estimate for the L2d-
norm of the Dirichlet kernel associated with S.

Theorem 2. If S ⊂ Z, for θ ∈ T
1, let

FN (θ) =
N∑

j=1

e2πibjθ.

Then

‖fN‖2d = O

(
N1− 1−2−d

d

)
.

Theorem 1 was proved by induction in dimension, starting off d = 2. However,
the higher-dimensional set-up is not amenable to the standard ST, unless one adds
weights to it. Reduction to weighted ST is not obvious, as one is tempted to turn
towards higher-dimensional versions of ST, which are nothing as good as the case
d = 2. Though Fourier analysis is much more robust, as far as the dimension is
concerned, see [6].

In fact, [1] proves a very similar estimate Ω(N2−2−d+1
) for cardinality of the

sumset dS. However, for the latter estimate, no weighted ST turns out to be
necessary; it also arises as a by-product in [7]. From the harmonic analysis point
of view the two estimates end up being equivalent, see [6].

Weighted (in some sense) versions of ST have been around for a while, see [13].
But it is in connection with the weights where the main difficulty arises. On the
inductive step d → d + 1 of our proof, the lines involved in the incidences have
weights, which they have inherited from the previous step. These weights are
equal to the multiplicity of c ∈ dS, available from the previous step via a certain
majorant, bounding the distribution function ν(t) of multiplicities (weights) over
the elements of the sumset dS. Complexity Cd is just the square of the L2-norm
of ν.

If one writes down the incidence bound in the weighted set-up, it incorporates
the L∞-norm of ν, which is too large. So the most non-trivial part of the proof
of Theorem 1 is a lemma, which states that one can partition the weighted set of
curves L into some log log N pieces, so that eventually one can use the L1-norm
of ν in the estimate for the total number of incidences. This enables one to get an
exponentially small error 2−d+1, with respect to the conjectured bound.

Both works [7] and [6] are in essence based on the same simple principle: the
L2-norm of the function ν in the former case and the distance measure νµ in the
latter case should not be too large in comparison with the L1-norm, at most Oε(N)
times greater. In both cases, this prevents the quantity in question from being
supported on a thin set, yielding the desired result.
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Extremal additive intersective sets
Tomasz Schoen

For a set S = {s1, s2, . . .} ⊆ N, denote its counting function by S(n) = |S∩ [n]|,
where [n] = {1, 2, . . . , n}. As usual, let A+B be the set of all numbers represented
in the form a + b, where a ∈ A and b ∈ B. Let

d(A) = lim inf
n→∞

A(n)
n

and d(A) = lim sup
n→∞

A(n)
n

.

Define
int(S) = sup

(A+A)∩S=∅
d(A).

We say that a set S has no intersective property if there is a set A such that

(A + A) ∩ S = ∅ and d(A) = 1
2 .

Consider the following question of Erdős. Put S(d, r, n) = |{s ∈ S ∩ [n] : s ≡ r
(mod d)}| and suppose that S satisfies the two conditions

(1)
S(d, r, n)

S(n)
→ 1

d
as n → ∞ for all d, r ∈ N,
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and

(2)
sn

sn+1
→ 1 as n → ∞.

Is it true that for every set A ⊆ N with (A + A) ∩ S = ∅, we have d(A) = 1
2?

We prove the following result which solves the problem of Erdős in the negative.

Theorem 1. Let ω(n) be any increasing function tending to infinity as n → ∞.
Then there is a set S ⊆ N satisfying (1) and (2), having no intersective property
and such that S(n) ≥ n/ω(n) for every n ∈ N.

We also show that every sufficiently sparse set has no intersective property.

Theorem 2. For every ε > 0, there is a set S ⊆ N such that S(n) ≤ ε log n for
every n ∈ N, and

int(S) ≤ 1
2
− 1

4 · 2300/ε
.

Theorem 3. Let S ⊆ N be any set with S(n) = o(log n). Then S has no in-
tersective property, so that there exists a set A ⊆ N with d(A) = 1

2 such that
(A + A) ∩ S = ∅.
Theorem 4. Let 1

10 > ε > 0, and let S ⊆ N be an arbitrary set with S(n) ≤ ε log n
for all sufficiently large n. Then

int(S) ≥ 1
2
− 4

21/ε
.

A set S is called sum-intersective if for every set A with d(A) > 0, we have
(A + A) ∩ S 
= ∅ (or int(S) = 0). We know from Erdős and Sárközy [1] that if
S is sum-intersective, then S(n) = o(log2 n) is impossible. We also know from
Ruzsa [2] that if ω(n) → ∞, then there is a sum-intersective set S with S(n) =
O(ω(n) log2 n).

Our next result shows that Ruzsa’s theorem is sharp.

Theorem 5. If there is a constant C such that the inequality S(n) ≤ C log2 n has
infinitely many solutions, then

int(S) ≥ 1
220C

.
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Variation of the number of lattice points in large balls
Maxim Skriganov

(joint work with Alexander Sobolev)

Let Γ ⊂ R
d, d ≥ 2, be a lattice in the d-dimensional Euclidean space. For any

bounded set C ⊂ R
d, we denote by N [C] the number of lattice points in C, that is

N [C] = #{γ ∈ Γ : γ ∈ C}.
Denote by

B(r;k) = {ξ : |ξ − k| < r}
the open ball of radius r > 0 centered at the point k ∈ R

d. The function N [B(r;k)]
is a periodic function of the variable k with the period lattice Γ, and hence it
is bounded. We are interested in the variation of the quantity N [B(r;k)] as a
function of k. Define for all r > 0

N+(r) = max
k

N [B(r;k)], N−(r) = min
k

N [B(r;k)],

and introduce the δ-variation of the counting function by writing

V (λ, δ) = N+(
√

λ − δ ) −N−(
√

λ + δ )

for λ ≥ 0 and δ ∈ [0, λ]. Our objective is to find out when the δ-variation is
non-negative and to obtain lower bounds for V (λ, δ) for small δ and large λ under
the assumption that the lattice Γ is rational.

A lattice Γ ⊂ R
d is said to be rational if for any two vectors γ1, γ2 ∈ Γ, the

inner product satisfies the relation

〈γ1, γ2〉 = βΓr12,

where βΓ 
= 0 is a real-valued constant independent of γ1 and γ2, and where
r12 = r21 is an integer. Otherwise the lattice is called irrational.

For the cases d = 2, 3 quite precise lower bounds for V (λ, δ) are known to
hold without any assumptions on the arithmetic properties of Γ. However, in
higher dimensions these become important. Our main results are contained in
Theorems 1, 2 and 3.

Theorem 1. Let Γ ⊂ R
d be a rational lattice and let d ≥ 5. Then there are three

positive constants δ0 = δ0(Γ), λ0 = λ0(Γ) and cΓ such that for all δ ∈ [0, δ0] and
all λ ≥ λ0, we have

(1) V (λ, δ) ≥ cΓλ(d−2)/2.

The bound (1) is sharp.

Theorem 2. Let Γ ⊂ R
4 be a rational lattice. Then there are three positive

constants δ0 = δ0(Γ), λ0 = λ0(Γ) and cΓ such that for all δ ∈ [0, δ0] and all
λ ≥ λ0, we have

(2) V (λ, δ) ≥ cΓλ(log log λ)−1.
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It is not yet clear whether one can get rid of the log log-factor in (2) for general
rational lattices. However, for the case of a cubic lattice Γ, this can be done.

Theorem 3. Let Γ = Z
4. Then for each δ ∈ [0, 10−4], all sufficiently large

λ ≥ λ0 > 0 and some c > 0, one has the bound

V (λ, δ) > cλ.

The proofs of Theorems 1, 2 and 3 are based on the classical results on repre-
sentation of integers by the integer quadratic forms and some arguments from the
geometry of numbers.

One-sided discrepancy of hyperplanes in F
r
q

Anand Srivastav
(joint work with Nils Hebbinghaus and Tomasz Schoen)

We study the one-sided discrepancy and discrepancy of the hypergraph Hq,r =
(Fr

q, Eq,r,1) of linear hyperplanes in F
r
q, where F

r
q is the r-dimensional vector space

over Fq and Eq,r,1 is the set of all its linear hyperplanes, i.e., the subspaces of
codimension one. Let n := qr.

The bounds on the discrepancy can be derived with standard methods (lower
bound with the eigenvalue technique and the upper bound via the VC-dimension)
and are given by√

z(1 − z)
q

√
n − c − 1

c
≥ disc(Hq,r,1, c) ≥ α

√
n

qc
c1/2(r−1).

Since the one-sided discrepancy satisfies disc+(.) ≤ disc(.), we have the same
upper bound. Our main result is the proof of the lower bound for the one-sided
discrepancy disc+(Hq,r,1, c), given by

disc+(Hq,r,1, c) ≥
√

z(1 − z)
4q(q − 1)

√
c

√
n − q − 1

q
.

This is accomplished by Fourier analysis on the additive group F
r
q. Note that for

q = O(1) and c = O(1), the bounds are tight and give a new example for Spencer’s
six-standard-deviation theorem [6].

Finally, we generalise our main result for the one-sided discrepancy to the hy-
pergraph Hq,r,m = (Fr

q, Eq,r,m), where Eq,r,m is the set of all subspaces of F
r
q of

codimension m, where m ≤ r − 3.
Let V be a finite set and E a subset of 2V . Then H := (V, E) is called a

hypergraph. A c-coloring of H is a function χ : V → Mc, where Mc is any set of
cardinality c. For convenience we take Mc = {1, 2, . . . , c} =: [c], but in applications
a different choice of Mc can be helpful (see [1]).
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Let Ai := χ−1(i) be the color-class of color i ∈ [c] in V . The c-color discrepancy
of H with respect to χ is defined by

disc(H, χ, c) = max
i∈[c]

max
E∈E

∣∣∣∣|Ai ∩ E| − |E|
c

∣∣∣∣ ,
and the c-color discrepancy of H is

disc(H, c) = min
χ:V →[c]

disc(H, χ, c).

For c = 2, the c-color discrepancy is exactly half of the common two-color discrep-
ancy where the two colors are represented by 1 and −1. For further information
on discrepancies, we refer to Beck and Sós [2] and Matoušek [4]. For our purposes,
a related discrepancy notion will be relevant. The one-sided c-color discrepancy
of H with respect to χ is

disc+(H, χ, c) = max
i∈[c]

max
E∈E

(
|Ai ∩ E| − |E|

c

)
,

and the one-sided c-color discrepancy of H is

disc+(H, c) = min
χ:V →[c]

disc+(H, χ, c).

Trivially we have disc+(H, c) ≤ disc(H, c), where equality holds for c = 2.
Let Fq be the field of q elements, where q = pk is a power of a prime p, V := F

r
q

the r-dimensional vector space over Fq, and let Eq,r,m be the set of all subspaces
of V of codimension m. Put n := |V | = qr. For a set S ⊆ F

r
q define S� := S \ {0}.

We investigate the discrepancy of the hypergraph Hq,r,m = (V, Eq,r,m). Note that
Hq,r = (V, Eq,r,1) is an (n/q)-uniform hypergraph on n vertices with |Eq,r,1| =
(n − 1)/(q − 1) hyperedges.

We define a new hypergraph H′ := (V ′, E ′) with V ′ := V \ {0} and

E ′ := {E ∩ V ′ : E ∈ Eq,r,1}.
For q = 2, this hypergraph has constant pair-degree, i.e., there exists a λ ∈ N with

|{E ∈ E : i, j ∈ E}| = λ,

for all i, j ∈ V , i 
= j. For such hypergraphs H = (V, E), we can extend the
“trace”-lower bound of Beck and Sós [2] to c-colors and obtain

disc(H, c) ≥
(

1
c2|E|

∑
v∈V

(dv − λ)

)1/2

,

with dv as degree of v. In fact, this lower bound can be extended to cover also
the incidence matrix of Hq,r,1 for q > 2, where we do not have constant pair-
degree, but the pair-degree cannot vary too much. This yields the bound of the
following theorem. The upper bound is obtained by a c-color generalisation of a
theorem of Matoušek [4] for hypergraphs with bounded VC-dimension by Doerr
and Srivastav [3].
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Theorem 1. Let z := (q−1) mod c
c . Then there is a constant α > 0 with√

z(1 − z)
q

√
n − c − 1

c
≤ disc(Hq,r,1, c) ≤ α

√
n

qc
c1/2(r−1).

For one-sided discrepancy, we invoke the Fourier transform on F
r
q in the follow-

ing way. For simplicity, we take here q = 2. A subspace E ⊆ F
r
q of codimension

1 is uniquely determined by a vector z ∈ F
r
q, where E⊥ = 〈z〉. Thus, for A ⊆ F

r
q,

the function
E → |A ∩ E| − |E|

c

is a function of z, denoted by f(z), and we may build f̂(z). A sophisticated
interplay between the growth of Fourier coefficents and the size of color classes
leads to the following main result.

Theorem 2. Let z := (q−1) mod c
c and qr−1 ≥ qr/2 + 6q2. There exists a constant

α > 0 such that for every c ≥ 2, we have√
z(1 − z)

4q(q − 1)
√

c

√
n − q − 1

q
≤ disc(Hq,r, c) ≤ α

√
n

qc
c1/2(r−1).

Note that the lower bounds for discrepancy and one-sided discrepancy differ by
a factor of about 4(q − 1)

√
c.

Using our theorems, we can extend the result from linear hyperplanes to sub-
spaces of codimensions m ≤ r − 3.

Theorem 3. Let z := (q−1) mod c
c . If qr−m ≥ q(r−m+1)/2+6q2, there is a constant

α > 0 such that for m ≤ r − 3, we have√
z(1 − z)

4(q − 1)
√

c

√
n

qm+1
− q − 1

q
≤ disc(Hq,r,m, c) ≤ α

√
n

qc
c1/2(r−m).
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Metric discrepancy theory
Robert Tichy

In the first part of the lecture a survey on normal numbers and metric theory of
uniform distribution is given. In the second part metric theorems for distribution
measures of pseudorandom sequences are discussed – joint work with W. Philipp.

Let χ(x) = 21[0,12 )({x}) − 1, where {x} denotes the fractional part of x and
1A the indicator function of the set A. Throughout this abstract (nk) denotes an
increasing sequence of positive integers and ω ∈ [0, 1). For k ≥ 1, we define

(1) ek := χ(nkω).

The well-distribution measure of stage N of the sequence (1) is defined as

(2) WN := max
a,b,t

∣∣∣∣∣∣
∑
j≤t

ea+bj

∣∣∣∣∣∣ , N ≥ 1,

where the maximum is extended over all a ∈ Z and b, t ∈ N such that 1 ≤ a + b ≤
a + bt ≤ N . This measure of pseudorandomness was first introduced by Mauduit
and Sárkőzy [1]. As was already noted by them, there is nothing special about
the interval [0, 1

2 ) since WN can be bounded by the discrepancy Dt of the defining
sequence (nkω, k ≥ 1) in the form

(3) WN ≤ max
a,b,t

tDt({na+bjω}).
Here, for a fixed sequence (xj) with 0 ≤ xj < 1,

Dt(xj) := sup

∣∣∣∣∣∣1t
∑
j≤t

(
1[α,β)(xj) − (β − α)

)∣∣∣∣∣∣ : 0 ≤ α < β ≤ 1


denotes the discrepancy in the sense of uniform distribution mudulo 1. In view of
relation (3) we will formulate our results in terms of discrepancies.

Among other things, Mauduit and Sárkőzy [2, 3] prove metric results for se-
quences nk = kd, where d ∈ N. Our first result can handle arbitrary increasing
sequences (nk) and for d ≥ 3 it yields a sharper error term.

Theorem 1. Let (nk, k ≥ 1) be an increasing sequence of positive integers. Then
for almost all ω and arbitrary ε > 0,
(4)
max
(
tDt({na+bjω}) : a ∈ Z, b, t ∈ N, 1 ≤ a+b ≤ a+bt ≤ N

)
� N2/3(log N)1+ε.

The third part is devoted to the analysis of pair correlations as studied by
Rudnick, Sarnak and Zaharescu. Here some joint results of I. Berkes, W. Philipp
and R. Tichy are presented.

We prove a Glivenko-Cantelli type strong law of large numbers for the pair
correlation of independent random variables. Except for a few powers of logarithms
the results obtained are sharp. Similar estimates hold for the pair correlation of
lacunary sequences {nkω} modulo 1.
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Average decay of Fourier transforms, geometry of planar convex
bodies, and discrepancy theory

Giancarlo Travaglini

A number of facts in discrepancy theory depends on estimates for the decay
of the Fourier transform (see [2, 8, 10, 14]). Our first example is given by the
following result, which extends a theorem of D. Kendall (see [9, 7]): Let B ⊂ R

d

be a convex body. For ρ ≥ 2, σ ∈ SO(d) and t ∈ T
d, consider the discrepancy

Dσ(B)−t(ρ) = card((ρσ(B) − t) ∩ Z
d) − ρd|B|.

Then

(1)
∫

Td

∫
SO(d)

|Dσ(B)−t(ρ)|2 dσdt ≤ cρd−1.

The inequality (1) depends on the inequality∫
Σd−1

|χ̂B(ργ)|2 dγ ≤ cρ−d−1

(see [11, 5]). L2 results such as (1) do not depend on the shape of B, which instead
plays a role when we replace L2 with Lp, p < 2. We consider L1 and we state our
second example, which depends on upper and lower estimates for∫

Σ1

|χ̂B(ργ)| dγ

(see [12, 13, 3, 4, 7]).

Theorem 1. Let P be a convex polygon and let K be a planar convex body with
piecewise smooth boundary, different from a polygon. Then

c1 log ρ ≤
∫

T2

∫
SO(2)

|Dσ−1(P )−t(ρ)| dσdt ≤ c2 log2 ρ,(2)

c1ρ
1/2 ≤

∫
T2

∫
SO(2)

|Dσ−1(K)−t(ρ)| dσdt ≤ c2ρ
1/2.(3)

Here we wish to show nearly best possible results (see [6]) for intermediate cases
between (2) and (3). In order to do this, we scale between discs and polygons in
two different, although related, ways. The first one consists of approximating the
convex body B with certain polygons, especially tailored for the Fourier transform,
and then counting the number of sides of these polygons. The second one consists
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of a fractal measure of the image of the Gauss map on ∂B. In both cases we need
estimates of the Fourier transform of the characteristic function of a polygon with
many sides. These estimates depend partially on a development of the following
remark.

Remark. Let T be a triangle and let χ̂T (ρΘ) be the Fourier transform of its
characteristic function, written in polar coordinates ρ ≥ 2 and Θ = (cos θ, sin θ).
Then we have |χ̂T (ρΘ)| ≤ cθρ

−2 when Θ is not orthogonal to a side of T , while
we only have |χ̂T (ρΘ)| ≤ cρ−1 in the three remaining directions. Then (see [4, 7])
one can prove that ∫ 2π

0

|χ̂T (ρΘ)| dθ ≤ cρ−2 log ρ.

Now let P = PN be a polygon with N sides, of lengths not greater than 1. By
splitting P into triangles, we obviously get∫ 2π

0

|χ̂P (ρΘ)| dθ ≤ cNρ−2 log ρ,

with c independent of N . It turns out that this last “trivial” inequality is nearly
sharp, since for any ε > 0, we cannot replace N in the right hand side above by
N1−ε (see [14]).

Estimates for the decay of the Fourier transform can be also used to prove lower
bounds for irregularities of distribution. As an example we consider the following
theorem, which is a basic result in the theory and it has been independently proved
in [1] and [10].

Theorem 2. Let B be a convex body in T
2. For every finite set {u(j)}N

j=1 ⊂ T
2,

we have

(4)
∫ 1

0

∫
SO(2)

∫
T2

∣∣∣∣∣∣−Ns2|B| +
N∑

j=1

χsσ−1(B)−t(u(j))

∣∣∣∣∣∣
2

dtdσds ≥ cN1/2.

It is possible to prove that for certain choices of B the inequality (4) holds and
it is best possible even without averaging over dilations.

Theorem 3. Let T be a triangle in T
2. For every finite set {u(j)}N

j=1 ⊂ T
2, we

have ∫
SO(2)

∫
T2

∣∣∣∣∣∣−N |T |+
N∑

j=1

χσ−1(T )−t(u(j))

∣∣∣∣∣∣
2

dtdσ ≥ cN1/2.

The lower bound depends on the argument in [10] and on estimates in [4], while
the upper bound runs as in (1).
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Polynomial-time algorithms for multivariate linear problems with
finite-order weights

Grzegorz Wasilkowski
(joint work with Henryk Woźniakowski)

There is a host of practical problems that deal with functions of very many
variables. In many cases, the required error tolerance for such problems is not
too small. Then the classical estimates are asymptotic for n going to ∞ and for
fixed the number d of variables, and they are usually of no practical value if n
is fixed and d is very large. For instance, the classical discrepancy bounds are
of the form n−1(log n)d−1 and become meaningful only when the number n of
function evaluations significantly exceeds ed. This is why, since its introduction
in 1994, see [12], there has been an increasing interest in the study of tractability
of multivariate problems. Recall that a problem is tractable if it is possible to
reduce the initial error ε-times by using a polynomial number of evaluations in
ε−1 and d; and it is strongly tractable if this number is independent of d. We
stress that the upper bound on the number of evaluations should hold for all
ε ∈ (0, 1) and all d = 1, 2, . . . , including the case of huge d and relatively large ε,
say ε = 10−1. Algorithms that compute an ε-approximation and use a polynomial
number of evaluations in ε−1 and d are called polynomial-time algorithms; and
if this number does not depend on d they are called strongly polynomial-time
algorithms.
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There are many results on the tractability of multivariate problems. However,
quite a few of them are not constructive, see the survey paper [4] and many papers
cited there. Most of the results are obtained for problems defined over general
tensor product spaces, including Banach spaces, see, e.g., [3]. As observed in a
number of papers, see, e.g., [1, 5, 7, 8], there are important problems, including
problems in mathematical finance and physics, that deal with functions which
only depend on groups of few variables. That is, the functions depend on all d
variables; however, they are sums of terms each of which depends only on few, say
q∗, variables. For some applications, the number q∗ is fairly small, e.g., q∗ = 1
or 2. An example of such functions with q∗ = 2m is provided by the Coulomb
potential function where

f(x) =
d∑

i�=j, i,j=1

(‖xi − xj‖2 + α)−1

for vectors xj ∈ R
m and a positive α. That is, f only depends on groups of two

variables each being an m-dimensional vector.
Functions of d variables can be written as the sum of functions of groups xu of

variables with u varying through all subsets of the index set {1, 2, . . . , d}. That is,
for x = [x1, x2, . . . , xd], we have

f(x) =
∑

u⊂{1,2,...,d}
γd,ufu(x)

for some functions fu depending only on xj for j ∈ u, and non-negative weights
γd,u. The essence of the example with the Coulomb potential function is that
γd,u = 0 for all u with cardinality greater than 2m. If such a special structure of
functions is present in a specific problem, it is said that the problem has finite-
ordered weights; see [2, 5] where the concept of finite-order weights has been
introduced.

When such a structure is properly used we might be able to obtain efficient
algorithms that are polynomial-time or even strongly polynomial time algorithms.
Indeed, it has recently been shown in [2, 5] that this is the case for approximating
integrals ∫

[0,1]d
f(x) dx

for Sobolev and Korobov spaces of functions equipped with finite-order weights. In
this case, the quasi-Monte Carlo algorithms based on such classical low discrepancy
points as Niederreiter, Halton, Sobol, lattice rules and shifted lattice rules are
polynomial or even strongly polynomial-time algorithms.

More general problems, including the weighted L2-approximation problem, have
been studied in a recent paper [10]. It was shown there that, under a special as-
sumption (1), these problems are tractable or even strongly tractable for reproduc-
ing kernel Hilbert spaces equipped with finite-order weights. More specifically, an
upper bound on the number of evaluations needed to compute an ε-approximation
was shown to be independent on d and of order ε−2 or ε−4; the former dependence
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for algorithms that use properly chosen linear functional evaluations, and the lat-
ter for algorithms that use only function evaluations at properly chosen points.
For some problems these bounds are not sharp; however, in full generality, the
bound of order ε−2 cannot be improved. The bound ε−4 is probably not sharp,
and the proof of it is non-constructive.

The research presented here may be viewed as a continuation of [10]. Indeed, un-
der slightly different assumptions and using different proof techniques, we provide
constructions of polynomial-time algorithms that use only function evaluations for
linear problems over reproducing kernel Hilbert spaces equipped with finite-order
weights. These algorithms are derived for arbitrary d ≥ 2 in terms of tensor prod-
ucts of algorithms for d = 1 in a way similar to weighted Smolyak algorithms
studied in [9], see also [6]. Upper bounds on the number of evaluations needed to
compute an ε-approximation for general d are practically the same as for d = 1 as
far the dependence on ε−1 is concerned. Hence, these upper bounds are sharp in
ε−1 if we use optimal algorithms for d = 1. The dependence on d is polynomial
and the degree of this polynomial depends on the order of the weights, i.e., on the
largest cardinality of u for which γd,u is still non-zero.

We explain our results in more technical terms for the following simplified ver-
sion of weighted approximation problem, where one wants to recover f with the
error measured in a weighted L2-norm√∫

Dd

|f(x) − (Af)(x)|2ρd(x) dx.

Here Dd = D × . . . × D with D ⊂ R, ρd =
∏d

k=1 ρ(xk) is a probability density
function on Dd, and Af is an approximation given by an algorithm A. We assume
that functions f belong to a reproducing kernel Hilbert space Fd whose formal
definition was presented during the talk, see also [11]. The condition (1) from [10]
relates the kernel K defining the space and the probability density ρ by assuming
that

(1)
∫

D

K(x, x)ρ(x) dx < ∞.

Let Ad,ε be one of the proposed algorithms that computes an ε-approximation
for the d-dimensional case. Letting card(Ad,ε) denote the corresponding number
of function evaluations used by the algorithm Ad,ε, we show that for any positive
δ, there exists a positive number aδ such that

(2) card(Ad,ε) ≤ aδε
−p(1+δ)d q∗ ∀ d, ε.

Here p can be chosen as the smallest exponent for the case d = 1, and q∗ is the
order of the weights, i.e., γd,u = 0 for all u ∈ {1, 2, . . . , d} with the cardinality
|u| > q∗. In particular, this means that, modulo (1 + δ), the exponent of ε−1 is
as small as possible. Since we do not assume that the condition (1) is satisfied,
the exponent p can be arbitrarily large. As in [10], p < 4 if (1) holds. For smooth
problems, however, p is much smaller than 4.
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We now comment on the results concerning algorithms that may use arbitrary
functional evaluations. As already mentioned, general results with constructive
proofs have been obtained in [10] with the exponent p = 2. Under an additional
assumption and using different proof techniques, we construct optimal algorithms
with card(Ad,ε) bounded as in (2). Hence, we may have the exponent p much
smaller than 2. We also show that this bound is sharp in both ε−1 and d.

Under yet an additional assumption that the weights γd,u depend on u only via
|u|, we show a necessary and sufficient condition for the approximation problem
to be strongly tractable and we present strongly polynomial-time algorithms. We
also show that sometimes there is a tradeoff between the minimal exponents of
ε−1 and d. Indeed, for strongly tractable problems we have a sharp bound of the
form

card(Ad,ε) ≤ cε−p′ ∀ d, ε.

Furthermore, (2) also holds; however, the exponent p′ is in general larger than p in
(2). This means that by increasing the exponent of ε−1 we can obtain the bound
independent of d.

The results discussed here will be published in [11].
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Integration, tractability, discrepancy
Henryk Woźniakowski

In this talk we discuss recent progress on solving multivariate integration when
the number d of integrand variables is in hundreds or thousands. Such high di-
mensional integrals occur in many applications including financial mathematics
and computational physics. We want to approximate

Id(f) =
∫

Dd

ρd(t)f(t) dt,

where Dd ⊂ R
d, the function ρd is non-negative and its integral over Dd is one,

and real f belongs to a normed class Fd of integrable functions.
We restrict our attention to the worst case setting although different settings

such as average, randomized and quantum are also studied. We approximate Id(f)
by a quadrature rule

Qn,d =
n∑

j=1

ajf(tj).

Here, tj are sample points from the domain of f , and aj are real numbers. For
QMC (quasi-Monte Carlo) rules we have aj = 1/n. The number n denotes the
total number of function values used by Qn,d.

The worst case error of Qn,d is defined as its worst performance for approxi-
mating integrals for the unit ball of Fd,

e(Qn,d) = sup
f∈Fd, ‖f‖≤1

|Id(f) − Qn,d(f)|.

Clearly, the cost of using Qn,d is proportional to n, and therefore we would like to
use n as small as possible with the worst case error below a given threshold. For
n = 0, we formally set Q0,d = 0, and then the worst case error is called the initial
error which is the norm ‖Id‖ of the integration in the space Fd.

We consider two error criteria. The first one is the absolute error criterion in
which we want to guarantee that the worst case error is at most ε, i.e., e(Qn,d) ≤ ε.
The second one is the normalized error criterion in which we want to guarantee
that the worst case reduces the initial error by a factor of ε, i.e., e(Qn,d) ≤ ε‖Id‖.
Here, the error parameter ε ∈ (0, 1).

Define n(ε, Fd) as the minimal number of function values needed to satisfy the
absolute or normalized error criterion. If n(ε, Fd) can be bounded by a polynomial
in ε−1 and d, then multivariate integration in Fd is called tractable, i.e., there exist
non-negative numbers C, p and q such that

n(ε, Fd) ≤ Cε−pd q ∀ ε ∈ (0, 1), d = 1, 2, . . . .

If q = 0 in the bound above, then n(ε, Fd) is bounded by a polynomial in ε−1 inde-
pendently of d, and then multivariate integration in Fd is called strongly tractable.

The study of tractability, not only for multivariate integration, has recently
become a popular research subject. The main point is to identify classes Fd for
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which strong tractability or tractability hold. A survey of current results and
approaches may be found in [4].

For some spaces Fd, the worst case error is the same as the L2 or star dis-
crepancy. In this case, tractability is equivalent to finding discrepancy bounds of
n sample points with polynomial dependence on d and converging to zero as a
positive power of n−1. For instance, consider the Sobolev space of functions de-
fined over [0, 1]d which are one time differentiable with respect to all variables and
satisfying the boundary condition f(t) = 0 if at least one of the components of t
is zero. The norm of f in this space is defined by the L2 norm of ∂ df/∂t1 . . . ∂td.
Then the worst case of Qn,d is exactly the L2 discrepancy of tj . It turns out
that for the absolute error criterion, multivariate integration is strongly tractable.
On the other hand, for the normalized error criterion, multivariate integration is
intractable.

If we remove the boundary condition and redefine the norm in the Lp sense
by taking projections of f as in the Zaremba and Koksma-Hlawka (in)equalities,
the situation changes. For the L2 case, multivariate integration is intractable for
the two error criteria. Surprisingly enough, if we switch to the L1 case, then the
worst case error is the same as the star discrepancy. In this case, the two error
criteria are the same since the initial error is one. It turns out that we now have
tractability, but not strong tractability, as proven in [2].

It was observed in many papers that integrands of practical importance have
additional properties which are not properly modeled by classical spaces. Namely,
in many cases, integrands are sums of functions that depend only on groups of a few
variables, or that they depend on the successive variables in the diminishing sense.
This additional structure of integrands may be modeled by weighted spaces of
functions in which each group of variables has a weight moderating its importance.
Tractability for weighted spaces has been initiated in [5]. For some spaces we know
necessary and sufficient conditions on the weights to obtain strong tractability or
tractability. For instance, take the Sobolev space without the boundary condition
with the L2 norm as above, and equip the space with the weight γj for each
variable. This means that the norm of the space is redefined and ‖f‖ ≤ 1 with
small γj means that f weakly depends on the jth variable. Then, in particular,
strong tractability of multivariate integration holds iff

∑∞
j=1 γj < ∞ as proven

in [5, 3].
What seems especially promising is the idea of finite-order weights as introduced

in [1] and [6]. The weights are finite-order if they are zero for all groups of variables
of cardinality greater than, say, k. Here k is independent of d and usually relatively
small. For instance, for some financial problems, k = 1 or k = 2, and for some
problems in computational physics, k = 6. It turns out that for finite-order weights
multivariate integration is tractable and often strongly tractable. However, the
error bounds are exponential in k. This, in turn, is not dangerous as long as k
is not large. Furthermore, classical sample points such as Halton, Niederreiter or
Sobol lead to tractable error bounds.
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Introduction by the Organisers

Electoral systems transform numbers into numbers. In order not to be blinded
by the intricacies of any particular case, as interesting as particular cases may
be, it is imperative to view theses transformations as functions, or as relations,
and to study their properties and structure in their full generality. Promoting
the mathematical foundations of the topic cannot be a goal in and for itself, but
must reflect the practical needs defined by the problems themselves that are tra-
ditionally treated by such non-mathematical fields as political science, economics,
social choice theory, constitutional law, etc. This diversity was well reflected in
the expert fields represented by the conference participants, as well as in the wide
range of topics covered. They may broadly be summarized under three headings:
(1) voting schemes that aggregate many individual preference rankings of a given
set of alternatives into a single global ranking; (2) proportional representation
schemes that map vote counts (or population counts) into parliamentary repre-
sentation; and (3) the determination of electoral districts that reasonably reflect
geographical, political, and social structures.While mathematics at large provides
the appropriate language to investigate these problems, the tools that are used
draw on specific mathematical fields, including:

• discrete mathematics, in that preference rankings are (usually) partial
orderings or permutations;

• combinatorial optimization, when finitely many units are assigned in a
accordance with some optimality criterion;
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• stochastics, where weights that are virtually continuous (proportions of
votes) are to be approximated by weights that are intrinsically discrete
(numbers of seats); and

• geometry, identifying the intricacies of voting with the symmetry structure
of permutation groups, and with the geometry of the probability simplex.

The mathematical analysis of electoral systems has direct repercussions on current
political issues. To mention but three, there is the question whether elections of
the US president would be less likely to be disputed, and their outcomes consid-
ered more legitimate, were he to be elected directly. Another is the analysis of
qualified majority rules in the EU Council of Ministers as stipulated in the draft
constitution proposed by the European Convention 2003. A third relates to devel-
oping biproportional apportionment methods that simultaneously accommodate
partisan and regional representation of the entire electorate.

Somewhat unusual for an Oberwolfach conference was the rather broad mix of
participants, representing the fields of mathematics, physics, economics, political
science, and psychology. It was this breadth that virtually all participants expe-
rienced as challenging and fruitful. As always, the atmosphere was congenial for
scientific discussions, and the Institute in its Schwarzwald setting made people feel
creative by just being there . . . particularly so, since the sky was blue and the sun
was shining (most of the time).

M.L. Balinski
S.J. Brams
F. Pukelsheim
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Abstracts

Measuring Power in At-Large Representation
Paul Edelman

This talk presents a formal analysis of a voting game inspired by a common type
of local legislature: a legislative body in which some of the seats are allocated
by majority vote in equipopulous districts, and some of the seats are elected by
an at-large majority vote. Such legislatures are common in city councils of large
metropolitan areas and county boards. For instance, the Metropolitan Council of
Nashville and Davidson County in the state of Tennessee consists of 40 members,
5 of whom are at-large and the remaining 35 are elected from separate districts.

The motivation for this study is the question of how to decide how many of each
type of representative is optimal, given a fixed total number of representatives. The
analysis will follow in the tradition of Banzhaf [1]. The legislature will be modelled
by a weighted voting game and I will compute the power of an individual voter by
using the composition of this weighted voting game with the majority game in each
component. It will be evident by symmetry that the actual Banzhaf power of each
voter is identical, but the sum of the Banzhaf power over all of the voters, what
Felsenthal and Machover call the sensitivity (see [4, Def. 3.3.1]) of this composite
game, is maximized when the number of at-large representatives is the square-root
of the total number of representatives.

Two novel mathematical issues will arise in the analysis. In the composite game
that I study, the underlying sets of players are not disjoint and the behaviour of
a player who appears multiple times can be different in different coordinates of
the game. The usual definition of composition requires disjoint sets of players [5,
XI.2.2] or at least that if the player sets are not disjoint then a player must behave
the same way in all coordinates [4, Definition 2.3.12]. To my knowledge there has
not been a theoretical account of games without these requirements and so I will
provide one.

What is even more interesting is that even though there has not been a theo-
retical account, results concerning the Banzhaf measure of such games have been
used. In New York Board of Estimate v. Morris, the U. S. Supreme Court con-
siders (and ultimate rejects) a Banzhaf analysis of a composite game involving
three at-large representatives and separate representatives for each borough [2, p.
697]. Banzhaf has considered a districted presidential election game with similar
features. Even though in these two different situations the Banzhaf power was
computed in similar ways, we will see that they are different types of games and
perhaps require different measures.

In this talk I will concentrate solely on the game theoretic aspects of this result.
In particular I will not enter the fray as to whether the Banzhaf measure is a
realistic measure of power in a voting game. What this paper does show is that
the Banzhaf measure provides a way to give a theoretical justification for a certain
number of at-large representatives in a legislative body. I know of no other model
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that does so. In order to do this, a new theoretical account of composite games is
required.

The results discussed in this talk have recently appeared [3].

References

[1] Banzhaf, J. F. III: Multi-member electoral districts — do they violate the “one man, one
vote” principle. Yale L. J. 75 (1966), 1309–1338.
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Voter Souvereignty
Remzi Sanver

(joint work with Steven J. Brams)

The thesis of this paper is that several outcomes of single-winner elections may be
acceptable. Perhaps the most dramatic recent example illustrating this proposition
is the 2000 U.S. presidential election, in which George W. Bush won the electoral
vote — disputed though it was in Florida — and Al Gore won the popular vote.
To be sure, the extreme closeness of this election was unusual. But many elections,
especially those with three or more candidates, may have more than one acceptable
outcome. For example, even when there is a Condorcet winner, who can defeat
every other candidate in pairwise contests, there may be a different Borda-count
winner, who on the average is ranked higher than a Condorcet winner. If there is
no Condorcet winner because of cyclical majorities, the Condorcet cycle may be
broken at its weakest link to select the strongest candidate in the cycle, who need
not be the Borda winner.

That different voting systems can give different outcomes is, of course, an old
story. The observation that different outcomes may satisfy different social-choice
criteria is also old hat (Nurmi, 1999, 2002, give many examples). What is new here
is our claim that in an election with three or more candidates, other outcomes —
not just the Condorcet winner, the Borda-count winner, or the strongest candidate
in a cycle — may be more acceptable to the electorate. In fact, even a Condorcet
loser, who would lose in pairwise contests to every other candidate, may turn out to
be the most acceptable candidate. To justify this last statement, we need to define
some measure of “acceptability.” If voters rank candidates from best to worst,
where they draw the line in their rankings between acceptable and unacceptable
candidates offers one such measure. It is precisely this information that is elicited
under approval voting (AV), whereby voters can approve of as many candidates as
they like or consider acceptable. This gives them the opportunity to be sovereign
by expressing their approval for any set of candidates, which no other voting system
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permits1. Call a candidate a Pareto candidate if there is no other candidate that
all voters rank higher. We demonstrate that candidates selected under AV always
include at least one Pareto candidate. In fact, AV dominates so-called scoring
systems, including plurality voting (PV) and the Borda count (BC), with respect
to the election of Pareto candidates: a Pareto candidate elected by a scoring
system is always elected by AV for some sincere and admissible strategies, but
not vice versa. This is also true for ranking systems that do not rely on scoring,
including the Hare system of single transferable vote (STV) and the majoritarian
compromise (MC). But if AV does a better job of finding Pareto candidates, doesnt
it open the door to a plethora of possibilities? Isnt this a vice rather than a virtue,
as some have argued (e.g., Saari and Van Newenhizen, 1988a; Saari, 1994, 2001)?2

This argument might have merit if the plethora of possibilities were haphazard
choices that could easily be upset when voters are manipulative. But we show
that AV often leads to Nash-equilibrium outcomes, from which voters with the
same preferences will have no incentive to depart. Moreover, if voters with different
preferences are able to coordinate their choices and none has an incentive to depart,
AV guarantees the election of a unique Condorcet winner (if one exists).

The latter notion of stability is that of a strong Nash equilibrium, which yields
outcomes that are invulnerable to departures by any set of voters. None of the
other voting systems we assay guarantees that a unique Condorcet winner, and
only a Condorcet winner, will be a strong Nash equilibrium outcome when voters
are sincere. While AV offers this guarantee, however, it also allows for other Nash-
equilibrium outcomes, including even a Condorcet loser, who may be the most
acceptable candidate, even in equilibrium. In section 2, we define preferences and
strategies under AV and give an example that illustrates the choice of sincere,
admissible strategies. In section 3 we characterize AV outcomes, describing the
“critical strategy profile” that produces them, and compare these outcomes with
those given by other voting systems. Among other things, we show that no “fixed
rule,” in which voters vote for a predetermined number of candidates, always elects
a unique Condorcet winner, suggesting the need for a more flexible system. The
stability of outcomes under the different voting systems is analyzed in section
4, where we show that Nash equilibria and strong Nash equilibria may vary from
system to system. Also, Condorcet voting systems, which guarantee the election of
Condorcet winners when voters are sincere, may not elect Condorcet candidates in

1Voter sovereignty should be distinguished from Arrow’s (1963) condition of “citizen
sovereignty,” whereby for any two alternatives a and b, if all voters prefer a to b, a cannot
be prohibited as the social choice. If voters are “sincere,” AV satisfies citizen sovereignty, be-

cause all voters who approve of b will also approve of a. Note that voter sovereignty describes
the behaviour of individual voters whereas citizen sovereignty is a property of a voting system.

2The critique of AV by Saari and Van Newenhizen (1988a) provoked an exchange between
Brams, Fishburn, and Merrill (1988a, 1988b) and Saari and Van Newenhizen (1988b) over
whether the plethora of AV outcomes more reflected AVs “indeterminacy” (Saari and Van Newen-
hizen) or its “responsiveness” (Brams, Merrill, and Fishburn); other critiques of AV are referenced
in Brams and Fishburn (2003). Here we argue that which outcome is chosen should depend on
voters judgments about the acceptability of candidates rather than standard social-choice crite-
ria, whichas we will show may clash with these judgments.



730 Oberwolfach Report 14/2004

equilibrium. In section 5 we show that rational departures by voters from unstable
outcomes under other voting systems may not induce AV outcomes, but rational
departures under AV always do. Hence, outcomes under AV form a closed set.

Nonstrong Nash equilibria might be thought of as possessing a kind of local
stability, whereas strong Nash equilibria possess a global stability. These different
kinds of equilibria may coexist, which is to say that which stable outcome is chosen
will depend on which candidates voters consider acceptable and whether they
coordinate their choices. In large-scale public elections, coordination is typically
done when voters draw inferences from polls, not by face-to-face communication,
which is commonplace in smaller settings like committees. That a Condorcet
candidate is a globally stable choice under AV should not be surprising. What is
more surprising is that such a candidate can be upset if (i) coordination is difficult
and (ii) many voters consider another candidate more acceptable.

Speaking normatively, we believe that voters should be sovereign, able to express
their approval of any set of candidates. Likewise, a voting system should allow for
the possibility of multiple acceptable outcomes, especially in close elections. That
AV more than other voting systems is responsive in this way we regard as a virtue.
That it singles out as strong Nash equilibrium outcomes unique Condorcet winners
may or may not be desirable. We discuss these and other questions related to the
nature of acceptable outcomes in section 6, where we suggest that “acceptability”
replace the usual social-choice criteria for assessing the satisfactoriness of election
outcomes chosen by sovereign voters.

A Minimax Procedure for Negotiating Multilateral Treaties
Marc Kilgour

(joint work with Steven J. Brams and Remzi Sanver)

In this paper we propose a procedure for reaching agreement on multilateral
treaties by finding a compromise that is as close as possible to the preferences
of all negotiating states. By “close” we mean that the maximum (Hamming)
distance from the compromise to the position of any negotiator is a minimum.
This compromise, which we call a minimax outcome, is most likely to be an
acceptable resolution because it leaves no state too aggrieved. We argue also that
it reduces any incentive states might have to misrepresent their preferences to
induce a better outcome and is, therefore, relatively invulnerable to strategizing.

What we propose differs from the usual method of reaching an agreement in
multilateral treaty negotiations. Normally, states vote separately on each provision
of a treaty, often starting from a “single negotiating text.” If a simple or qualified
majority supports a provision, it is included in the treaty; otherwise, it is excluded.
We call this the Majority Voting (MV ) procedure. MV chooses compromises that
may differ from minimax outcomes; we show that it produces all outcomes that
minimize the total (or average) distance to the negotiators’ positions, or minisum
outcomes.
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Our analysis assumes that negotiations have reached a stage whereby the pro-
visions of a treaty in dispute

• can be specified;
• are of approximately equal significance to all states;
• are relatively independent of each other.

Moreover, we assume that bargaining on all provisions is binary: each provision
must be included in the final treaty (coded as 1) or rejected (coded as 0). We
recognize that it may be difficult to achieve these conditions in practice, but we
suggest how they might be approximated. Moreover, it is certainly feasible to
extend our definitions to non-binary issues, but we do not pursue such an extension
here.

Assume that a treaty to be negotiated by n states (players, or countries) has k
possible provisions. The possible treaties can therefore be represented as binary
k-vectors, (p1, p2, . . . , pk), where each pi equals 0 or 1. Such binary vectors will be
called combinations. We simplify notation by writing combinations without punc-
tuation, so that (1, 1, 0) becomes 110. Note that the total number of combinations
is 2k.

Because the procedure we propose for forging consensus in multilateral treaty
negotiations requires bargainers’ preferences as inputs, we begin with a model of
preferences over combinations. We assume that each state has a most preferred
treaty; we call this combination its ideal point or top preference. We further assume
that the state ranks other combinations according to a spatial model — that is,
the ranking of a combination depends only on its distance from the top preference.
(As distance between two binary k-vectors, p and q, we use the Hamming distance,
d(p, q), which equals the number of components on which p and q differ.) So a
state prefers a combination that lies closer to its top preference, and equally prefers
combinations that are at equal distances from its top preference. For example, if
k = 2 and a state approves of the first provision but disapproves of the second, its
top preference is 10, and its complete preference ranking is 10 � 11 ∼ 00 � 01,
where “�” indicates preference and “∼” indicates indifference.

The procedure we propose for forging consensus in multilateral treaty negotia-
tions is based on “fallback bargaining” [1]. Let r be an integer satisfying 0 < r ≤ n.
The FBr outcomes are those attained by applying fallback bargaining with pa-
rameter r, which is the following procedure (starting with d = 0):

Assume bargainers approve only combinations at distance d or
less from their top preferences. If one or more combinations is
approved by at least r bargainers, then those combinations with
the most approvals are the FBr outcomes. If no combination is
approved by at least r bargainers, increase d by 1 and repeat.

Thus, in fallback bargaining each state begins by considering only its most pre-
ferred outcome acceptable. If there is not sufficient consensus (as measured by r)
in the resulting acceptability sets, the condition is relaxed incrementally; now each
state finds acceptable not only its top preference, but also any other combination
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at distance d = 1 from it. Acceptability sets expand in this way until there is some
outcome that is acceptable to at least r states.

Although we discuss all fallback bargaining outcomes, we focus on the case of
fallback bargaining with unanimity, or r = n, which we show produces exactly the
minimax outcomes, and on the comparison of these outcomes with the minisum
outcomes produced by MV . Whereas FBn outcomes are in the Rawlsian tradition
of minimizing the largest deviations from a compromise, MV outcomes are in the
utilitarian tradition of minimizing average departures.

We examine some of the social-choice properties of these procedures. The first
step in applying any procedure is for the bargainers to report their top prefer-
ences; a procedure is manipulable if it may be in a side’s interest to report its top
preference falsely. We show that the MV procedure is non-manipulable, whereas
all FBr procedures are vulnerable to manipulation. But in any realistic situation
with incomplete information about the preferences of two or more other parties,
FBn would be extremely difficult to manipulate. Moreover, and unlike MV , FBn

is completely unaffected by clones, or duplicates of an existing bargainer.
Maximin outcomes seem superior compromises in many bargaining situations,

such as OilPol 54, the 1954 negotiation of n = 32 states over oil-pollution controls
on the high seas. This negotiation concerned k = 4 binary issues. Because states
could abstain, as well as vote yes or no, on any provision, it was necessary to
extend our preference model to account for issues on which a state expresses no
preference. Using public statements before and during the conference and other
information, we were then able to estimate the top preferences of each participant,
as well as any indifferences. We then applied the FBn procedure, and found six
minimax outcomes, all of which differed from the MV outcome, which was the
historical outcome of OilPol 54. We argue that one of these outcomes might have
been a better choice than the actual outcome, and we suggest approval voting as
a way of choosing among the six.

Complex multilateral negotiations frequently involve individual states or over-
lapping blocs of states, scores of provisions, and considerable maneuvering by the
bargainers to try to achieve a strategic advantage. We believe that our proposed
procedure would encourage them to be honest, render their negotiations more
open, and make the compromises they achieve as acceptable as possible to all
bargainers.

References

[1] Brams, Steven J. and D. Marc Kilgour: Fallback Bargaining. Group Decision and Negotia-
tion 10 4 (2001), 287 – 316.

From Principles of Representation to Electoral Methods
Victoriano Ramı́rez

Politicians habitually establish certain objectives or principles when designing
an electoral system. Some of their decisions are influenced by national tradition
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and history. The system may be of the majority rule type, proportional, or some
mixture thereof, and the design of the electoral circumscriptions may respond to
previously established geographical boundaries or administive distinctions.

One objective that should not be forgotten is that of governability. A Parliament
comprising a large number of political parties, with the ensuing potential for a
number of winning coalitions, may give way to continual changes of government,
and therefore to the instability of the regime, an undesirable consequence in any
case.

Another objective of politicians aiming for systems of proportional representa-
tion is to achieve a high proportionality among the global votes for the parties and
the total seats obtained by each. Or, taken one step further, the aim might be
to obtain a double proportionality between votes and seats, insofar as the parties
and the circumscriptions are concerned (as in Mexico from 1989 onward). In other
countries, the system of mixed election represents the search for global proportion-
ality. Germany is the most distinguished example of this. Despite the fact that
half their Upper House is chosen in uninominal districts and the rest according
to the party lists with conditioned proportionality, the German electoral system
presently stands as one guaranteeing high proportionality.

Similarly, in the context of social election, certain prior objectives are usually set
forth [6, 7]. When it is necessary to choose a representative, be it the Presidency of
France or the position of Rector in a given Spanish University, it would be logical
to establish as a basic principle that the Condorcet winner will be declared the
winner of the election. Many other objectives and principles [1] enter into play as
well in the different electoral processes that take place in modern day democracies.

On occasion however, the various principles established are not entirely com-
patible, while at other times there may be different ways of attaining them, some
more satisfactory than others. This is why rigorous analysis is a prerequisite
for any electoral stipulations. Politicians should agree on which objectives and
principles are the most adequate and appropriate, and in fact they are often the
very persons who establish the rules and define the electoral system. Ignoring or
underestimating the variables involved in electoral processes, together with their
different properties and interrelations, can lead to a failure in achieving the stated
objectives, as well as other unpleasant surprises, such as the discovery that certain
laws are impossible to apply. A good number of contradictions and inconsistencies
can be seen with a careful look at the Mexican Constitutions of 1989 and 1994
and the corresponding Electoral Legislation [2]. But these are not the only cases.
In many countries there are confusing electoral systems with scarcely acceptable
implications.

I would like to present here several examples of electoral systems under which
the ultimate consequences are not necessarily a reflection of the original prin-
cipals that inspired the electoral design, or which have given rise to unforeseen
negative consequences. All the examples refer to different electoral processes that
have taken place within Spain in recent years. In Spain we have two Houses of
Parliament: the Congress (Congreso de los Diputados) and the Senate (Senado).
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The first example is relative to the size of constituencies for the Congressional
elections. The actual Electoral Law of 1985 has led to tremendous differences
between the value of a vote from a large constituency or a small one, the latter
reaping the relative benefits. The vote of five citizens from Madrid holds as much
electoral weight as that of one inhabitant of Soria — far from the democratic
principal of “one person, one vote! We must bear in mind the requirement that
each constituncy should receive at least two seats, and that there is no maximum
restriction, then using the Webster method we obtain an alternative for which the
previous ratio is reduced to 2.6.

The second example is relative to the allotment of Congressional seats to the
parties in Spain. Thus, the spanish electoral system produces some important
imbalances between certain regional parties and those national parties that obtain
similar results insofar as the number of votes. It does not guarantee a significant
bonus to the most voted party, although absolute majorities have resulted from half
of the elections held. For example in the last election (March, 2004): the national
party IU has obtained 1, 269, 532 votes and 5 seats, the regional party PNV has
obtained 417, 154 votes and 7 seats. Also the winner party, the PSOE has obtained
10, 909, 687 votes and 164 seats. In average, each seat of PSOE costs 66, 500 votes,
each seat of PNV costs 59, 600 votes and each seat of IU costs 253, 900 votes. It is
possible to define an electoral system that leads to a greater proportionality while
avoiding unfairness such as that cited for the above cases, even offering a bonus
to the most voted party in order to contribute to governability [4]. One mean
of ensuring high proportionality is to carry out a second allotment reflecting the
total votes of the parties, with minimal conditioning factors based on the results
of the initial allotment, as done in Germany.

The third example is the Senatorial election in Spain. In Spain the elections to
the Congress and the Senate are celebrated simultaneously. Most of the senators
are elected in the same constituencies as the members of Congress. But in this case
four are chosen, regardless of the circumscriptions population. The voters usually
behave along the same lines as for Congress, despite the fact that the voting system
is very different. In the Senate, there are candidate names from all the parties on
a single list, with groupings by party. A maximum of three names for each party
is established, and the voter can mark only up to three candidate names. This
method is similar to Approval Voting [3], but the number of candidates who can
be approved, for every elector, is limited to 3. Therefore, most voters choose those
three names proposed by the party they voted for in the congressional contest. If
they opt to mark just one or two names, it would tend to be in favor of the first
candidate(s) presented by the preferred party for Congress. The consequence of
that behavior is that the most voted party in the lists for the Congress obtains,
systematically, three senators and the second party more voted a senator obtains,
independently of the relation of votes between both and with respect to the other
parties.

The strategy of the Spanish in the elections to the Senate meets moreover
reinforced in the university elections, where there is used a method of election very
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similar to Approval Voting (with different limitations). If greater proportionality
in the Senate is desired (or in the universities elections), it would be preferable,
for a behavior of the voters like the one mentioned previously, to use as method
of social election a Borda-type method with the following weights: 1, . . . , 1/3, . . ..

This paper sheds some critical light on several electoral systems and practices
that can be seen in Spain (the constituencies size, the advantage of the main
regional parties over the similar national parties, the election of the Senators,
the higly manipulable electoral system to determinig university representatives or
Juntas). Notwithstanding all these drawbacks, the electoral processes of the Con-
gress, the Senate, and the municipal, regional or European elections do function
in a positive sense in that they are applicable in all cases.

On the other hand, I introduce a new property for the proportionality: Limited
loss of seats in coalitions. We put forth that a method has a limited loss of seats
in the case of coalitions: the fusion of 2r or 2r + 1 parties does not entail a loss of
more than r seats. Then, a necessary condition, for a divisor method, to imply a
limited loss of a seat is that

d(s) ∈
[
s +

1
2
; s + 1

]
.

(If d(s) = s+t or the fusion is of 2r parties, the previous condition is also sufficient).
In accordance with this property and the properties of the parametric methods

[5], I think that the most reasonable option is to use divisor methods of the para-
metric family from Webster to Jefferson in approaching problems of proportional
allotment.

References

[1] Balinski, M. L., Young, H. P.: Fair representation: Meeting the ideal of One Man, One
Vote. New Haven 1982.

[2] Balinski, M. L., Ramı́rez, V.: A case study of electoral manipulation: The Mexican laws of
1989 and 1994. Electoral Studies 15 (1996), 203–217.

[3] Brams, S. J, Fishburn, P. C.: Approval Voting. Birkhäuser Boston 1983.
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BAZI — A Java Program for Proportional Representation
Friedrich Pukelsheim

BAZI is a freely available JAVA-Program, permitting the user to experiment with
various apportionment methods, and to assess their relative merits on the basis of
real data rather than abstract theory.

The pertinent theory is available in the seminal monograph [4] by Balinski and
Young. Among all possible apportionment methods, the authors single out two
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important subclasses. The first class consists of divisor methods, the second of
quota methods. BAZI features just two quota methods, the method of greatest
remainders (Hamilton, Hondt, Hagenbach-Bischoff), and the Droop method.

However, a central message of the Balinski/Young monograph is that divisor
methods are generally more appropriate for the apportionment problem. Of these,
BAZI offers two parametric families, the divisor methods with stationary round-
ings, and the divisor methods with powermean roundings; for details see [5, p.357].

The powermean methods are more important from a historical point of view,
comprising the five traditional methods of Adams, Dean, Hill, Webster, and Jef-
ferson. In contrast, the stationary methods are more amenable to a mathematical
analysis. BAZI relies on an algorithm [5, p. 378] whose computational complexity
is minimum [6, p. 154].

On the computer screen, BAZI comes up with the graphical user interface split
into three panels, the input field to the left, the methods field in the middle, and
the output field on the right.

The input field invites the user to key in data of his or her own, or to read in a
data file that the user has created, or to load data from the extensive data base.

In the methods field the user can select a house size (district magnitude) and,
in particular, one or more apportionment methods.

Whenever the user chooses a divisor method, BAZI outputs the resulting ap-
portionment along with a pertinent divisor. This way the user may easily confirm
the results with paper and pencil (or a pocket calculator), rather than being forced
to believe what the machine says.

A particular feature of BAZI is that it offers three options for multiple electoral
districts. The user may choose between (1) separate evaluations for each district,
(2) biproportional apportionments using divisor methods, and (3) a variant of the
latter that is specifically tailored to the needs of the new Zurich electoral law of
2003.

For these matrix apportionments BAZI uses an algorithm akin to the one re-
ported by Balinski and coauthors in [1],[2] and [3]. More precisely, BAZI imple-
ments a discrete variant of the iterative proportional fitting procedure, also known
as alternating scaling. A paper to report on the specific properties of the BAZI
algorithm is under preparation.

The BAZI homepage and download site is

www.uni-augsburg.de/bazi.

The site also includes the pseudocode of the program, a detailed description of the
district options (1)–(3) mentioned above, and an extensive list on the Proportional
Representation literature.
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Seat Biases of Apportionment Methods for Proportional
Representation
Mathias Drton

(joint work with K. Schuster, F. Pukelsheim and N. R. Draper)

In proportional representation systems, apportionment methods are used to trans-
late the electoral votes into specific seat allocations. The seat allocations are of
course integer numbers, and the votes are almost continuous quantities, by com-
parison. One of the pertinent problems is to measure the effect of the use of
a given apportionment method. Whereas previous studies have made inferences
about the proportionality of apportionment methods from empirical data, this
paper (Schuster et al. [6]) derives the

information deductively.
We concentrate on the three most popular apportionment methods (cf. Balin-

ski/Young [1], Kopfermann [4]):
(H) the quota method of greatest remainders (Hamilton, Hare),
(W) the divisor method with standard rounding (Webster, Sainte-Laguë),
(J) and the divisor method with rounding down (Jefferson, Hondt).

Assuming repeated applications of each method, we evaluate the seat biases of
the various parties. These seat biases are averages, over all possible electoral
outcomes, of the differences between the (integer) seats actually apportioned, and
the (fractional) ideal share of seats that would have been awarded, had fractional
seats been possible.

More formally, we consider � parties, numbered 1, . . . , �, with respective vote
counts v1, . . . , v�. In proportional representation, the number of seats allocated to
a party ought to be proportional to the relative weight of their vote counts. Hence,
if V =

∑�
k=1 vk is the total number of votes cast, there is no loss of generality

to convert the vote counts into vote ratios, or weights, wk = vk/V , 1 ≤ k ≤ �.
Assuming that the weights w1, . . . , w� follow a uniform distribution over the set of
any � non-negative numbers summing to one, we calculate the average behavior of
the seat allocations. This distributional assumption can be traced back to Pólya
[5].

The district magnitude, that is, the total number of seats to be apportioned
is denoted by M . The numbers w1M, . . . , w�M are the ideal shares of seats of
parties 1, . . . , �. These would be the “fractional numbers of seats” to which, ideally,
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each party would be entitled if that were possible. In real life, the parties are
apportioned an integral number of seats m1, . . . , m�, using the apportionment
method in the applicable electoral law.

A common approach for evaluating the goodness of an apportionment method
is to compare, for each party k, their actual seat allocation mk with their ideal
share of seats wkM . This results in the seat excess mk − wkM of party k. We
are interested in whether an apportionment method systematically favors larger
over smaller parties. Hence, we condition the averaging process on the event that
party 1 is largest, party 2 is second-largest, etc., where “largeness” refers to party
weights. Under this condition w1 ≥ . . . ≥ w�, we

study the expected value of the seat excess mk − wkM as a function of the
district magnitude M . The resulting quantity

Bk(M) = E
[
mk − wkM

∣∣w1 ≥ . . . ≥ w�

]
,

is called the seat bias of the k-th largest party. The standard statistical term
“bias” indicates an expected difference between all possible observable values of a
quantity and its ideal value. The main results of our paper are formulas for the
seat biases, for each party k, under a given apportionment method.

For the quota method of greatest remainders (Hamilton, Hare), the seat biases
BH

k (M) turn out to be identical and slightly positive, for parties k = 1, . . . , � − 1
from the largest down to the second-smallest:

BH
k (M) =

� + 1
24M

+ O

(
1

M2

)
,(1)

BH
� (M) = −(� − 1)

� + 1
24M

+ O

(
1

M2

)
.(2)

The �-th, smallest party carries the deficit that balances the positive accumulation.
Even though the special role of the smallest party may appear disconcerting, its
seat bias remains so small numerically as to be invisible in practice. Thus the
quota method of greatest remainders is practically unbiased.

For the divisor method with standard rounding (Webster, Sainte-Laguë), the
seat biases of the largest � − 1 parties k = 1, . . . , � − 1 are given in (3), while the
seat bias of the �-th, smallest party is given in (4):

BW
k (M) =

� + 2
�

24M
+

� + 2
24M





�−1∑

j=k

1
j


 − 1


 + O

(
1

M2

)
,(3)

BW
� (M) = −(� − 1)

� + 2
�

24M
+ O

(
1

M2

)
.(4)

Here a certain amount of balancing goes on between the �−1 largest parties alone.
The accumulated contribution of the terms (� + 2

� )/(24M) is evened out by the
negative seat bias of the smallest party. However, all these theoretical seat biases
are so small numerically that we do not consider them practically relevant. That
is, the Webster seat allocations are practically unbiased.
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For the divisor method with rounding down (Jefferson, Hondt) the situation
changes dramatically. The leading term in the seat-bias is independent of the
district magnitude M :

(5) BJ
k(M) =

1
2





 �∑

j=k

1
j


 − 1


 + O

(
1
M

)
.

The remainder term, bounded of order 1/M , appears to be practically irrelevant.
Now, the largest party clearly enjoys a positive seat bias and can expect
seats in excess of their ideal share. The seat biases become successively smaller,

as we pass from the largest party (k = 1) to the smallest party (k = �). The
biasedness of Jefferson’s method has been observed over many years on the basis
of empirical data, but our formulas permit specific calculations about the numerical
sizes of the seat biases. For example, the largest party in a three-party system can
expect five extra seats per twelve elections in excess to their ideal share, under the
Jefferson method.

Our seat bias results depend on the assumption of uniformly distributed weights.
However, Schuster et al. [6] confirm the theoretical findings via empirical data
from the German State of Bavaria, the Swiss Canton Solothurn, and the U.S.
House of Representatives. Furthermore, Schuster et al. [6] give illustrations of the
seat biases and provide details on their interpretation. Mathematical details are
provided in Drton and Schwingenschlögl [2, 3].
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Negative Weights of Votes and Overhang Seats in the German Federal
Electoral Law

Martin Fehndrich

In Elections to the German Bundestag, internal overhang seats cause an effect
— negative weight of votes — where a party can get more seats if loosing some
votes, or loose seats because it wins some additional votes [1],[2]. This effect is
demonstrated in the federal German election 2002, where 1000 votes less for the
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SPD in one federal state would have caused an additional seat for this party. In
the talk, an overview over the German electoral system is given.

The reasons for Overhang Seats in general are traced back to two mechanisms:
many won constituency seats and few party votes. These two mechanisms allow
to describe the effect of every parameter of an electoral system on overhang seats.
The possible treatments of overhang seats are presented with a view of their effect
on disproportionality and additional seats. To prevent disproportionality and an
increase of the house size, respectively, a rule must be defined of not awarding
some of the overhanging constituency seats. Awarding all won constituency seats,
one has to make tradeoffs between disproportionality and increasing house size.
The biggest increase of house size with no or only a small disproporionality would
be reached by awarding additional balance seats (as done in most German federal
states), the biggest disproportionality but no increase of parliament by reducing
the number of seats for the not overhanging parties (as in the Scottish parliamen-
tary elections), while just awarding the overhang like in the German Bundestag
stays somewhere in the middle. An additional possibility is given in systems with
internal overhang seats, like the German system, where a party can have overhang
seats in one federal state, but still list seats in other federal states. In this case an
internal compensation could be used, where proportional seats are at first awarded
to justify the constituency seats and than are awarded to a partys lists.

Negative votes are votes in a party election, without ranking, only one ballot
and no second ballot.

One simple example for an electoral system allowing votes with a negative
weight of votes is the quota system with largest remainder (named after Hamilton
or Hare-Niemeyer), with a 5%-barring clause and 21 Seats. In an 4-party example
with A, B 4400 votes, respectively, C 700 votes and D 500 votes, an additional vote
for C (coming from nonvoters or D), would actually reduce the number of seats
for C. Another example for negative votes is the house monotone quota system,
described by Balinski and Young [3, Table A7.1/A7.2 p. 140].

A more serious problem with negative votes occurs in the German Bundestag
elections. Here a reduction of the votes for the SPD in the federal state of Bran-
denburg by 1000 votes in the 2002 election would have caused an additional seat
for this party. The effect is connected with the occurrence of internal overhang
seats. Loosing votes in Brandenburg will cause a shift in the proportional seats
within the party’s federals state lists. Brandenburg would lose a seat in favour of
Bremen. But since in Brandenburg there are enough constituency seats, this does
not hurt Brandenburg’s SPD-list, where then an overhang seat occurs, and in the
end there is an additional seat for the SPD. The effect is independent from the
rounding rule and can occur with Hamilton, Jefferson, Webster or other methods.
It occurred in the elections with Jefferson until 1983, before the change to the
Hamilton system. Even if we think about fractional seats, a vote for an overhang-
ing federal list would cause the loss of a fractional part of a seat. The effect is
sometimes that repeating and predictable that it becomes the best strategy under
game theoretical aspects to vote for the disfavoured and overhanging party rather
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than voting for the favoured party. Even in other cases it is a better strategy
to vote for a second choice party and not for the probably overhanging favoured
list. The occurrence of this effect in an electoral system is critiqued, because it
is against the rule of a direct election and some seats are justified by not given
votes rather than given votes. There is a qualitative change exceeding the point
of disproportionalty, if a votes weight is not just lower than others, but becoming
smaller than zero. An election under this circumstances seems more a case for
game theorists than an election. There is no reason in sight which could justify
this effect as a trade-off against other favourable properties of an electoral system
(as opposed to social choice, where a voter can rank or give more than one vote,
allowing similar effects like the no show paradox).

As a solution for the German Electoral System an internal compensation rule
is recommended, which prevents internal overhang seats and with that negative
votes. To reduce some paradoxes one should also change from Hamilton to the
Webster (Sainte-Laguë) system in the party distribution and sub-distribution.
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The Role of the Mean and the Median in Social Choice Theory
William Zwicker

A center is a function C that assigns, to each finite set S of points of R
n, a central

point C(S) of the distribution. The mean is the most familiar center, but there
are others. In particular, the mediancentre (the point minimizing the sum of the
distances to members of S) seems attractive; it is one of several generalizations of
the median to the multivariable context.

Extending work of Saari and Merlin, we show that many familiar voting systems
— including Borda count, Condorcet’s method of pairwise majorities, and the
Kemeny Rule — have alternate descriptions as follows:

(1) Plot the vote v of each voter as a point A(v) in n-space (where the choice
of plotting function A depends on the particular voting system at hand).

(2) Take the mean location q of all points A(v) (counting multiplicity).
(3) The outcome is the vote v0 for which A(v0) is closest (in the l2-metric) to

q.
In particular, the plot function for the Borda count places rankings at vertices
of the permutation polytope, or “permutahedron,” while the Condorcet procedure
and Kemeny rule each use the “pairwise comparison cube” discussed by Saari. The
result for the Kemeny rule is particularly surprising, as the original description
employs a type of median based on the Hamming distance between rankings,
whereas the new characterization uses the mean on standard, Euclidean distance.
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Several properties shared by these voting systems can now be traced to their
common dependence on the mean.

If we replace the mean with the mediancentre in step (2) of any system, the
result is typically a new system. For example, the Mediancentre Borda seems
interesting; while it fails to have the consistency property, it is less manipulable
than the standard Borda count, and has the interesting property that when a
majority of the voters rank candidates similarly, their favorite will win. These
differences can largely be explained by axiomatic differences between the mean
and the mediancentre. In particular, the mean satisfies the property that

C(S + T ) = C(S + kC(T )),

where S and T are multisets of points in R
n (several points may have the same

spatial location), S +T is the union counting multiplicity, T has k points counting
multiplicity, and kC(T ) is the multiset having k points, each located at C(T ).
In fact the mean is characterized by this property together with some symmetry
and the requirement that C(S) is uniquely defined for all nonempty multisets S
of points of R

n.
The corresponding axiom for the mediancentre seems to be

C(S + {p}) = C(S + {p′}),
where p is any point not located at C(S + {p}), and p′ is any point on the one-
sidedly infinite ray from C(S+{p}) through p (with p′ = C(S+{p}) allowed). This
property, together with some symmetry and the requirement that C(S) be uniquely
defined for all multisets S of points of R

n, except for multisets S containing an
even number of collinear points, implies a spatial majority rule property: C(S) = p
whenever either a strict majority of points are located at p, or exactly half the
points are at p and the other half are not all located at some common different
location. These same three axioms characterize the median in R

1, but we do not
know whether the same is true for R

n.

Formal Analysis of the Results of Elections
Fuad Aleskerov

Four main issues are presented in the paper:
(1) Patterning of electoral outcomes,
(2) Polarization of electoral outcomes,
(3) Disproportionality of a parliament,
(4) Power distribution in Russian parliament during 1994–2003.

In the first issue I deal with the following problem: is it possible to find a
similarity of electoral outcomes over several elections, and can we describe the
notion of stability of electoral behavior being based on such similarity?

The approach uses the clustering algorithm applied to all data available on
election outcomes. An important new feature of the algorithm (which is called a
clustering of curves algorithm) is that it uses the relations among outcomes, not
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the numerical values themselves. The obtained clusters are called patterns, and
one can analyze how the districts change their patterns over years. Then one can
call the electoral behavior in a district as a stable one if there are no changes of
patterns over years.

Using this very approach, Prof. Hannu Nurmi and I have studied the patterns
of party competition in British general elections in 1992, 1997 and 2001 over 529
constituencies in England, 70 constituencies in Scotland, and 40 constituencies in
Wales. Only 13 patterns of support distribution are obtained for English con-
stituencies, and only 6 of them are sufficient to describe the electoral preferences
distribution in more than 90% of the constituencies. Concerning the stability of
electoral outcomes, it has been shown that almost 38% of constituencies have not
changed their preferences over those three general elections. Almost 48% of con-
stituencies changed their preference after 1992 elections and then kept stable. In
other words, almost 86% of constituencies can be called stable or semi-stable in
terms of their electoral outcomes. Approximately the same results are observed
for Scotland and Wales. Next we have studied the stability of electoral outcomes
during last seven municipal elections from 1976 to 2000 in Finland over 452 con-
stituences. Naturally, the deviation from the stability is much higher when such
long period is studied. However, 14% of constituencies are absolutely stable since
they have not changed their electoral patterns during those 25 years. 51% of con-
stituencies can be called semi-stable since they have experienced not more than
one or two changes of patterns over this period, and only 1% of constituencies are
completely unstable, i.e., they have experienced seven changes of patterns over
these elections. These results are very illustrative for the use of this very powerful
method of patterning electoral outcomes.

In the political studies literature one can find very few attempts to study a
polarization of society on the basis of electoral outcomes. Such attempt was made
by my B.S. student M. Golubenko and myself. We construct a polarization index
using an analogy from physics which is called central momentum of forces with
respect to the center of gravity. We consider the parties being positioned over
the left-right position axes, and in each position the mass (percentage of votes for
that party) is concentrated. Then by evaluating the polarization index one can
conclude to which extent the electoral preferences are polarized. If there are only
two parties with 50% of votes given to each of them, and these parties are located in
the extreme opposite positions of the left-right spectrum, then the polarization is
maximal and equal to 1. On the other hand, if there are several parties positioned
at the same place on the left-right scale, never mind where this place is, the value of
polarization index is equal to 0. We have evaluated the distribution of polarization
over the regions of Russia using electoral outcomes of 1995, 1999 and 2003 general
elections.

There are several well-known indices to evaluate the disproportionality of a par-
liament, e.g., Maximum Deviation index, Rae index, Gallagher index, Loosemore-
Hanby index, etc. However, none of them take into account the turnout of elections
and the percentage of votes “against all”, which is allowed in Russia. My M.S.
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student V. Platonov and I have proposed a disproportionality index which is a
modification of Loosemore-Hanby’s index and takes into account these additions.
We have introduced a new index of disproportionality, that of relative representa-
tion. The index shows a percentage of seats in a parliament which a party receives
for 1% of votes. The evaluation made for several countries (Russia, Finland, Swe-
den, Ukraine, Lithuania, Turkey) show that the countries of the former Soviet
block are characterized with higher degree of disproportionality.

The last topic in my paper deals with the study of power distribution in the
Russian parliament from 1994 to 2003. We studied Banzhaf and Shapley-Shubik
indices on a monthly basis using the MPs’ voting data. The indices have been
evaluated for different scenarios of coalition formation. The model of coalition
formation uses the index of groups positions consistency showing to which extent
two groups (fractions) of MPs vote similarly. In the first scenario all evident
opponents are excluded from coalitions, in the second scenario all evident and
potential opponents are excluded, and in the third scenario coalitions only with
evident allies are allowed. The first scenario is most close to the real coalition
formation in the Russian parliament. The analysis shows, in particular, that due
to the absence of intention to coalesce, the Communist Party during almost all
period under study has had power near to 0, although there were periods when
this party controlled more than 30% of seats. The dependence in the changes of
the power indices distribution is compared with respect to political events during
this period.

Procedure-Dependence of Electoral Outcomes
Hannu Nurmi

The theoretical literature abounds examples in which the voting outcomes — win-
ners or the ranking of candidates — depends not only on the revealed preferences
of the voters but also on the method used in determining the result. From the
late 18th century, two main intuitive notions have played a prominent role in the
literature, viz. one which maintains that in order to qualify as the winner, a can-
didate has to defeat, in pairwise comparisons, all other candidates, and the other
which looks for the winner among those candidates that are placed highest on the
voters’ preference rankings. It is well-known that these two intuitive notions are
not equivalent: the candidate that defeats all others in pairwise contests may not
be best in terms of positions in the voters’ preference rankings. But how often do
these two notions conflict in real world elections?

The British parliamentary elections were studied by Colman and Pountney
(1978) from the view point of estimating the probability of the Borda effect. This
effect occurs whenever the elected candidate would be defeated by some other
candidate in a pairwise comparison by a majority of votes. The British first-past-
the-post (FPTP) system makes it possible that such instances occur. The problem
is to know how often. Colman and Pountney used the interview data collected
by the British polling organization MORI to construct preference profiles for the
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entire electorate. From these they then computed the likelihood of instances of the
Borda effect. This paper replicates Colman and Pountney’s study using the data
on the 2001 British parliamentary elections. To get a wider perspective on the
variability of electoral outcomes, we used Saari’s (1995) geometric methodology to
determine the range of all positional voting outcomes in the 2001 elections in all
British constituencies. It turns out that — under the same assumptions as those
made in the Colman and Pountney’s study — in 12 constituencies the ranking
of candidates could have been completely reversed depending on the voting rule
used. Much more numerous were constituencies, 68 in number, where the actual
winner would have been ranked last by another positional voting procedure. The
first and second ranked candidates would have been different depending on voting
rule in 49 constituencies.

The second aim of the study is to determine the pattern of party competition
prevailing in British constituencies. In a study conducted together with Aleskerov
we found that the optimal number of party support patterns needed to characterize
the 500+ English constituencies over three most recent parliamentary elections is
just 13. Moreover, about one-third of the constituencies were characterized by
the same support patter over the period of three elections. Less than 10% of the
constituencies were completely volatile in the sense of moving from one pattern
to another in each election. In Scotland, nearly two-thirds of the constituencies
experience no change in support pattern in the three elections. Similar study was
conducted on Welsh constituencies. It shows that in terms of support stability,
Wales is located between England and Scotland.
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The Mathematical Source of Voting Paradoxes
Donald G. Saari

The social choice literature has many articles describing certain properties of de-
cision rules: often these properties are obtained via the so-called “axiomatic ap-
proach.” The thrust of

this talk was to 1) show why the way the “axiomatic approach” is used in the
social choice literature often has very little, if anything, to do with “axioms” or
the “axiomatic approach,” 2)

explain a way, motivated by the mathematics of “chaotic dynamics,” to identify
all possible consistency properties and paradoxes — both positive and negative —
of positional voting methods (and all other rules based on these methods), and 3)
identify the source of all possible properties of these voting rules. I had intended
to also discuss how to find all possible strategic settings, who can be
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strategic, and the possible strategies, for any specified voting rule, but time ran
out.

As for the axiomatic approach, I gave some
examples to show how the properties called “axioms” often are merely particular

properties that happen to uniquely identify a particular decision rule. “Uniquely
identifying” and

“characterizing via axioms” are very different. As an illustration, the two prop-
erties “Finnish-American heritage” and a particular “DNA structure” uniquely
identify me, but they are not

“axioms,” they do not characterize me, and they do not tell you “what you are
getting,” which is the usual claim for the axiomatic approach.

The second part described a way to characterize all possible outcomes. This
work was motivated by the clever paradoxical example found by, for example,
Brams, Fishburn, Nurmi and many others. The point is that a “paradox” identifies
an unexpected property of a voting rule. For example, the profile where 6 prefer
ACB, 5 prefer BCA, and 4 prefer CBA leads to the plurality ranking of ABC,
and the conflicting pairwise rankings of CA, BA, CB. These rankings define the
plurality word (ABC, BA, CA, CB), and the word identifies the plurality property
that the plurality winner can be the Condorcet loser, while the plurality loser can
be the Condorcet winner. In other words, each list of

rankings — each word — that CAN occur defines a property of the voting rule.
On the other hand, it turns out that this same list (ABC, BA, CA, CB) can never
occur with the Borda Count; it can

never be a Borda word. This means that a Borda property is that the Condorcet
winner can never be Borda bottom ranked and the Condorcet loser cannot be
Borda top ranked. Namely a listing that cannot occur — that cannot be a word
— also defines a property of a voting rule. Consequently, to find all possible
ranking properties of all possible positional methods over all possible subsets of
candidates, we want to find all possible listings of rankings that

could occur over all possible profiles; we want to find all possible words. Doing
so directly may be impossible, but by use of notions from chaotic dynamics, this
has been done, and the results are discouraging; e.g., for most collections of voting
rules (one for each subset of candidates), anything can happen. Namely, any

listing is a word. The unique voting rule that minimizes (significantly!) the
number and kinds of listings that can be words is the Borda Count. Thus, this
rule has the largest number

(significantly so) of positive ranking properties.
The third topic showed how to construct all possible examples that can occur

with a voting procedure, how to explain all of the “paradoxes”, etc. The way this
is done is to emphasize the profiles rather than the voting outcomes. This is done
by finding configurations of preferences

where it is arguable that the outcome is a tie. The conjecture, which turned
out to be true, is that all possible differences among voting rules can be explained
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(and examples constructed) simply by knowing these configurations of preferences
where procedures do, or do not, have a complete tie. As an illustration, all possible

properties, differences in outcomes, etc. among three candidate positional vot-
ing occur because of the different ways voting rules handle the “reversal configu-
rations” such as (ABC, CBA). Here, only the Borda count gives a tie: all other
positional methods either favor A = C over B, or B over A = C. Indeed, the
above example was created by starting with 1 person preferring ACB and 4

preferring CBA, where the CBA outcome holds for all positional pairwise out-
comes. To create the paradox, 5 units of (ACB, BCA) were added: this adding
of the reversal components is what caused

the plurality outcome to differ from the pairwise outcomes. Similarly, all possi-
ble differences in procedures using pairwise outcomes arise because of “Condorcet
profile components” of the (ABC, BCA, CAB) type. Positional rankings are not
affected, but these components change the pairwise tallies: for any number of
candidates, it causes all problems with tournaments, agendas,

problems with methods using pairwise outcomes such as the Borda Count and
the Kemeny method, etc... The two configurations of preferences completely de-
scribe all possible differences among three candidate decision rules that use pair-
wise and/or positional methods; e.g., it explains all possible differences between
the Condorcet and Borda winners. Comments were made about results for n > 3
candidates.

On the Closeness Aspect of Three Voting Rules: Borda, Copeland and
Maximin

Christian Klamler

The purpose of this paper is to provide a comparison of three different voting
rules, Borda’s rule, Copeland’s rule and the maximin rule. Borda (1784) suggested
assigning points to the m alternatives in the individual preferences, namely m-1
points for the top ranked alternative, m-2 points for the second ranked alternative,
down to 0 points for the bottom ranked alternative. Then, for every alternative,
one adds up those points over all individuals. The more points an alternative
receives the higher ranked it is in the social preference. Copeland (1951) suggested
calculating for each alternative the difference between the number of alternatives
it beats and the number of alternatives it looses against. Again, the larger the
derived number the higher ranked is the alternative in the social preference. Finally
the maximin rule is based on the idea that alternatives should be ranked higher
in the social preference the more minimal support they enjoy, i.e. the higher the
minimal support over every other alternative.

Usual comparisons of such voting rules focus on non-binary aspects (Laffond
et al., 1995), e.g. comparing the actual choices of such voting rules for different
preference profiles, or calculating the probabilities of voting rules leading to the
same choices (e.g. Gehrlein and Fishburn, 1978, and Tataru and Merlin, 1997).
Nurmi (1988, p. 207) provides a possible interpretation of such results by stating
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that “the estimates concerning the probabilities that two procedures result in dif-
ferent choice sets can be viewed as distances between the intuitions.” Moreover he
adds that “. . . the fact that the Condorcet extension methods (Copeland’s and the
max-min method) are pretty close to each other was to be expected.” “Closeness”
in this sense means the probability of two voting rules choosing the same winner
at the same preference profile. In contrast, “closeness” could also be reasonably
interpreted with respect to the distance between the outcomes of the different vot-
ing rules, i.e. the difference between the rankings derived from two voting rules.
To be more precise, assume a set of alternatives X and two social preferences �,�′

on X. We will consider two social preferences �,�′ as opposed if for all x, y ∈ X,
x � y ⇔ y �′ x and for some x, y ∈ X , x � y ⇔ y �′ x. I.e. opposed social prefer-
ences are exactly opposite to each other. This paper shows, that in contrast to the
conclusions drawn from using a probabilistic approach, “closeness” in the sense of
comparing social preferences is neither guaranteed for Copeland’s and the max-
imin method nor for the Borda and the maximin method. It is proved that there
exist preference profiles for which the Copeland ranking and the Borda ranking
are exactly the opposite of the maximin ranking. That the Copeland ranking and
the Borda ranking are opposed has been shown by Saari and Merlin (1996). Sim-
ilar comparisons exist for Borda’s rule and simple majority rule. It is well known
that the Condorcet winner (the alternative that beats every other alternative by a
simple majority) is never bottom ranked in the Borda ranking and the Condorcet
loser (the alternative beaten by every other alternative) is never top ranked in the
Borda ranking (Saari, 1995). Hence, even in cases where the winning alternatives
are different, we can ensure a minimal degree of consistency between the rules.
However, several recent results (e.g. Ratliff, 2001, 2002 and Klamler 2002) show
that such a relationship does not exist for many other pairs of voting rules.
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Selecting Committees Without Complete Preferences
Thomas Ratliff

In many ways, the Condorcet criterion is the most natural way to compare can-
didates: if one candidate is preferred to every other candidate in head-to-head
elections, then it is plausible to argue that this candidate should be the winner.
When choosing a committee of size m, we can apply a similar criterion.

Definition 1. Given a profile with n candidates A1, A2, . . . , An, define the Con-
dorcet committee of size m to be the set M of m candidates such that Ai is
preferred to Aj in pairwise elections for all Ai ∈ M and all Aj �∈ M .

As we know very well, the Condorcet winner may not exist since there may
be a cycle among the top-ranked candidates, and a cycle involving all candidates
would preclude the existence of a Condorcet committee. Notice that we are merely
partitioning the candidates into two disjoint groups: those on the committee and
those off. We do not care whether we have cycles within the disjoint groups, but
only that those on the committee are preferred to those not on the

committee.
When there is no Condorcet winner, Charles Dodgson (aka Lewis Carroll) pro-

posed in 1874 picking the candidate that is “closest” to being a Condorcet winner
by choosing the candidate that requires the fewest adjacent switches in the voters’
preferences to become the Condorcet winner. Since he is selecting a single

winner, Dodgson does not care if there is a cycle among the remaining candi-
dates; requiring a complete transitive ranking forces more structure than Dodgson
views as necessary. We can easily adapt Dodgson’s method to measure how far a
set of m candidates is from being the Condorcet committee.

Definition 2. In an election with n candidates, define the Dodgson Committee,
denoted DCm, to be the set of size m that requires the fewest adjacency switches so
that Ai is preferred to Aj in pairwise elections for all Ai ∈ DCm and all Aj �∈ DCm.

There are, however, several anomalous results that can arise:
• The Condorcet winner may be excluded from DCm.
• If j �= k, then DCj and DCk may be disjoint or may have any number of

candidates in common.
These results can be found in “Some startling inconsistencies when electing com-
mittees”, T. Ratliff, Social Choice and Welfare 21 3 (2003), 433–454.

In addition to these inconsistencies, a fundamental objection to selecting a
committee based on the rankings of individual candidates is that this may not
actually capture the voters’ preferences. Voters are often concerned with the
overall composition of the committee and consider how the individual members
will interact. For example, a voter may prefer two candidates in their top-ranked
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committee because they represent contrasting viewpoints, but would not want one
candidate on the committee without the other. A strict listing of the individual
candidates could not detect such a preference without additional information.

The motivation for considering this issue arose in the spring of 2003 at Wheaton
College in Massachusetts during the selection of three faculty to serve on the search
committee for the next president of the college. When Wheaton had last conducted
a presidential search in 1992, three men were elected as the faculty representatives
on the committee, which was very controversial on the campus. Wheaton has a
long standing commitment to gender balance and awareness, partially based upon
its history as a women’s college (Wheaton began admitting men in 1988). The
faculty was almost evenly divided between women and men, and the election of
three men was acceptable to almost no one, including those who were selected
to serve on the committee. The selection was a result of a process that only
considered voters’ preferences for individual candidates and not their preferences
for the overall composition of the representatives.

The goal was to select one faculty representative from each of the three aca-
demic divisions of the college. An initial ballot used approval voting to reduce
the field of possible candidates to six, two from each of the divisions, and the
final ballot allowed the faculty to select their preferred candidate in each division.
This approach seems very reasonable on the surface. However, by decomposing
the voters’ preferences of the overall composition of the committee into choices
on individual candidates, the procedure selected candidates that were individu-
ally preferred by a majority, but the overall composition was nearly unanimously
unacceptable.

We should not divorce the voters’ opinions of the overall group into opinions of
individual candidates. This can be viewed as analogous to some of the objections
that are raised to the binary independence axiom in Arrow’s Theorem: If complete
transitive rankings of candidates are broken down into comparisons on pairs and
then reassembled to gain an overall ranking, then vital information is lost.

Because of the experience with the selection process in 1992, the faculty at
Wheaton were open to adopting another voting method in 2003. The faculty
committee responsible for all faculty elections (of which the author is a member)
proposed a different method for the final ballot. An approval voting nominating
ballot was used as in 1992 to reduce the field to two faculty members from each of
the three divisions. Since the requirement was that there be one faculty member
from each division selected, this left a total of eight possible groups of faculty
representatives. The final ballot asked the voters to rank the eight possible groups,
and the Borda Count was used to select the winning group.

There are several interesting observations in this election.

• Of the 71 ballots received, only three were disqualified because the voter
failed to rank all eight groups.

• The group selected by the Borda Count was also the Condorcet winner.
• The voters’ rankings indicate that their preferences are more complex than

could be detected by a simple listing of the candidates or by simple yes/no
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votes on the individual candidates. For approximately half of the voters
(35 out of 68), their first place and last place committees were not disjoint.
For seven of these voters, their first and last place committees differed by
a single candidate.

• There are very few rankings that appear more than once; there are 64
distinct rankings from the 68 voters. Even if we restrict to the top three
groupings in each ranking, there are still 45 distinct rankings, and the
largest duplicate ranking had only five voters.

Overall, the Wheaton faculty were very pleased with the process and the out-
come. However, several faculty commented that they would have had a difficult
time ranking more than eight options. In general, it will often be impractical to
expect the voters to rank all possible committees since the number of possible
committees can be extremely large even for a small number of candidates. For
example, there are 210 possibilities when selecting a committee of size four from
a group of ten candidates.

We define an intermediate approach for selecting a committee that is based
upon each voter ranking their top k committees, for some fixed value of k. From
this partial ranking, we want to detect overlap within the ranked committees and
to extract groups of candidates that the voters believe would work well together.

Definition 3. Assume that there are n possible candidates for a committee of
size m and that each of the N voters ranks their top k committees.

Build a weighted graph G with n vertices corresponding to the n candidates.
We form a complete graph with edges connecting every pair of vertices, and also
include n loops, one for each vertex. Initially assign a weight of zero to every edge
in G, and then determine the weights of the edges by examining the rankings of
each of the N voters as follows:

• For a voter’s top ranked committee, add k to each edge connecting can-
didates listed in the committee, including the loop that connects each
candidate to itself.

• Apply the same technique to the second ranked committee, except in this
case we add k − 1 to each edge.

• In general, for the jth ranked committee, add k − j + 1 to the edges
corresponding to this committee.

The (not necessarily unique) winning committee Cm is the subgraph of G with m
vertices of maximal weight.

Note that the reason for including the loops is to recognize overlaps in voters’
preferences for single candidates as well the overlap in groups of candidates. Also
notice that we can easily represent G as a symmetric n × n matrix M where the
(i, j) entry corresponds to the weight of the edge connecting candidates i and j.

An objection to this approach is that it only detects an overlap in voters’ prefer-
ences of single candidates or of pairs of candidates but places no additional weight
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on triples or quartets of candidates. A natural extension would be to form a hyper-
graph that includes all subsets up to size m and weight the hypergraph similarly.

A Question for Mathematicians: Would Disputed Elections Be
(Sufficiently) Less Probable If U.S. Presidents Were Directly Elected?

Jack H. Nagel

In the 2000 U.S. presidential election, the very close vote in the pivotal state of
Florida led to an agonizing recount that was ended by a highly controversial deci-
sion of the U.S. Supreme Court. The debacle provoked renewed calls for abolition
of the Electoral College (E.C.). However, defenders of that institution countered
that the E.C. system, by confining disputed results to just one state (or a small
set of states), renders the problems of disputed outcomes much less severe than it
would be if a national direct vote resulted in an extremely close vote, thus touching
off a nightmarish Florida-style recount nationwide.

While conceding that a national recount would be worse than one confined to
a single state, I conjecture that the E.C. structure makes the probability of such a
dispute substantially higher than it would be with a national direct vote. As I am
a political scientist and not at all a mathematician, I pose the following problem
to my mathematical colleagues: Is it the case that

Prob[(V1,N − V2,N ) < TN ] 	 Prob[{sj} : {sj} is critical to a winning
candidate’s Electoral College victory and
(V1,j − V2,j) < Tj for all sj],

where V1,N and V2,N are the popular vote totals nationwide of the leading can-
didate and the runner-up; {sj} is a set of states with one or more members; V1,j

and V2,j are the candidates popular vote totals in state j; and TN and Tj are vote
margins that would “trigger” (either in a mandatory or in a permissive sense)
recounts nationally and in state j, respectively.

Currently, 28 states specify recount triggers — 15 for mandatory (automatic)
recounts and 13 for margins below which candidates are permitted to request re-
counts. The U.S. has never held a nationwide direct election, so TN must be set
somewhat arbitrarily. The analysis might be carried out with several possible val-
ues (e.g., 10K, 50K, 100K, and 250K). A key premise, however, is that although
recount triggers as absolute numbers may grow with the size of the electorate, as
a percentage of the total vote, they decrease. That principal already exists in the
laws of 10 states, which specify that recounts in statewide elections require a mar-
gin that is a lower percentage of the vote than recounts in smaller election districts.
In addition, when comparing across states, numerical triggers are only modestly
associated with state populations, and they rise at a decreasing rate. There are,
however, two exceptions, both extreme outliers with remarkably liberal triggers
for recount requests (Texas and Illinois). Besides examining legal requirements, I
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am also attempting to find out the vote margins in elections where recounts were
actually held, especially in the larger states and particularly in Texas and Illinois.

In addition to seeking the help of a mathematician or statistician for a compar-
ison of the two probabilities based on a priori assumptions, I also plan a historical
analysis based on actual nationwide and state-by-state popular vote margins.

Postscript: I am very pleased to report that the Workshop will result in just
the sort of collaborative effort for which I hoped. Another participant, Professor
Vincent Merlin of the University of Caen, has already conducted closely related
analyses concerning the likelihood of “wrong-winner” elections (also known as
the majority paradox or the referendum paradox) under district-based election
structures like the Electoral College. He has taken an interest in the problem
I pose, and we plan to work together on it in June 2004, during a visit he has
scheduled to the U.S.

Probability Models for the Analysis of Voting Rules in a Federal Union
Vincent Merlin

In an election between two parties (A and B, Left and Right, Yes and No) it
might be that a party wins in a majority of districts (or states, constituencies,
etc...) while it gets less votes than its opponent in the whole country. In Social
Choice Theory, this situation is known as the compound majority paradox, or
the referendum paradox. Although occurrences of such paradoxical results have
been observed worldwide in political elections (e.g. United States, United King-
dom, France), no study evaluates theoretically the likelihood of such situations.
We propose three probability models in order to tackle this issue. The first two
models have been used for a long time in social choice theory to compute the the-
oretical likelihood of discrepancies among voting rules in the three candidate case.
The Impartial Culture (IC) assumption states that each voter picks randomly
and independently his party affiliation with probability one half. The Impartial
Anonymous Culture (IAC) assume that in each district every result is equally
likely: Party A has the same probability to get 45%, 65% or 100% of the vote
in a given constituency. However, if the number of districts is large enough, the
distribution of the votes in favor of A in the country will follow a normal distri-
bution centered around the point 50%. Thus, both IC and IAC models assume
that the competition between A and B is close in the whole country. The third
model introduce a bias (or shift) in favor of a party. The Biased and Rescaled
Impartial Anonymous Culture (BRIAC) assumes that the percentage of votes for
A in a given district is drawn uniformly on the interval [12 − D + E, 1

2 + D + E].
The bias in favor of A is measured by E and the dispersion by D. In fact, the
only key parameter of this model is p = E/D. The value E = 0 gives back the
IAC model, up to scaling factor.

For the case where each district has the same (large) population and the IC
model, our results prove that the likelihood of this paradox is 16.2% in the three-
district case and computer simulations show that it rapidly tends to 20,5% when
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the number of districts increases. The same pattern is observed under the IAC
assumption: The probability of the paradox is 12.5 % with three districts and we
estimates that it tends to 16.5% as the number of districts increases. This proba-
bility decreases with the number of states when a candidate receives significatively
more vote than his opponent over the whole country (parameter p of the BRIAC
model). However, p needs to be larger than 0.1 (e.g. 1% bias for ± 10% dispersion)
to get a significative result.

In the case of unequal population state, a new question arises : what is the
apportionment method which minimizes the probability of the paradox under a
given probability model? Let m = (m1, . . . , mi, . . . mN ) be the vector of the
distribution of the population on the N districts, and ai be the number of mandates
for district i. More precisely, we assume that ai = mβ

i for the IC case and ai = mα
i

for the IAC case. We then run several computer simulations for different values of
the vector m in order to find the optimal values of α and β. In each case, we find
out that the minimal value for the paradox has been obtained around α = 1 for the
IAC model, and around β = 0.5 for the IC model. This last result with the IC case
is consistent with some previous results by Felsenthal and Machover on the value
of β that minimizes the mean majority deficit. Computers simulations also tend
to show that the probability of the paradox slightly increases as the inequalities
among the states in term of population increase.
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Foundations of Behavioral Social Choice Research
Michel Regenwetter

This presentation consists of two parts. In the first part, I provide an overview
of a forthcoming book with the same title, co-authored with Bernard Grofman
(University of California at Irvine), A.A.J. Marley (University of Victoria) and
Ilia Tsetlin (INSEAD). This book is a synergetic summary of several underlying
journal articles [1, 2, 3, 4, 5, 6, 8, 9, 7]. We provide a mathematical modeling and
statistical inference framework

that is tailored towards developing descriptive (as opposed to normative) the-
ories of social choice behavior and towards testing them against empirical data.
We believe that our work provides a first
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systematic attempt towards a formal behavioral theory of social choice behav-
ior, in the spirit of behavioral economics and of behavioral decision theory (a la
Kahneman and Tversky). Our empirical

work on majority rule decision making demonstrates that some influential strands
of theoretical research (the impartial culture assumption, domain restriction condi-
tions such as Sen’s value restriction and Black’s single peakedness) are descriptively
invalid. I now highlight our six most important contributions.

(1) We argue for the limited theoretical relevance and demonstrate the lack
of empirical evidence for cycles in mass electorates by replacing “value

restriction” and similar classic domain restriction conditions, as well
as the “impartial culture” assumption, with more realistic assumptions
about preference distributions. We show that our behaviorally plausible
conditions, which we validate on empirical data, predict that majority rule
decision making is extremely unlikely

to generate cycles (among sincere preferences) for realistic distributions
in mass electorates. A major implication is that majority rule provides a
‘solution’ (in practice) to Arrow’s impossibility theorem.

(2) In order to better integrate social choice research with the other decision
sciences, we expand the classical domains of permissible preference states
by allowing for more general binary preference relations than linear or
weak orders and by considering probabilistic representations of preference
and utility, including a broad range of random utility models.

(3) We develop methodologies to (re)construct preference distributions from
incomplete data, i.e., data which do not provide either complete rankings
or complete sets of pairwise comparisons.

(4) We highlight the dependence of social choice results on assumed models
of preference or utility.

(5) We develop a statistical sampling and Bayesian inference framework that
usually places tight upper and lower bounds on the probability of any
majority preference relation (cycle or not). We also discuss how such
statistical considerations of social choice processes dramatically alter the
focus of what are important research questions: For instance, finding the
correct winner is often more important than worrying about cycles. Sta-
tistical and empirical considerations can also reverse some famous policy
implications: For instance, high turnout, not low turnout, as often argued,
is desirable when using majority rule.

(6) We demonstrate that in situations where sampling may be involved, mis-
representation (i.e., erroneous evaluations) of the majority preferences is
a far greater (and much more probable) threat to democratic decision
making than majority cycles.

In the second part of the presentation, I give an overview of results from a sys-
tematic analysis of American Psychological Association election data under the
single transferable vote (STV), for four elections, each with five candidates and
nearly 20,000 voters. This is collaborative work with graduate students Arthur
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Kantor (University of Illinois at Urbana-Champaign) and Aeri Kim (University of
Illinois at Urbana-Champaign). A full report on this work will be submitted for
publication in a major research journal. STV is a particularly interesting para-
digm for behavioral social choice research because the ballots provide partial or
full preference rankings from the voters. To summarize our main findings: We use
several methods to infer majority, Borda, plurality, STV, and other social welfare
orders from the ballot data. We can report with high statistical confidence that
there were no majority cycles, that the social welfare orders under majority rule
and Borda were essentially identical, and that STV generates outcomes that are
consistent with both of these classical criteria. Our findings are robust across mul-
tiple methods of data analysis. We also discuss the fact that some real world STV
elections are tallied in a probabilistic fashion and we compare the probabilistic
tally to the deterministic ‘genuine STV’ tally as defined by the British Electoral
Reform Society.
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Matchings and Allocations
Michel Balinski

(joint work with Mourad Bäıou)

There are two distinct finite sets of agents, the row-agents I (“employees”) and
the column-agents J (“employers”). Each agent has a strict preference order over
the agents of the opposite set. The preferences are collectively called Γ. Each
employee i ∈ I has s(i) units of work to offer, each employer j ∈ J seeks to obtain
d(j) units of work, and π(i, j) ≥ 0 is the maximum number of units that i ∈ I may
contract with j ∈ J . Accordingly, a stable allocation problem [3] is specified by a
quadruple (Γ, s, d, π) where Γ is a set of preferences, s > 0 a vector of |I| reals,
d > 0 a vector of |J | reals, and π ≥ 0 an |I| by |J | matrix of reals.

Notation. i′ >j i means that agent j ∈ J prefers i′ to i in I, and similarly,
j′ >i j means that agent i ∈ I prefers j′ to j in J . If either i ∈ I or j ∈ J

refuses to work with the other, then π(i, j) = 0. The set (i, j>) def= {(i, l) : l >i j}
identifies all agents l ∈ J that are strictly preferred by row-agent i to column-
agent j; and (i, j≥) def= {(i, l) : l ≥i j} all that are strictly preferred as well as j
itself. The sets (i>, j) and (i≥, j) are defined similarly. In general, if S is a set,
(r, S) def= {(r, s) : s ∈ S}, and similarly for (S, r); moreover, if y(s), s ∈ S, is a real
number, then y(S) def=

∑
s∈S y(s).

An allocation x =
(
x(i, j)

)
of a problem (Γ, s, d, π) is a set of real-valued num-

bers satisfying

x(i, J) ≤ s(i), all i ∈ I,

x(I, j) ≤ d(j), all j ∈ J,

0 ≤ x(i, j) ≤ π(i, j), all (i, j) ∈ Γ,

called, respectively, the row, the column and the entry constraints. It may be
assumed that π(i, j) ≤ min

{
s(i), d(j)

}
. An allocation x is stable if for every

(i, j) ∈ Γ,

x(i, j) < π(i, j) implies x(i, j≥) = s(i) or x(i≥, j) = d(j).

The recruitment or university admissions problem is an allocation problem
where the π(i, j) = 0 or 1, the s(i) are positive integers, and the d(j) = 1; and the
stable marriage problem is a recruitment problem where in addition the s(i) = 1.
There is an extensive literature on these problems (see in particular the book [4]).

In general the set of stable allocations form a nonempty distributive lattice, and
the cardinality of the set may be exponential. However, generically, if the reals s,
d, and π are chosen at random, then there exists exactly one stable allocation.

In the presence of many stable solutions it is of interest to determine a specific
rule for choosing one. A rule is I-monotonic if when some agent i ∈ I goes
up in the rankings of one or several of the agents J then i may only receive a
better allocation. A rule is I-strategy-proof if no subset of agents of I can alter
their preferences (that is, falsify them) and thereby obtain better allocations for
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themselves. Exactly one and the same rule is characterized by either of these two
properties [2]. These characterizations have practical applications to recruitment
and admissions problems (for an expository account see [1]).
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Analysis of QM Rules in the Draft Constitution for Europe Proposed
by the European Convention, 2003

Moshé Machover

We analyse and evaluate the qualified majority (QM) decision rules for the Council
of Ministers of the EU that are included in the Draft Constitution for Europe
proposed by the European Convention. We use a method similar to the one we
used in our paper on the Nice Treaty (Felsenthal and Machover 2001). However, we
put a special stress on the power of a voter — in this case a minister representing a
Member State on the CM — to block a proposed bill (Colemans “power to prevent
action”).

We make a detailed comparison between the decision rule proposed by the Draft
Constitution and that included in the Nice Treaty. We show that the former is
much less equitable than the latter. On the other hand, the former achieves a
radical — perhaps too radical — increase in effectiveness by means of a great (but
uneven) reduction in blocking powers.

The criteria we use in our evaluation are grouped under two main headings:
democratic legitimacy and effectiveness.

Democratic legitimacy. Here we view the CM as the upper tier of a compos-
ite two-tier decision-making system. Assuming that each minister votes at the CM
according to the majority opinion in his/her country, the indirect voters of this
composite system are the citizens of the EU, acting via their respective ministers.
We use two main criteria for assessing democratic legitimacy.

First, equitability. (Slogan: One Person, One Vote!) According to Penroses
Square-Root Rule (PSQRR), all EU citizens have equal (indirect) voting power iff
the voting powers of the Member States at the CM are proportional to the square
root of the size their respective electorates.3

3For a proof, see Felsenthal and Machover (1998, pp. 667). Throughout, by voting power we
mean voting power as quantified by the Penrose measure, aka “the absolute Banzhaf index”. We
take population size as proxy for the size of the electorate.
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We measure global deviation of a given QM rule from PSQRR using the index
of distortion D — variously attributed to Loosemore and Hanby (1971) or to
Duncan and Duncan (1955) — between the distribution of the relative voting
powers (measured by the normalized Banzhaf index) under the given rule, and
the distribution prescribed by PSQRR. Individual deviations are measured by
d := q − 1, where q is the ratio obtained by dividing the relative voting power of
a given Member State under a given rule by the relative power it ought to have
under PSQRR. In the table below, D as well as max |d| (the maximal value of d)
and ran(d) (the range of d, i.e., the difference between the greatest and smallest
values of d) are given in percentage terms.

Second, majoritarianism. (Slogan: Majority Rule!) In any non-trivial two-
tier system such as the one under consideration, it is possible that the decision
at the upper tier may go against the majority of the indirect voters at large.
When this happens, the margin by which the majority of citizens opposing the
decision exceeds the minority supporting it is the majority deficit of the decision.
(If the decision is not opposed by a majority of the citizens, the majority deficit
is 0.) Assuming random voting (independent flipping of true coins), the majority
deficit is a non-negative random variable. Its expected (mean) value ∆ — the
mean majority deficit — is a measure of the deviation of the given QM rule from
majoritarianism.

A third putative criterion of democratic legitimacy — maximization of the
sum of the citizens voting powers (slogan: Power to the People!) — turns out
to be redundant. This is because this sum, denoted by Σ, satisfies the identity
Σ = Σmax2∆, where Σmax is the maximal value of Σ, obtained under majority rule
EU-wide direct referendum.4 In fact, our calculation of ∆ uses this very identity.

Effectiveness. Here we view the CM as a decision-making body in its own
right, ignoring its role in the two-tier system. The main measure of effectiveness
(or compliance) of a decision rule is Colemans index A (“ability of the collectivity
to act”).5 A is the a priori probability that a bill will be approved (rather than
blocked) by the CM. It is given by A := ω/2n, where ω is the number of divisions
whose outcome is positive (= the number of so-called winning coalitions) and n
is the number of voters — in our case, Member States. Equivalently, but more
suggestively, we measure resistance to approving a bill in terms of a priori betting
odds against a bill being approved.

Results. Some of our results are summarized in the following table.
As we can see, C27 is much less equitable than N27 and even than the present

rule. The present rule has two egregious individual deviations: Germany with
20.1% less than its equitable share of voting power, and Luxembourg with 124.1%
more than it “deserves; but the overall deviation from equitability, as measured by
D, is much worse in the case of C27. The latter over-endows the four largest and
six smallest Member States and under-endows all the rest. The two most egregious
cases are Malta (118.2% too much) and Greece (20.8% too little). On the other

4For a proof, see Felsenthal and Machover (1998, pp. 6061).
5Coleman (1971).



760 Oberwolfach Report 14/2004

Rule D max |d| ran(d) ∆ A Odds
Present 5.1903 124.1 144.2 5519 0.078 12:1
N27 4.8227 77.6 99.7 7937 0.020 49:1
C27 8.7090 118.2 139.0 3761 0.219 7:2
Rule B 0.2490 1.2 2.1 3882 0.198 4:1

Table 1. In this table, “Present” denotes the current QM rule,
for the present 15-member CM. N27 is the QM rule prescribed
in the Nice Treaty (signed 26 February 2001) for a 27-member
CM (the existing 15 members plus the ten scheduled to join the
EU in May 2004, plus Romania and Bulgaria). C27 is the QM
rule (for the same 27 members) included in the Draft Constitu-
tion for Europe proposed by the European Convention. Rule B
is a benchmark rule which we regard as optimal: it is a weighted
rule in which weights are proportional to the square root of pop-
ulation sizes and the quota is 60% of the total weight. For the
meaning of the column headings, see text above. The odds given
in the last column are approximate.

hand, the Nice rule has a dangerously high resistance to passing a bill: the a
priori odds against it are 49:1 as compared with the present 12:1 (and 9:1 in the
previous period, before the 1995 enlargement). This threatens to paralyse the CM.
The proposed rule C27 goes in the opposite direction and reduces the resistance
dramatically. In our view, it goes a bit too far, as there are good arguments for
privileging the status quo to some extent against proposed changes. The detailed
figures (not reproduced here) show that C27 achieves this greater compliance at
the cost of considerable reduction in the blocking powers of the Member States
as compared with the Nice rule. Moreover this reduction is very uneven: the
four largest and six smallest Member States stand to lose relatively little blocking
power, while the others lose a substantial amount. The most egregious cases are
Germany (14.5% loss) and Portugal and Belgium (62.4% loss).
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The Treaty of Nice and the Council of Ministers: A Mathematical
Analysis of the Distribution of Power

Werner Kirsch

The treaty of Nice (EU-summit, December 2000) contains a complicated three-
step-procedure for decision making in the Council of Ministers of the EU. For
a proposal to pass, the first step requires a majority of countries (8 out of 15
states, resp. 13 out of 25). The second step consists of a weighted voting with
qualified majority rule. This means that the states are assigned a certain number
of votes (voting weights), which were the result of negotiations on the summit. For
example, the four biggest states (Germany, France, United Kingdom and Italy)
got 29 votes each, Spain and Poland, the next biggest countries, 27 votes each. To
approve a proposal, more than (about) 70% of the votes are required, the exact
threshold depending on the current number of members of the Union. While
these weights are monotone in the countries population, they are pretty arbitrary
otherwise, as Germany has more than 82 million citizens, France slightly less than
60 million and Poland about 38 million. Mainly to appease Germany, the Nice
treaty contains a third voting step for the Council in which each state has a
number of votes proportional to its population. In this step, a support of 62% of
the population (as represented by their governments) is required. With its three
steps, a far from transparent way to assign voting weights to the member states
and strange looking thresholds, the Nice procedure is certainly one of the most
complicated voting systems in history. For example, without a careful analysis,
it is not at all clear to which extent the third step (“population voting”) affects
the power of the members in the Council. It is, however, easy to see that the first
step of the voting is completely redundant as a qualified majority in the second
step can only be achieved with a majority of countries. We use the Banzhaf index
to quantify the power distribution in the Council after Nice. If we neglect the
“population voting”, the four big states obviously have the same power in the
council. It turns out that the third step has virtually no effect on the power of the
big states relative to each other. For example, the Banzhaf index of Germany for
the three-step-voting is only by 10−7 bigger than the one of France, although the
population of Germany is by more than one third bigger than the one of France.
In other words: on average Germany will take advantage of its bigger population
in one out of ten million votes in the Council! The voting system for the Council
as provided by the Nice treaty seems to be very complicated and based on “smoky
backroom negotiations” rather than on rational criteria. Moreover, with a 25 or
27 member Union the threshold is so high, that an effective work of the Council
seems impossible.
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Assignments of Seats as a Modelling Example in the Classroom of
Upper Secondary Schools

Thomas Jahnke

In schools and even — to a certain extent — in universities, mathematics is often
taught in a bureaucratic manner: getting and exercising and remembering stan-
dard procedures and algorithms. Teaching and learning mathematics should be
based on principles like

• posing questions instead of answering them,
• active investigations and
• exploring and discovering.

Teaching and learning modelling could enrich the usual syllabus by its contents as
well as its methods. While application could be seen as looking from mathematics
to the “real world,” science and technology modelling emphasises the other direc-
tion: looking from the real world towards mathematics in order to solve problems
by the use of mathematical knowledge and methods. We cannot define modelling
but we can characterise this activity by some essential points [2]:

• Mathematical modelling consists of applying your mathematical skills to
obtain useful answers to real problems.

• Learning to apply mathematical skills is very different from learning math-
ematics itself.

• Models are used in a very wide range of applications, some of which initially
do not appear to be mathematical by nature.

• Models often allow quick and cheap evaluations of alternatives, leading to
optimal solutions which are not otherwise obvious.

• There are no precise rules in mathematical modelling and no ‘correct’answers.
• Modelling can be learned only by doing.

While applications of mathematics often turn out to be a very straightforward
approach from a problem to its unique solution, mathematical modelling is done
step by step in a specific circle.



Analysis and Design of Electoral Systems 763

The Process or Circle of Modelling
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Mathematical
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Mathematical
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Not all modelling examples are suitable for a classroom. A good modelling example
should be

• relevant (nor only for mathematicians),
• realistic,
• motivating (not only for mathematicians),
• rich (in its mathematical aspects),
• allowing different approaches,
• enlightening,
• accessible,
• not too open and too closed and
• mathematically dense.

The problem of the assignment of parliament seats after elections in a representa-
tive democracy satisfies these demands. In the German constitution, there are no
special rules or procedures for the assignments of seats stated. This is provided in
special election laws. The following methods are used:

• Hare/Niemeyer (i.e. Hamilton) in elections for the Bundestag and the elec-
tions for the Landtag in Bayern, Berlin, Brandenburg, Bremen, Hamburg,
Hessen, Mecklenburg-Vorpommern, Nordrhein-Westfalen, Rheinland-Pfalz,
Sachsen-Anhalt and Thüringen;

• D’Hondt (i.e. Jefferson) in elections for the Landtag in Baden-Wrtemberg,
Niedersachsen, Saarland, Sachsen and Schleswig-Holstein;

• Sainte-Laguë (i.e. Webster) in elections for the Landtag in Bremen and to
choose the heads and the members for the differently sized committees of
the Bundestag.

In the classroom, we start by providing the students with the results of a Bun-
destag election and the texts of the election laws. Later we give them data to
discover the Alabama paradox and to construct the majority paradox. The dis-
cussion of the concept of the success value of a vote leads from the Hare/Niemeyer
method to the DHondt method, whose principle is to make the seats as expensive



764 Oberwolfach Report 14/2004

as possible. On the other hand, DHondt violates the upper quota condition and
is biased in favour of the bigger parties.

So far, the students have worked on elections laws, procedures, paradox results
and principles. The floor is now open to see the assignment problem in a more
general way:

Given votes v1 + v2 + v3 + . . . + vn = v and seats s1 + s2 + s3 +
. . .+ sn = s, make the set (v1; v2; v3; . . . ; vn) as similar as possible
to the set (s1; s2; s3; . . . ; sn).

Now, the students are prepared and able to set up their own research program:
(1) Which principles are realising justice the best?
(2) Test the principles and discuss their consequences.
(3) Find for every principle one or several algorithms to realise it.
(4) Construct a procedure fulfilling positive or negative conditions.
(5) Find visualisations for the different procedures.

Beside more formal questions like
assign the seats to the parties in a way that

• min{vi/si} is maximal,
• |vi/si − v/s| is minimal,
• |vi/si − vj/sj| is minimal,

the students discuss the whole modelling process and are asked to write a final
report presenting their results. They learn modelling and get deep insights about
the problem as well as mathematics itself.
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A Weighted Voronoi Diagram Approach to Political Districting
Bruno Simeone

(joint work with Isabella Lari and Frederica Ricca)

Soon after modern democracies were established, gerrymandering practices, con-
sisting of partisan manipulation of electoral district boundaries, began to occur in
several states and countries. In order to oppose such practices, researchers started
thinking of automatic procedures for political districting, designed so as to be as
neutral as possible. Commonly adopted criteria are:

• Integrity: The territory to be subdivided into districts consists of territorial
units (wards, townships, counties, etc.) and each unit cannot be split
between two or more districts.

• Contiguity: The units of each district should be geographically contiguous,
that is, one can walk from any point in the district to any other point of
it without ever leaving the district.
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• Population equality (or population balance): Under the assumption that the
electoral system is majoritarian with single-member districts, all districts
should have roughly the same population (one man – one vote principle).

• Compactness: Each district should be compact, that is, “closely and neatly
packed together” (Oxford Dictionary). Thus, a round-shaped district is
deemed to be acceptable, while an octopus- or an eel-like one is not.

A broad survey of political districting algorithms is given in (Grilli di Cortona
et al., 1999). Later work focuses on local search (e.g., Ricca and Simeone, 2000;
Bozkaya, Erkut, and Laporte, 2003). It is also worth mentioning the branch-and-
price approach in (Mehrotra, Johnson, and Nemhauser, 1998). Here we propose a
novel approach based on weighted Voronoi regions (or diagrams). This notion is
not new in the literature, especially in the area of computational geometry (see,
e.g., Aurenhammer and Edelsbrunner, 1984). What we believe to be new, besides
the specific application to political districting, is our iterative updating of node
weights to achieve population balance.

The input to our procedure is the following:
• a contiguity graph G = (V, E), whose nodes represent the territorial units

and there is an edge between two nodes if the two corresponding units are
neighboring;

• a positive integer r, the number of districts;
• a subset S ⊂ V of r nodes, called centers (all remaining nodes will be

called sites);
• positive integral node weights pi, i ∈ V , representing territorial unit popu-

lations;
• positive real distances di,s for all sites i and all centers s.

We denote by P̄ the mean district population (= (total population)/r).
The integrity criterion dictates that a district must be a subset of nodes; ac-

cording to the contiguity criterion, such a subset must be connected.
A district map is a partition of V into r connected subsets (the districts),

each containing exactly one center. Given any district map, we denote by Ds

the unique district containing center s. We look for a district map such that,
informally speaking, the district population imbalance is small and the districts
are compact enough.

If one takes as districts the ordinary Voronoi regions w.r.t. the distances di,s,
a good compactness is usually achieved, but a poor population balance might
ensue. In order to re-balance district populations, one would like to promote
site migration out of “heavier” districts (populationwise) and into lighter ones.
Then the basic idea is to consider weighted distances d′i,s = ws · di,s, where each
weight ws is proportional to Ps, the population of district Ds; and to perform a
Voronoi iteration w.r.t. the biased distances d′i,s. Do this iteratively: at iteration
k, k = 1, 2, . . . , two different recursions may be taken into consideration, namely,
a static one,

dk
i,s =

P k−1
s

P̄
d0

i,s , i ∈ V \ S, s ∈ S
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and a dynamic one,

dk
i,s =

P k−1
s

P̄
dk−1

i,s , i ∈ V \ S, s ∈ S ,

where, in both cases, d0
i,s = di,s, P 0

s is the population of the (ordinary) Voronoi
region containing center s, and P k

s is the population of Ds after iteration k =
1, 2, . . .; stop as soon as the districts become stable.

The above sketched algorithm will be called a full transfer one. One may also
consider a single transfer version of it, by letting sites migrate from one district to
another one at a time. Here too, one may adopt either the static or the dynamic
recursion defined above. So one gets altogether four variants of the weighted
Voronoi algorithm (static/dynamic recursion; full/single transfer).

One possible implementation of the single transfer algorithm is the following:
at iteration k, site i is a candidate for migrating from Dq to Dt if:

(1) P k−1
t = min{P k−1

s : s = 1, . . . , r}
(2) dk

i,t = min{dk
j,t : j �∈ Dt}

(3) dk
i,t < dk

i,q

(4) P k
t < P k−1

t

The algorithm stops when the set of candidates is empty.
Next, we define four desirable properties to be met by weighted Voronoi algo-

ritms — or at least by some variants of them.
(i) Order invariance: dk

i,s < dk
j,s ⇐⇒ di,s < dj,s, s ∈ S; i, j ∈ V \ S.

(ii) Re-balancing: At iteration k = 1, 2, . . . , site i migrates from Dq to Dt only
if P k−1

q > P k−1
t .

Definition 1. Given a graph G and any two nodes i, j of G, a geodesic between
i and j is any shortest path between i and j in G when all edge-lengths are equal
to 1. The geometric distance between i and j in G is the number of edges in any
geodesic between i and j.

(iii) Geodesic consistency: At any iteration, if node j belongs to district Ds

and node i lies on any geodesic between j and s, then i also belongs to
Ds.

One can show that geodesic consistency implies contiguity, but the converse does
not necessarily hold. Moreover, geodesic consistency holds when the input dis-
tances are geometric distances on the contiguity graph G. On the other hand,
some counterexamples show that for arbitrary input distances contiguity might
not hold.

(iv) Finite termination.
Finite termination in general is not guaranteed, as shown by counterexamples.
However, one can prove that the single transfer dynamic weighted Voronoi algo-
rithm, under conditions (1) – (4) above, enjoys finite termination.

The following table shows the results we have obtained so far.
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Property Static Dynamic
Full
transfer

Single
transfer

Full
transfer

Single
transfer

Order invariance
√ √ √ √

Re-balancing
√ √

Geodesic consistency
√1

Finite termination
√2
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Voting in Social Choice Theory
Maurice Salles

My purpose is to outline the difference between aggregation functions
directly based on individual preferences and those based on voting games. In

doing this, the role of individual indifferences is shown to be crucial. The most
studied practical aggregation function is majority rule. An option x is socially
preferred to an option y if the number of individuals who prefer x to y is greater
than the number of individuals who prefer y to x. In this case, when individual
preferences are conveniently restricted, we know since

Duncan Black that the social preference is transitive. Taking as a basis a voting
game where “powerful” coalitions are a priori defined, Dummett and Farquharson
have demonstrated that Black’s type of conditions could be extended. When there
are no restrictions on individual preferences (supposed to be complete preorders
on a finite set of options), Nakamura provided an existence theorem for the core,
given a list of individual preferences, based on a

comparison between the number of options and a number given by the struc-
ture of the voting game. Unfortunately this comparison is very restrictive and
accordingly other solution concepts have been studied. The stability set due to
Rubinstein is never empty when individual preferences are linear orders. However,

1under the assumption that distances are geometric ones in G
2under conditions (1)–(4) above
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this property does not hold when individual preferences are complete preorders.
Le Breton and Salles then obtained results using the same number as the

number used by Nakamura. Some other solution concepts are based on binary
relations that are transitive so that obtaining maximal elements is not a problem
when the set of options is finite. The interesting mathematical aspects in this case
are due to the consideration of sets of options having a geometrical or topological
structure (the problems we are then facing are related to the absence of continuity
properties of the relevant social preference

relation). When the space of options is a compact part of the Euclidean space,
the core is non-empty when the dimension of the Euclidean space is conveniently
restricted (this was shown by Greenberg, and extended by Saari).

Dividing the Indivisible: Procedures for Allocating Cabinet Ministries
to Political Parties in a Parliamentary System

Steven J. Brams
(joint work with Todd R. Kaplan)

How coalition governments in parliamentary democracies form and allocate cab-
inet ministries to political parties is the subject of a substantial empirical and
theoretical literature. By and large, a rule of proportionality, whereby parties
are given more ministries or more prestigious ministries (e.g., finance, foreign af-
fairs, or defense) in proportion to their size, is followed. However, small centrist
parties that are pivotal in coalitions (e.g., the Free Democrats in Germany) have
successfully bargained for larger-than-proportional allocations.

This task is complicated when less-than-compatible parties, like the Christian
Democrats and the Greens, join the same coalition. While fiscal conservatism and
protecting the environment are often at odds, these parties may still be accommo-
dated if, for instance, the Christian Democrats are given the finance ministry and
the Greens the environmental-protection ministry, and each has major influence
over policies in its area.

To facilitate the allocation of cabinet ministries to political parties, we pro-
pose procedures that take into account both party interests and party size. This
mechanism shifts the burden of making cabinet choices from the prime minister
designate, or formateur, who is usually the leader of the largest party in a coalition
government, to party leaders that join the government. Thereby these procedures
give party leaders primary responsibility for the make-up of the coalition govern-
ment.

We assess the fairness of this procedure, based on different criteria of fairness.
Our analysis is inspired by an apportionment method used in Northern Ireland in
1999 to determine the sequence in which parties made ministry choices (it has also
been used in Danish cities and the German Bundestag). This method works such
that the largest party in a coalition gets first choice; presumably, it would choose
the position of prime minister. After that, the apportionment method determines
the order of choice.
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For example, suppose there are three parties, ordered by size A > B > C,
and there are six ministries to be allocated. If the sequence is ABACBA, A will
receive three ministries, B two ministries, and C one ministry. But beyond these
numbers, the sequence says that A is entitled to a second choice before C gets a
first choice, and C gets a first choice before B gets a second choice.

If parties have complete information about each others preferences, we show
that it may not be rational for them to choose sincerely — that is, to select their
most-preferred ministry from those not yet chosen. Rather, a party (e.g., A)
may do better postponing a sincere choice and, instead, selecting a less-preferred
ministry if (i) that ministry might be the next choice of a party that follows it in the
sequence (e.g., B or C) and (ii) As sincere choice is not in danger of being selected
by B or C before As turn comes up again. Such sophisticated choices, which take
into account what other parties desire, can lead to very different allocations from
sincere ones.

If there are only two parties, sophisticated choices and sincere choices both yield
Pareto-optimal allocations: No parties, by trading ministries, can do better, based
on their ordinal rankings of ministries. However, this is not true if there are three
or more parties that make sophisticated choices, which was first demonstrated for
sequential choices made in professional sports.

What we show here for the first time is the problem of nonmonotonicity: A
political party may do worse by choosing earlier in a sequence, independent of
the Pareto-optimality of the sophisticated choices. Hence, the apparent advantage
that a partys size gives it by placing it early in a sequence can, paradoxically, work
to its disadvantage — it may actually get more preferred choices by going later.

Like Pareto-nonoptimal allocations, nonmonotonicity cannot occur if parties
are sincere. Thus, we are led to ask how sincere choices might be recoveredor
induced in the first place if the parties know they “cannot get away with” insincere
choices. While there is an allocation mechanism that makes sincerity optimal for
two parties, there are difficulties in extending it to more than two parties.

By putting the choice of ministries in the hands of party leaders, these lead-
ers are made responsible for their actions. Ultimately, we believe, party leaders
will be more satisfied making their own choices rather than having to bargain for
them. Moreover, this greater satisfaction should translate into more stable coali-
tion governments, which is a subject that has been extensively studied by a many
scholars.

The allocation procedures we analyze could go a long way toward minimizing
the horse trading that typically ensues when a formateur bargains with party
leaders over the ministries they will be offered. By cutting down on the rents
extracted in the bargaining process, a coalition government is likely to form more
expeditiously and be less costly to maintain.

This is not to say that the procedures we discuss solve all problems. Because
ministries are indivisible, there will not generally be a perfect match of the claims
of each party and its allocation. Furthermore, there are certain problems that are
ineradicable, whatever allocation procedure is used. For example, it may not be
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possible to eliminate envy among equally entitled parties. Nevertheless, we believe
the procedures that we discuss offer a promising start to attenuating conflicts that
have plagued the formation of coalition governments and, not infrequently, led to
their downfall.

Reporter: Johannes Rückert
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